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CHAPTER I

Introduction

1. A first glimpse of p-adic Hodge theory

Our goal in this section is to give a brief introduction to p-adic Hodge theory. By nature,
p-adic Hodge theory admits two different perspectives, namely the arithmetic one and the
geometric one. We illustrate some key ideas of p-adic Hodge theory from each perspective
and discuss some fundamental results.

1.1. The arithmetic perspective

A central object in algebraic number theory is the absolute Galois group ΓQ = Gal(Q/Q).
Indeed, ΓQ contains virtually all arithmetic information about the field Q (and its finite
extensions, called number fields). However, since ΓQ is an extremely sophisticated object, we
usually study it via the natural injective group homomorphism ΓQp ↪! ΓQ induced by the
canonical embedding Q ↪! Qp for each prime p. A general principle is that we can deduce
much information about ΓQ from knowledge about ΓQp for each prime p.

The group ΓQp is still quite complicated but turns out to be much more manageable than
the group ΓQ is. The main objective of p-adic Hodge theory, from the arithmetic perspective,
is to understand ΓQp via continuous representations ΓQp ! GLn(Qp), called p-adic Galois
representations, where ΓQp and GLn(Qp) are respectively endowed with the profinite topology
and the p-adic topology. Such representations are particularly interesting as they encode two
different kinds of structures on Qp, namely the algebraic ones from the group ΓQp and the
analytic ones from the p-adic topology.

In this subsection, we present a primary example that shows why p-adic Galois represen-
tations are important for carrying out the strategy outlined in the first paragraph and how
we study such representations. Let E be an elliptic curve over Q, which refers to a projective
curve defined by a polynomial equation

y2 = x3 + ax+ b with a, b ∈ Q and 4a3 + 27b2 ̸= 0. (1.1)

Elliptic curves play a fundamental role in modern number theory, as highlighted by the proof of
Fermat’s last theorem. Elliptic curves have a remarkable property that their points (including
the point at infinity) naturally form an abelian group. Hence for each positive integer n and
a Q-algebra R, we can define

E[n](R) := {P ∈ E(R) : nP = O}
where O denotes the point at infinity identified as the zero element in E. We fix a prime ℓ
and define the ℓ-adic Tate module of E by

Tℓ(E) := lim −E[ℓv](Q)

where the transition maps send each P ∈ E[ℓv+1](Q) to ℓP ∈ E[ℓv](Q). It is a standard fact
that Tℓ(E) is a free Zℓ-module of rank 2, thereby admitting an isomorphism

Tℓ(E) ≃ Z2
ℓ .

5



6 I. INTRODUCTION

Moreover, the tautological action of ΓQ on Q naturally induces a continuous action on Tℓ(E)
and in turn gives rise to a continuous representation of ΓQ on

Vℓ(E) := Tℓ(E) ⊗Zℓ
Qℓ ≃ Q2

ℓ

called the ℓ-adic rational Tate module of E. The action of ΓQ on Tℓ(E) and Vℓ(E) contains
much information about the elliptic curve E, as suggested by the following fact:

Theorem 1.1.1 (Faltings [Fal83]). Given two elliptic curves E1 and E2 over Q, there exist
natural isomorphisms

Hom(E1, E2) ⊗Z Zℓ ∼= HomΓQ(Tℓ(E1), Tℓ(E2)),

Hom(E1, E2) ⊗Z Qℓ
∼= HomΓQ(Vℓ(E1), Vℓ(E2)).

(1.2)

In particular, a homomorphism between E1 and E2 is uniquely determined by the induced
map on the Tate modules as ΓQ-representations.

Remark. By a result of Tate [Tat66], an analogous statement holds for elliptic curves over
Fp with p ̸= ℓ. Both Theorem 1.1.1 and the result of Tate [Tat66] are special cases of
the Tate conjecture which relates subvarieties of a given algebraic variety X over a field k
to representations of Γk = Gal(k/k) on vector spaces over Qℓ that naturally arise from X
(similar to the ℓ-adic rational Tate module an elliptic curve). For elliptic curves over Qp, we
get injective maps instead of isomorphisms in (1.2).

However, the action of ΓQ on Tℓ(E) and Vℓ(E) is difficult to understand due to the com-
plexity of the group ΓQ. Following the strategy outlined at the beginning of this subsection,
we study the action of ΓQp on Tℓ(E) and Vℓ(E) for each prime p via the natural injection
ΓQp ↪! ΓQ. In fact, we have an identification

Tℓ(E) ∼= lim −E[ℓv](Qp) ≃ Z2
ℓ ,

endowed with a continuous action of ΓQp naturally induced by the tautological action on Qp.

We assume that E has good reduction at p. For p > 3, our assumption concretely means
that in the polynomial equation (1.1) we have a, b ∈ Zp with 4a3+27b2 not divisible by p. The
assumption is not very restrictive; indeed, it is a standard fact that E has good reduction at
almost all primes (i.e., all but finitely many primes). A main consequence of our assumption
is that E admits mod p reduction, denoted by E, which is an elliptic curve over Fp with points

given by the mod p solutions of (1.1). We have the ℓ-adic Tate module of E defined by

Tℓ(E) := lim −E[ℓv](Fp),
which turns out to be a free module over Zℓ (but not necessarily of rank 2) with a contin-
uous action of ΓFp = Gal(Fp/Fp) naturally induced by the tautological action on Fp, and
consequently obtain a continuous representation of ΓFp on the ℓ-adic rational Tate module

Vℓ(E) := Tℓ(E) ⊗Zℓ
Qℓ.

For p ̸= ℓ, we can explicitly describe the action of ΓQp on Tℓ(E) and Vℓ(E) through the ac-

tion of ΓFp on Tℓ(E) and Vℓ(E). In fact, if we regard Tℓ(E) and Vℓ(E) as ΓQp-representations
via the natural surjection ΓQp ↠ Gal(Qun

p /Qp) ∼= ΓFp , where Qun
p denotes the maximal un-

ramified extension of Qp, we have isomorphisms

Tℓ(E) ≃ Tℓ(E) and Vℓ(E) ≃ Vℓ(E)

as ΓQp-representations. Hence we only need to understand Tℓ(E) and Vℓ(E) as (continuous)
ΓFp-representations. The group ΓFp is topologically generated by the Frobenius automor-

phism which maps each element in Fp to its p-th power. It turns out that the Frobenius
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automorphism acts on Tℓ(E) and Vℓ(E) with characteristic polynomial x2 − apx + p, where

we set ap := p + 1 − #E(Fp). In summary, we can specify the action of ΓQp on Tℓ(E) and
Vℓ(E) by the following properties:

(i) The action is continuous and factors through the natural surjection ΓQp ↠ ΓFp .

(ii) The Frobenius automorphism of Fp, which topologically generates ΓFp , acts with

trace ap = p+ 1 − #E(Fp) and determinant p.

We refer to a ΓQp-representation with property (i) as an unramified representation, moti-
vated by the natural identification ΓFp

∼= Gal(Qun
p /Qp). Since the ℓ-adic Tate module Tℓ(E)

is unramified, it loses much information about the topology on ΓQp ; indeed, the topology on
ΓFp is very simple (being generated by one element, namely the Frobenius automorphism)
compared to the topology on ΓQp . Intuitively, for p ̸= ℓ the topologies on ΓQp and Qℓ do not
get along with each other very well, thereby forcing the continuous action of ΓQp on Tℓ(E) to
be simple. It is worthwhile to mention that our discussion here explains one direction of the
following important criterion:

Theorem 1.1.2 (Néron [Nér64], Ogg [Ogg67], Shafarevich). An elliptic curve E over Q has
good reduction at p if and only if Tℓ(E) is unramified for a prime ℓ ̸= p.

Let us now set p = ℓ. We have entered the realm of p-adic Hodge theory, as Vp(E) is
a p-adic Galois representation by construction. In stark contrast to our discussion in the
previous two paragraphs, we have the following facts:

(1) The (rational) Tate modules for E and E are never isomorphic; indeed, Tp(E) is
isomorphic to either Zp or 0 whereas Tp(E) is always isomorphic to Z2

p.

(2) Tp(E) and Vp(E) turn out to be never unramified; in other words, the action of
ΓQp on Tp(E) and Vp(E) always has a nontrivial contribution from the kernel of the
surjection ΓQp ↠ ΓFp , called the inertia group of Qp and denoted by IQp .

The second fact indicates that the topologies on ΓQp and Qp do not clash and thus allow
Tp(E) to carry a large amount of topological information. A side effect is that, as the first

fact shows, it is impossible to describe Tp(E) solely based on Tp(E).

We still wish to understand Tp(E) as a ΓQp-representation using the mod p reduction E.
Following Tate [Tat66] and Grothendieck [Gro71, Gro74], we regard E as a curve over Zp
and consider the functors defined by

E[p∞] := lim−!E[pv] and E[p∞] := lim−!E[pv],

called the p-divisible groups of E and E, where the transition maps are the natural inclusions.
For the elliptic curve E, the p-divisible group E[p∞] and the Tate module Tp(E) are equivalent
objects in the sense that we can determine one from the other. On the other hand, for the
mod p reduction E, the p-divisible group E[p∞] contains a lot of information that the Tate
module Tp(E) does not; for example, E[p∞] never vanishes while Tp(E) often does (as noted
in the previous paragraph). Hence the p-divisible groups serve as refinements of the p-adic
Tate modules which do not lose too much information under mod p reduction.

A remarkable fact is that we can describe p-divisible groups in terms of linear algebraic
objects. A Dieudonné module over Zp refers to a finite free Zp-module D equipped with an
endomorphism φD, called the Frobenius endomorphism, such that φD(D) contains pD. A
Honda system over Zp is a Dieudonné module D over Zp together with a submodule Fil1(D)

such that φD induces a natural isomorphism Fil1(D)/pFil1(D) ∼= D/φD(D).
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Theorem 1.1.3 (Dieudonné [Die55], Fontaine [Fon77]). Given an elliptic curve E over Q
with good reduction at p, we have the following statements:

(1) The mod p reduction E of E functorially gives rise to a Dieudonné module D(E)
over Zp of rank 2, which uniquely determines the isomorphism class of E[p∞].

(2) For p > 2, the elliptic curve E functorially gives rise to a Honda system over Zp with

underlying Dieudonné module D(E), which uniquely determines the isomorphism
class of E[p∞].

Remark. Let us make some remarks regarding Theorem 1.1.3.

(1) The results of Dieudonné [Die55] and Fontaine [Fon77] indeed yield anti-equivalences
of categories{

p-divisible groups over Fp
} ∼
 !

{
Dieudonné modules over Zp

}{
p-divisible groups over Zp

} ∼
 !

{
Honda systems over Zp

}
where the second anti-equivalence holds only for p > 2. For p = 2, the second
anti-equivalence holds after taking an appropriate subcategory on each side.

(2) The first statement, proved by Dieudonné [Die55], was the main motivation for Tate
[Tat66] and Grothendieck [Gro71, Gro74] to study p-divisible groups in relation
to the Tate modules, as it suggests that E[p∞] behaves much as Tℓ(E) for p ̸= ℓ.
The work of Tate [Tat66] and Grothendieck [Gro71, Gro74] eventually inspired
the proof of the second statement by Fontaine [Fon77] in an attempt to describe
E[p∞] via D(E) together with some “lifting data”.

(3) Our description of Dieudonné modules is potentially misleading. In general, for
a Dieudonné module D the endomorphism φD should be Frobenius-semilinear in
an appropriate sense. For Dieudonné modules over Zp, however, the Frobenius-
semilinearity simply means linearity as the Frobenius automorphism is trivial on the
residue field Fp.

Hence for p > 2 we can determine the isomorphism class of Tp(E) as a ΓQp-representation

by the Honda system associated to E with underlying Dieudonné module D(E). Intuitively,
once we fix an element σ ∈ ΓQp that lifts the Frobenius automorphism in ΓFp , the Honda

system encodes the actions of IQp and σ on Tp(E) respectively by Fil1(D(E)) and φD(E). For

p = 2, we can still associate a Honda system to E and show that it contains much information
about Tp(E), although in general it does not determine the isomorphism class of Tp(E).

If we instead want to study the p-adic Galois representation on Vp(E), we replace the

Dieudonné module D(E) by D(E) ⊗Zp Qp, called an isocrystal over Qp, which is a finite
dimensional vector space over Qp equipped with a (Frobenius-semilinear) automorphism. The

Honda system associated to E yields the isocrystal D(E) ⊗Zp Qp with the filtration given by

the subspace Fil1(D(E)) ⊗Zp Qp, called a filtered isocrystal over Qp. Now Theorem 1.1.3
implies for p > 2 that the filtered isocrystal associated to E determines the isomorphism class
of Vp(E) as a p-adic Galois representation, which turns out to apply also for p = 2.

We have thus transferred the study of Tp(E) and Vp(E) as ΓQp-representations to the
study of certain linear algebraic objects, such as Dieudonné modules and isocrystals. In fact,
a main theme of p-adic Hodge theory is to construct a dictionary that relates p-adic Galois
representations to various linear algebraic objects. Our discussion here illustrates a prototype
for such a dictionary.
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1.2. The geometric perspective

Our discussion in §1.1 shows how we can study elliptic curves over Q via their Tate
modules as ΓQ-representations. It is natural to ask whether we can similarly study other
algebraic varieties. Let X be a smooth proper variety over Q. For each Q-algebra R, we
write XR for the base change of X to R. Given an integer n ≥ 0 and a prime ℓ, we have the
étale cohomology group Hn

ét(XQ,Qℓ) which is a finite dimensional vector space over Qℓ with
a continuous action of ΓQ. As a special case, for an elliptic curve E over Q we have a natural
identification

Vℓ(E)∨ ∼= H1
ét(EQ,Qℓ)

as ΓQ-representations, where Vℓ(E)∨ denotes the dual representation of Vℓ(E). Following
the strategy outlined in §1.1, for each prime p we study the action of ΓQp on Hn

ét(XQ,Qℓ)
via the natural injection ΓQp ↪! ΓQ; in other words, we study the étale cohomology group
Hn

ét(XQp
,Qℓ) as a representation of ΓQp . For p ̸= ℓ, the ΓQp-representation Hn

ét(XQp
,Qℓ)

tends to be simple; indeed, it is unramified for all but finitely many p ̸= ℓ, as we have already
seen for the rational Tate modules of an elliptic curve in §1.1. For p = ℓ, on the other hand,
Hn

ét(XQp
,Qp) as a p-adic Galois representation turns out to carry interesting information

about the geometry of X. The main objective of p-adic Hodge theory, from the geometric
perspective, is to extract information about the geometric structure of an algebraic variety
from the p-adic étale cohomology groups.

In this subsection, we illustrate how the classical Hodge theory inspires fundamental
results in p-adic Hodge theory which relates the p-adic étale cohomology groups of an algebraic
variety over Qp (or its finite extension) to other cohomology groups. Let us consider an elliptic
curve E over Q. We may identify E(C) as a complex torus via an isomorphism

E(C) ≃ C/(Z⊕ Zτ) for some nonreal τ ∈ C.
Let α and β respectively denote the loops on E(C) induced by the line segments on C con-
necting 0 to 1 and τ , as illustrated in the following figure:

α

β
Re

Im

0

τ

1

1 + τ

We have an isomorphism
H1(E(C),Z) ≃ Z⊕ Z,

with a basis given by the homotopy classes of α and β, and in turn find

H1(E(C),C) ∼= Hom(H1(E(C),C)) ≃ C⊕ C (1.3)

by Poincaré duality. Moreover, since E(C) has genus 1, there exists an isomorphism

H0(EC,Ω
1
EC) ≃ C

with a basis given by dz. Hence we obtain an isomorphism

H0(EC,Ω
1
EC) ⊕H0(EC,Ω

1
EC

)
∼
−! H1(E(C),C)
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sending dz and dz respectively to
∫
dz = (1, τ) and

∫
dz = (1, τ) via the isomorphism (1.3).

It is not hard to see that this isomorphism is canonical. In fact, it is a special case of the
Hodge decomposition given by the following theorem:

Theorem 1.2.1. For a smooth proper variety X over C, there exists a canonical isomorphism

Hn(X(C),Q) ⊗Q C ∼= Hn
dR(X/C) ∼=

⊕
i+j=n

H i(X,Ωj
X)

with H i(X,Ωj
X) = Hj(X,Ωi

X).

Theorem 1.2.1 admits analogues for the p-adic étale cohomology of an algebraic variety
over Qp. Let Cp denote the p-adic completion of Qp, called the field of p-adic complex numbers.
The field Cp is complete and algebraically closed, just as the field C is. Since the tautological

action of ΓQp on Qp is continuous, it uniquely extends to an action on Cp. For a p-adic
analogue of the complex conjugate, we consider the p-adic cyclotomic character

χ : ΓQp −! Aut(Zp) ∼= Z×
p

given by the ΓQp-action on the group

Tp(µp∞) := lim −µp
v(Qp) ≃ lim −Z/pvZ = Zp,

where µpv(Qp) denotes the group of pv-th roots of unity in Qp, and write Cp(n) for Cp with
ΓQp-action twisted by χn in the sense that each γ ∈ ΓQp acts on Cp(n) as χ(γ)nγ. For an
elliptic curve E over Qp with good reduction, the work of Tate [Tat67] yields a canonical
isomorphism

H1
ét(EQp

,Qp) ⊗Qp Cp ∼= H0(E,Ω1
E/Qp

) ⊗Qp Cp ⊕H1(E,Ω0
E/Qp

) ⊗Qp Cp(−1)

which is compatible with ΓQp-actions. In fact, this isomorphism is a special case of the
Hodge-Tate decomposition given by the following theorem:

Theorem 1.2.2 (Faltings [Fal88]). For a smooth proper variety X over Qp, there exists a
canonical isomorphism

Hn
ét(XQp

,Qp) ⊗Qp Cp ∼=
⊕
i+j=n

H i(X,Ωj
X/Qp

) ⊗Qp Cp(−j) (1.4)

which is compatible with ΓQp-actions.

Let us take the Hodge-Tate period ring BHT :=
⊕
n∈Z

Cp(n) and write the isomorphism (1.4)

as a ΓQp-equivariant isomorphism of graded algebras

Hn
ét(XQp

,Qp) ⊗Qp BHT
∼=
( ⊕
i+j=n

H i(X,Ωj
X/Qp

)
)
⊗Qp BHT. (1.5)

A result of Tate [Tat67] and Sen [Sen80] establishes an identification B
ΓQp

HT = Qp and in turn
yields an isomorphism of graded Qp-algebras(

Hn
ét(XQp

,Qp) ⊗Qp BHT

)ΓQp ∼=
⊕
i+j=n

H i(X,Ωj
X/Qp

).

In particular, we can compute the Hodge numbers of X from Hn
ét(XQp

,Qp).

Theorem 1.2.2 is, however, not a complete analogue of Theorem 1.2.1 as it does not give
a comparison isomorphism which directly relate the étale cohomology and the de Rham co-
homology. Fontaine [Fon82] formulated a conjecture that such a comparison isomorphism
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exists as a refinement of the isomorphism (1.5), inspired by the fact that the de Rham co-
homology group Hn

dR(X/Qp) has a natural filtration
{

Film
(
Hn

dR(X/Qp)
) }

m∈Z, called the

Hodge filtration, with its graded vector space gr (Hn
dR(X/Qp)) yielding a natural isomorphism

gr (Hn
dR(X/Qp)) ∼=

⊕
i+j=n

H i(X,Ωj
X/Qp

).

A key ingredient of the conjecture is the de Rham period ring BdR which Fontaine [Fon82]
constructed as a Qp-algebra with the following properties:

(i) BdR carries a natural action of ΓQp with B
ΓQp

dR = Qp.

(ii) BdR admits a natural filtration { Filn(BdR) }n∈Z with BHT as its graded algebra.

Fontaine’s conjecture is now a theorem, commonly referred to as the p-adic de Rham com-
parison theorem, which we state as follows:

Theorem 1.2.3 (Faltings [Fal89]). For a smooth proper variety X over Qp, there exists a
canonical isomorphism

Hn
ét(XQp

,Qp) ⊗Qp BdR
∼= Hn

dR(X/Qp) ⊗Qp BdR (1.6)

which is compatible with ΓQp-actions and filtrations.

Remark. The filtration on the right side is the convolution filtration given by

Film
(
Hn

dR(X/Qp) ⊗Qp BdR

)
:=

⊕
i+j=m

Fili
(
Hn

dR(X/Qp)
)
⊗Qp Filj(BdR) for every m ∈ Z.

Theorem 1.2.3 yields Theorem 1.2.2 as a formal consequence; indeed, we obtain the iso-
morphism (1.5) from the isomorphism (1.6) by passing to the associated graded vector spaces.
In addition, Theorem 1.2.3 induces a natural isomorphism(

Hn
ét(XQp

,Qp) ⊗Qp BdR

)ΓQp ∼= Hn
dR(X/Qp),

thereby allowing us to recover Hn
dR(X/Qp) from Hn

ét(XQp
,Qp). Therefore Theorem 1.2.3 (with

Theorem 1.2.2 as its consequence) indicates that the p-adic étale cohomology of an algebraic
variety over Qp behaves much as the singular cohomology of an algebraic variety over C does.

Let us now assume that X has good reduction over Qp. Intuitively, our assumption
means that we may regard X as a smooth scheme over Zp and thus allows us to take its

mod p reduction X. Motivated by our discussion in §1.1, we wish to understand the p-adic
Galois representation Hn

ét(XQp
,Qp) using X. We consider the crystalline cohomology group

Hn
cris(X/Zp) which is a Dieudonné module over Zp with a natural isomorphism

Hn
cris(X/Zp) ⊗Zp Qp

∼= Hn
dR(X/Qp)

and a canonical filtration
{

Film
(
Hn

cris(X/Zp)
) }

m∈Z induced by the Hodge filtration on

Hn
dR(X/Qp). For an elliptic curve E with good reduction over Qp, we may naturally iden-

tify H1
cris(E/Zp)⊗Zp Qp with the filtered isocrystal associated to E, which in turn determines

H1
ét(EQp

,Qp) ∼= Vp(E)∨ by our discussion in §1.1. For the general case, Grothendieck [Gro71]

proposed a conjecture that Hn
cris(X/Zp)⊗ZpQp as a filtered isocrystal determines Hn

ét(XQp
,Qp)

as a p-adic Galois representation in a functorial way; indeed, his conjecture predicts that there
exists a fully faithful functor D on a certain category of p-adic Galois representations with

D
(
Hn

ét(XQp
,Qp)

)
= Hn

cris(X/Zp) ⊗Zp Qp.

We refer to the functor D as the Grothendieck mysterious functor.
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Fontaine [Fon82, Fon83] reformulated the conjecture of Grothendieck [Gro71] in terms
of a comparison isomorphism between the étale cohomology and the crystalline cohomol-
ogy. His idea was to refine the de Rham comparison isomorphism (1.6) by constructing the
crystalline period ring Bcris, which is a Qp-subalgebra of BdR with the following properties:

(i) Bcris carries a natural ΓQp-action with B
ΓQp

cris = Qp, induced by the action on BdR.

(ii) Bcris admits a natural filtration { Filn(Bcris) }n∈Z given by the filtration on BdR.

(iii) Bcris contains the maximal unramified extension Qun
p of Qp with a canonical extension

of the Frobenius automorphism on Qun
p , called the Frobenius endomorphism.

Fontaine’s conjecture is now a theorem, commonly referred to as the crystalline comparison
theorem, which we state as follows:

Theorem 1.2.4 (Faltings [Fal89]). For a smooth proper variety X over Qp with mod p

reduction X, there exists a canonical isomorphism

Hn
ét(XQp

,Qp) ⊗Qp Bcris
∼= Hn

cris(X/Zp) ⊗Zp Bcris (1.7)

which is compatible with ΓQp-actions, filtrations, and Frobenius endomorphisms.

Remark. As in Theorem 1.2.3, the right side carries the convolution filtration given by

Film
(
Hn

cris(X/Zp) ⊗Zp Bcris

)
:=

⊕
i+j=m

Fili
(
Hn

cris(X/Zp)
)
⊗Zp Filj(Bcris) for every m ∈ Z.

Under the assumption that X has good reduction, we can obtain the de Rham comparison
isomorphism (1.6) from the crystalline comparison isomorphism (1.7) by tensoring with BdR

and forgetting the Frobenius endomorphisms. Moreover, Theorem 1.2.4 yields a natural
isomorphism (

Hn
ét(XQp

,Qp) ⊗Qp Bcris

)ΓQp ∼= Hn
cris(X/Zp) ⊗Zp Qp,

thereby suggesting that the mysterious functor D takes the form

D(V ) = (V ⊗Qp Bcris)
ΓQp

for every p-adic Galois representation V . It turns out, by the work of Fontaine [Fon94b],
that the functor D is fully faithful on a suitable category of p-adic Galois representations with
values taken in the category of filtered isocrystals. In fact, Hn

cris(X/Zp) ⊗Zp Qp determines
Hn

ét(XQp
,Qp) by an identification

Hn
ét(XQp

,Qp) ∼=
(
Hn

cris(X/Zp) ⊗Zp Bcris

)φ=1 ∩ Fil0
(
Hn

cris(X/Zp) ⊗Zp Bcris

)
(1.8)

where we denote by φ the natural Frobenius action on Hn
cris(X/Zp) ⊗Zp Bcris induced by the

Frobenius endomorphisms on Hn
cris(X/Zp) and Bcris.

As our discussion demonstrates, a main theme in p-adic Hodge theory is to establish a
comparison isomorphism that relates p-adic étale cohomology groups to cohomology groups
of a different kind. In addition to the theorems presented in this subsection, there are many
results of a similar flavor, notably by the work of Tsuji [Tsu99], Scholze [Sch13], and
Bhatt-Morrow-Scholze [BMS18, BMS19]. Let us also mention that there are other ap-
proaches for the comparison theorems presented in this subsection, in particular by the work
of Fontaine-Messing [FM87], Nizio l [Niz98, Niz08], and Beilinson [Bei12, Bei13].
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2. Machinery of p-adic Hodge theory

Our main objective for this section is to present some central tools for p-adic Hodge theory.
We demonstrate how these tools provide systemic ways to study p-adic Galois representations
and related objects. In addition, we illustrate some of their key properties and applications.

2.1. Period rings and their associated functors

In this subsection, we describe a connection between the two main themes of p-adic Hodge
theory provided by some linear algebraic functors. These functors originate in the work of
Fontaine [Fon79, Fon82, Fon83, Fon94a] which proposes a uniform approach for the p-adic
comparison theorems in an attempt to resolve the conjecture of Grothendieck [Gro71] on the
mysterious functor. We write RepQp

(ΓQp) for the category of p-adic Galois representations
and VectQp for the category of vector spaces over Qp. Let B be a p-adic period ring, such as

BHT, BdR or Bcris, which is a Qp-algebra carrying a natural ΓQp-action with BΓQp = Qp. We
define the functor DB : RepQp

(ΓQp) −! VectQp by setting

DB(V ) := (V ⊗Qp B)ΓQp for each V ∈ RepQp
(ΓQp)

and say that V ∈ RepQp
(ΓQp) is B-admissible if the natural ΓQp-equivariant map

αV : DB(V ) ⊗Qp B −! (V ⊗Qp B) ⊗Qp B
∼= V ⊗Qp (B ⊗Qp B) −! V ⊗Qp B

is an isomorphism. We enhance the functor DB by incorporating additional structures on B,
as demonstrated by the following examples:

(1) DBHT
(V ) for each V ∈ RepQp

(ΓQp) carries a grading naturally induced by the grading
on BHT.

(2) DBdR
(V ) for each V ∈ RepQp

(ΓQp) carries a filtration naturally induced by the
filtration on BdR.

(3) DBcris(V ) for each V ∈ RepQp
(ΓQp) carries a Frobenius endomorphism and a filtration

naturally induced by the ones on Bcris.

For every smooth proper variety X over Qp, we may state the p-adic comparison theorems
from §1.2 as follows:

(1) Hn
ét(XQp

,Qp) is BHT-admissible with a natural isomorphism

DBHT
(Hn

ét(XQp
,Qp)) ∼=

⊕
i+j=n

H i(X,Ωj
X/Qp

)

which is compatible with the gradings on both sides.

(2) Hn
ét(XQp

,Qp) is BdR-admissible with a natural isomorphism

DBdR
(Hn

ét(XQp
,Qp)) ∼= Hn

dR(X/Qp)

which is compatible with the filtrations on both sides.

(3) If X admits mod p reduction X, then Hn
ét(XQp

,Qp) is Bcris-admissible with a natural

isomorphism

DBcris(H
n
ét(XQp

,Qp)) ∼= Hn
cris(X/Zp) ⊗Zp Qp

which is compatible with the Frobenius endomorphisms and filtrations on both sides.

Moreover, the notion of Bcris-admissibility yields a p-adic analogue of Theorem 1.1.2.

Theorem 2.1.1 (Coleman-Iovita [CI99], Breuil [Bre00]). An elliptic curve E over Q has
good reduction at p if and only if Vp(E) is Bcris-admissible.
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Let us denote by RepBQp
(ΓQp) the category of B-admissible representations. The work of

Fontaine [Fon82, Fon83] yields a hierarchy of p-adic Galois representations given by

RepBcris
Qp

(ΓQp) ⊊ RepBdR
Qp

(ΓQp) ⊊ RepBHT
Qp

(ΓQp)

with the associated functors satisfying the following relations:

• DBHT
(V ) for each V ∈ RepBdR

Qp
(ΓQp) is naturally isomorphic to the graded vector

space of DBdR
(V ).

• DBdR
(V ) for each V ∈ RepBcris

Qp
(ΓQp) is naturally isomorphic to DBcris(V ) (after

forgetting the Frobenius endomorphism).

This hierarchy realizes relations between various cohomology groups for a smooth proper
variety X over Qp, as presented in §1.2 and summarized in the following statements:

• The Hodge-Tate decomposition (1.5) follows from the de Rham comparison isomor-
phism (1.6) by passing to the associated graded space via the identification

gr (Hn
dR(X/Qp)) ∼=

⊕
i+j=n

H i(X,Ωj
X/Qp

).

where gr (Hn
dR(X/Qp)) denote the graded vector space of Hn

dR(X/Qp).

• IfX has good reduction, the de Rham comparision isomorphism (1.6) follows from the
crystalline comparison isomorphism (1.7) by tensoring with BdR via the identification

Hn
cris(X/Zp) ⊗Zp Qp

∼= Hn
dR(X/Qp).

We wish to understand how the category RepBQp
(ΓQp) behaves, especially in conjunction

with the functor DB. A general formalism developed by Fontaine [Fon94b] shows that
RepBQp

(ΓQp) and DB have the following properties:

(i) DB is exact and faithful on RepBQp
(ΓQp).

(ii) RepBQp
(ΓQp) is closed under taking subquotients.

(iii) RepBQp
(ΓQp) is closed under tensor products, with a natural identification

DB(V ⊗Qp W ) ∼= DB(V ) ⊗Qp DB(W ) for any V,W ∈ RepBQp
(ΓQp).

(iv) RepBQp
(ΓQp) is closed under taking duals, with a natural identification

DB(V ∨) ∼= DB(V )∨ for every V ∈ RepBQp
(ΓQp)

where V ∨ and DB(V )∨ respectively denote the duals of V and DB(V ).

Moreover, DBcris and RepBcris
Qp

(ΓQp) have a remarkable property given by the following result:

Theorem 2.1.2 (Fontaine [Fon94b]). The functor DBcris is fully faithful on RepBcris
Qp

(ΓQp).

Our discussion in this subsection indicates that period rings and their associated functors
provide a general framework for the two main themes in p-adic Hodge theory. From the
arithmetic perspective, they provide dictionaries for classifying and studying p-adic Galois
representations in terms of linear algebraic objects. From the geometric perspective, they
allow us to uniformly formulate p-adic comparison theorems and to systemically detect geo-
metric properties of an algebraic variety over Qp from its p-adic étale cohomology. Therefore
period rings and their associated functors are essential for studying p-adic Hodge theory via
the interplay between the arithmetic and geometric perspectives.
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2.2. The Fargues-Fontaine curve and its vector bundles

In this subsection, we provide a brief introduction to a remarkable geometric object called
the Fargues-Fontaine curve, which plays a fundamental role in modern p-adic Hodge theory.
We exhibit its key properties in comparison to the complex projective line P1

C. In addition,
we describe how it provides a geometric framework for studying p-adic Galois representations
via its vector bundles (i.e., locally free sheaves of finite rank).

Let us recall that P1
C has the following properties:

(i) It is noetherian, connected, and regular of dimension 1.

(ii) Its Picard group Pic(P1
C) is canonically isomorphic to Z.

(iii) It has arithmetic genus 0 in the sense that H1(P1
C,OP1

C
) vanishes.

(iv) It admits a closed point ∞, namely the point at infinity, with natural isomorphisms

P1
C −∞ ∼= Spec (C[z]) and ÔP1

C,∞
∼= C[[z−1]]

where ÔP1
C,∞

denotes the completed local ring at ∞.

Property (iv) is essentially a geometric formulation of the natural exact sequence

0 −! C −! C[z] −! C((z−1))/C[[z−1]] −! 0. (2.1)

Intuitively, this exact sequence indicates that we can construct P1
C by gluing the complex

affine line A1
C = Spec (C[z]) to the infinitesimal disk at ∞, given by Spec (C[[z−1]]), along the

punctured infinitesimal disk at ∞, given by Spec (C((z−1))).

The construction of the Fargues-Fontaine curve stems from a remarkable discovery of
Fontaine [Fon94a] that the exact sequence (2.1) admits an analogue for p-adic period rings.
By construction, the de Rham period ring BdR is a discretely valued complete field with
residue field Cp. We write B+

dR for the valuation ring of BdR and Be := Bφ=1
cris for the ring of

φ-invariants in Bcris, where φ denotes the Frobenius endomorphism on Bcris.

Theorem 2.2.1 (Fontaine [Fon94a]). There exists a natural exact sequence

0 −! Qp −! Be −! BdR/B
+
dR −! 0. (2.2)

The exact sequences (2.1) and (2.2) have the following similarities:

(1) C[[z−1]] and B+
dR are both complete discrete valuation rings, with fraction fields

respectively given by C((z−1)) and BdR.

(2) C[z] and Be are both principal ideal domains.

The second similarity is another surprising discovery of Fontaine, primarily based on the work
of Berger [Ber08]. The similarities of the exact sequences (2.1) and (2.2) inspire the construc-
tion of the Fargues-Fontaine curve X by gluing Spec (Be) and Spec (B+

dR) along Spec (BdR).

Theorem 2.2.2 (Fargues-Fontaine [FF18]). The Fargues-Fontaine curve X is a Qp-scheme
with the following properties:

(i) It is noetherian, connected and regular of dimension 1.

(ii) Its Picard group Pic(X) is canonically isomorphic to Z.

(iii) It has arithmetic genus 0 in the sense that H1(X,OX) vanishes.

(iv) It admits a closed point ∞ with natural isomorphisms

X −∞ ∼= Spec (Be) and ÔX,∞ ∼= B+
dR

where ÔX,∞ denotes the completed local ring at ∞.
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For an explicit description of the Fargues-Fontaine curve, we have a natural isomorphism
X ∼= Proj (P ) for a graded ring

P :=
⊕
n≥0

B(n)
e

where we set B
(n)
e := { f ∈ Be : ν∞(f) ≥ −n } with ν∞ denoting the valuation on BdR. For

comparison, we have the identification P1
C = Proj (C[z0, z1]) and an isomorphism

C[z0, z1] ∼=
⊕
n≥0

C[z](n)

where we set C[z](n) := { f ∈ C[z] : ν∞(f) ≥ −n } = { f ∈ C[z] : deg(f) ≤ n } with ν∞ denot-
ing the valuation on C((z−1)). The graded rings P and C[z0, z1] have an important common

feature of being generated in degree 1 (i.e., being generated by elements in B
(1)
e and C[z](1)).

However, unlike P1
C, the Fargues-Fontaine curve is not an algebraic variety. The main

issue is that it is not of finite type over the base field Qp. In fact, Theorem 2.2.2 shows that
the residue field at ∞ is Cp and thus is not a finite extension of Qp.

The work of Fargues-Fontaine [FF18] reveals a tidy connection between the category
BunX of vector bundles on X and the category φ−ModQp of isocrystals over Qp, given by an
essentially surjective functor

E : φ−ModQp −! BunX .

The key fact is that we can produce a vector bundle V on X by gluing a vector bundle Ve on

Spec (Be) to a vector bundle V̂∞ on Spec (B+
dR) along Spec (BdR); in other words, we obtain

a vector bundle on X from a pair (Me,M
+
dR) consisting of a free Be-module Me of finite rank

and a B+
dR-lattice M+

dR in Me ⊗Be BdR. The functor E sends each isocrystal D over Qp to

the vector bundle obtained from ((D⊗Qp Bcris)
φ=1, D⊗Qp B

+
dR), where φ denotes the natural

Frobenius action on D ⊗Qp Bcris induced by the Frobenius endomorphisms on D and Bcris.

On the category MFφQp
of filtered isocrystals over Qp, we have another functor

F : MFφQp
−! BunX

which sends each filtered isocrystal D over Qp with filtration { Filn(D) }n∈Z to the vector

bundle obtained from the pair ((D ⊗Qp Bcris)
φ=1,Fil0(D ⊗Qp BdR)) with

Fil0(D ⊗Qp BdR) =
⊕
n∈Z

Filn(D) ⊗Qp Fil−n(BdR).

The vector bundle F(D) for each D ∈ MFφQp
carries a natural action of ΓQp induced by the

ΓQp-action on BdR, as the ring Be and the filtration on BdR turn out to be stable under the
ΓQp-action on BdR. The functor F allows us to study filtered isocrystals and p-adic Galois
representations via vector bundles on X, as indicated by the following facts:

(1) There exists a natural ΓQp-equivariant isomorphism

V ∼= H0(X,F(DBcris(V ))) for every V ∈ RepBcris
Qp

(ΓQp).

(2) Every D ∈ MFφQp
lies in the essential image of DBcris if and only if F(D) is trivial.

It is worthwhile to mention that applications of the Fargues-Fontaine curve reach far
beyond p-adic Hodge theory. In fact, the seminal work of Fargues-Scholze [FS21] shows
that the Fargues-Fontaine curve provides powerful geometric tools for studying ℓ-adic Galois
representations in relation to algebraic groups. The book of Scholze-Weinstein [SW20] is a
wonderful introductory reference for the theoretical foundations of these applications.
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Exercises

1. Let E be the projective curve over Q given by the equation y2 = x3 + x.

(1) Show that E is an elliptic curve over Q with good reduction at all odd primes.

(2) Give an explicit description of the group law and the ΓQ-action on E[2](Q).

(3) Give an explicit description of the group law and the ΓF5-action on E[2](F5), where
E denotes the mod-5 reduction of E.

2. Let M be a 2 × 2 matrix over Zp.
(1) When M has all entries in pZp, prove that there exists a Dieudonné module D

over Zp of rank 2 with φD represented by M if and only if we have det(M) /∈ p3Zp.
(2) When M has an entry in Z×

p , prove that there exists a Dieudonné module D over Zp
of rank 2 with φD represented by M if and only if we have det(M) /∈ p2Zp.

Hint. Consider the Smith normal form of M .

3. In this exercise, we provide a simple analogy between the complex conjugation and the
p-adic cyclotomic character.

(1) Show that the complex conjugation naturally induces a character

χ̃ : ΓR −! Aut(R) ∼= R×

with γ(ζ) = ζ χ̃(γ) for every γ ∈ ΓR and ζ ∈ µ∞, where µ∞ denotes the group of roots
of unity in C.

(2) Show that the p-adic cyclotomic character χ yields the relation γ(ζ) = ζχ(γ) for every
γ ∈ ΓQp and ζ ∈ µp∞ , where µp∞ denotes the group of p-power roots of unity in Qp.

4. Let B be a p-adic period ring and η : ΓQp ! Q×
p be a continuous character such that the

induced p-adic Galois representation is B-admissible.

(1) Prove that there exists an element b ∈ B with γ(b) = η(γ)−1b for every γ ∈ ΓQp .

(2) If η is not trivial, prove that b is transcendental over Qp.

Hint. Take an element γ ∈ ΓQp with η(γ) ̸= 1. If b satisfies a polynomial equation
of degree d over Qp, we can apply the action of γ to see that b satisfies a polynomial
equation of degree d− 1 over Qp.

5. Let A and B be subrings of a valued field C with valuation ring OC and an exact sequence

0 −! A −! B −! C/OC −! 0.

(1) If A is a field, show that the valuation of each f ∈ B is nonnegative.

(2) For every f, g ∈ B with g ̸= 0, show that there exist elements a, b ∈ B with

f = ag + b and − ν(b) ≤ −ν(g),

where ν denotes the valuation on C.

Remark. This exercise and Theorem 2.2.1 together imply thatBe admits an almost Euclidean
function given by the valuation of BdR.





CHAPTER II

Foundations of p-adic Hodge theory

1. Finite flat group schemes

In this section, we develop basic theory of finite flat group schemes and discuss some of
its applications to arithmetic geometry. Our primary reference for this section is the article of
Tate [Tat97]. Throughout our discussion, all rings are commutative unless specified otherwise.

1.1. Basic definitions and properties

We begin with the notion of group schemes over a base scheme S. We usually take S to
be affine and denote the base ring by R.

Definition 1.1.1. A group scheme over S, or an S-group, is an S-scheme G with maps

• m : G×S G! G, called the multiplication,

• e : S ! G, called the unit section,

• i : G! G, called the inverse,

which satisfy the group axioms given by the following commutative diagrams:

(a) associativity diagram

G×S G×S G G×S G

G×S G G

m×id

id×m m

m

(b) identity diagrams

G×S S G

G×S G

∼

id×e m

S ×S G G

G×S G

∼

e×id m

(c) inverse diagram

G G×S G

S G

(i,id)

(id,i)

m

e

Remark. In other words, S-groups are group objects in the category of S-schemes.

Lemma 1.1.2. A scheme G over S is a group scheme if and only if it defines a functor from
the category of S-schemes to the category of groups sending each S-scheme T to G(T ).

Proof. The assertion is evident by Yoneda’s lemma. □

19
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Definition 1.1.3. Let f : G! H be an S-scheme morphism between S-groups G and H.

(1) We say that f is a homomorphism if the induced map fT : G(T ) ! H(T ) for each
S-scheme T is a group homomorphism.

(2) If f is a homomorphism, we define its kernel to be the functor ker(f) which maps
each S-scheme T to the kernel of the induced map fT : G(T )! H(T ).

Example 1.1.4. Given an S-group G and an integer n, the multiplication by n on G is the
homomorphism [n]G : G! G given by the n-th power map on G(T ) for each S-scheme T .

Remark. The homomorphisms [−1]G and [1]G respectively coincide with the inverse map
and the identity map of G.

Lemma 1.1.5. Given an S-group homomorphism f : G ! H, its kernel is an S-group and is
naturally isomorphic to the fiber of f over the unit section of H.

Proof. The assertion is straightforward to verify by Lemma 1.1.2. □

Definition 1.1.6. Let G = Spec (A) be an affine R-group.

(1) Its comultiplication is the map µ : A! A⊗R A induced by the multiplication.

(2) Its counit is the map ϵ : A! R induced by the unit section.

(3) Its coinverse is the map ι : A! A induced by the inverse.

Example 1.1.7. We present some important examples of affine R-groups.

(1) The additive R-group is the R-scheme Ga := Spec (R[t]) with the natural additive
group structure on Ga(B) = B for each R-algebra B. Its comultiplication µ, counit ϵ,
and coinverse ι are the R-algebra homomorphisms with

µ(t) = t⊗ 1 + 1 ⊗ t, ϵ(t) = 0, ι(t) = −t.
(2) The multiplicative R-group is the R-scheme Gm := Spec (R[t, t−1]) with the natural

multiplicative group structure on Gm(B) = B× for each R-algebra B. Its comulti-
plication µ, counit ϵ, and coinverse ι are the R-algebra homomorphisms with

µ(t) = t⊗ t, ϵ(t) = 1, ι(t) = t−1.

(3) The n-th roots of unity for n ≥ 1 is the R-scheme µn := Spec (R[t]/(tn − 1)) with
the natural multiplicative group structure on µn(B) = { b ∈ B : bn = 1 } for each R-
algebra B. We can regard µn as a closed R-subgroup of Gm via the natural surjection
R[t, t−1] ↠ R[t]/(tn − 1) with the induced comultiplication, counit, and coinverse.

(4) If R has characteristic p, the Frobenius kernel is the R-scheme αp := Spec (R[t]/tp)
with the natural additive group structure on αp(B) = { b ∈ B : bp = 0 } for each R-
algebra B. We can regard αp as a closed R-subgroup of Ga via the natural surjection
R[t] ↠ R[t]/(tp) with the induced comultiplication, counit, and coinverse.

(5) Given an abstract group M , the constant R-group associated to M is the R-scheme

M :=
∐
m∈M

Spec (R) ∼= Spec (A) for A :=
∏
m∈M

R with the natural group structure

induced by M on M(B) for each R-algebra B, regarded as the set of locally constant
functions from Spec (B) to M . If we identify A and A⊗RA respectively as the rings
of R-valued functions on M and M ×M , we can describe the comultiplication µ,
counit ϵ, and coinverse ι by the equalities

µ(f)(m,m′) = f(mm′), ϵ(f) = f(1M ), ι(f)(m) = f(m−1)

for each f ∈ A and m,m′ ∈M , where 1M denotes the identity element of M .
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Lemma 1.1.8. Let G = Spec (A) be an affine R-group. Its comultiplication µ, counit ϵ, and
coinverse ι fit into the following commutative diagrams:

(a) coassociativity diagram

A⊗R A⊗R A A⊗R A

A⊗R A A

µ⊗id

id⊗µ

µ

µ

(b) coidentity diagrams

A⊗R R A

A⊗R A

∼

µid⊗ϵ

R⊗R A A

A⊗R A

∼

µϵ⊗id

(c) coinverse diagram

A A⊗R A

R A

id⊗ι

ι⊗id

ϵ

µ

Proof. The assertion is evident by definition. □

Definition 1.1.9. Given an affine R-group G = Spec (A), we define its augmentation ideal
to be the kernel of its counit ϵ : A! R.

Lemma 1.1.10. For an affine R-group G = Spec (A) with augmentation ideal I, there exists
a canonical R-module isomorphism A ∼= R⊕ I.

Proof. The assertion follows from the observation that the structure morphism R ! A
splits the short exact sequence

0 −! I −! A
ϵ
−! R −! 0

where ϵ denotes the counit of G. □

Proposition 1.1.11. Let G be an affine R-group.

(1) The unit section of G is a closed embedding.

(2) The kernel of an R-group homomorphism f : H ! G is a closed R-subgroup of H.

Proof. Let us write G = Spec (A) and denote its augmentation ideal by I. The first
statement is evident as we naturally identify the unit section e of G with the closed embed-
ding Spec (A/I) ↪! Spec (A). The second statement follows from the first statement after
identifying ker(f) with the fiber of f over e as noted in Lemma 1.1.5. □

Remark. Proposition 1.1.11 may fail for an R-group G which is not affine. In fact, the unit
section of G is a closed embedding if and only if G is separated over R.

Example 1.1.12. Given an affine R-group G, its n-torsion subgroup G[n] := ker([n]G) for
each integer n is a closed R-subgroup of G by Proposition 1.1.11.

Remark. We have a natural identification µn ∼= Gm[n] for each integer n ≥ 1.
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Let us now introduce the objects of main interest for this section. For the rest of this
section, we assume that R is noetherian unless stated otherwise.

Definition 1.1.13. Let G = Spec (A) be an affine group scheme over R.

(1) We say that G is commutative if it yields the commutative diagram

G×R G G×R G

G

(g,h)7!(h,g)

m m

where m denotes the multiplication of G.

(2) We say that G is finite flat of order n if it is commutative with A being locally free
of rank n over R.

Lemma 1.1.14. Let G = Spec (A) be an affine group scheme over R.

(1) G is commutative if and only if G(B) is commutative for each R-algebra B.

(2) G is finite flat if and only if it is commutative with its structure morphism to Spec (R)
being finite flat.

Proof. The first assertion is an immediate consequence of Lemma 1.1.2. The second
assertion follows from a general fact stated in the Stacks Project [Sta, Tag 02KB]. □

Example 1.1.15. Some group schemes introduced in Example 1.1.7 are finite flat, as easily
seen by their affine descriptions.

(1) The n-th roots of unity µn is finite flat of order n.

(2) If R is has characteristic p, the R-group αp is finite flat of order p.

(3) For an abelian group M of order n, the constant R-group M is finite flat of order n.

Proposition 1.1.16. For an abelian scheme A of dimension g over R, its n-torsion subgroup
A[n] = ker([n]A) is a finite flat R-group of order n2g.

Proof. Since all fibers of A are abelian varieties of dimension g, the assertion follows
from a standard fact about abelian varieties stated in the Stacks Project [Sta, Tag 03RP]. □

Many basic properties of finite abelian groups extend to finite flat group schemes. Here
we state two fundamental theorems without a proof.

Theorem 1.1.17 (Deligne). Given a finite flat R-group G of order n, the homomorphism [n]G
annihilates G in the sense that it factors through the unit section of G.

Remark. Curious reader can find Deligne’s proof of Theorem 1.1.17 in the lecture notes of
Stix [Sti, §3.3]. It is unknown whether Theorem 1.1.17 holds without the commutativity
assumption on G.

Theorem 1.1.18 (Grothendieck [Gro60]). Let G be a finite flat R-group of order n with a
finite flat closed R-subgroup H of order m.

(1) There exists a unique R-group G/H which fits into a short exact sequence

0 −! H −! G −! G/H −! 0.

(2) The R-group G/H is finite flat of order n/m.

Definition 1.1.19. Given a finite flat R-group G with a finite flat closed R-subgroup H, we
refer to the R-group G/H in Theorem 1.1.18 as the quotient group scheme of G by H.

https://stacks.math.columbia.edu/tag/02KB
https://stacks.math.columbia.edu/tag/03RP
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1.2. Cartier duality

In this subsection, we discuss a duality for finite flat R-groups. Given an R-module M ,
we write M∨ for its dual module. For an R-linear map f , we denote its dual map by f∨.

Lemma 1.2.1. Let B be an R-algebra.

(1) Given an R-group G, the B-scheme GB is naturally a B-group.

(2) Given a finite flat R-group G of order n, the B-group GB is finite flat of order n.

(3) Given a short exact sequence of finite flat R-groups

0 −! G′ −! G −! G′′ −! 0,

the base change to B yields a short exact sequence

0 −! (G′)B −! GB −! (G′′)B −! 0.

Proof. The assertions are straightforward to verify by Lemma 1.1.2, Lemma 1.1.14, and
a standard fact about finite flat morphisms stated in the Stacks project [Sta, Tag 02KD]. □

Definition 1.2.2. Given a finite flat R-group G, its Cartier dual G∨ is the group-valued
functor on the category of R-algebras with

G∨(B) = HomB-grp(GB, (Gm)B) for each R-algebra B

where the group structure comes from the multiplication map on (Gm)B.

Lemma 1.2.3. Given a finite flat R-group G with [n]G = 0, we have

G∨(B) ∼= HomB-grp(GB, (µn)B) for each R-algebra B.

Proof. The assertion follows immediately from the identification µn = Gm[n]. □

Theorem 1.2.4 (Cartier duality). Let G = Spec (A) be a finite flat R-group of order n with
comultiplication µ, counit ϵ, and coinverse ι. For the R-algebra A, we write s : R! A for its
structure morphism and mA : A⊗R A! A for its ring multiplication map.

(1) A∨ is an R-algebra with structure morphism ϵ∨ and ring multiplication map µ∨.

(2) G∨ is an R-group which admits a natural identification G∨ ∼= Spec (A∨) with comul-
tiplication m∨

A, counit s∨, and coinverse ι∨.

(3) G∨ is finite flat of order n.

(4) There exists a canonical R-group isomorphism G ∼= (G∨)∨.

Proof. Let us consider the natural identifications

R∨ ∼= R and (A⊗R A)∨ ∼= A∨ ⊗R A
∨.

The map µ∨ fits into associativity and commutativity diagrams induced by the corresponding
diagrams for the multiplication on G. In addition, we have commutative diagrams

A∨ ⊗R R A∨

A∨ ⊗R A
∨

∼

id⊗ϵ∨ µ∨

R⊗R A
∨ A∨

A∨ ⊗R A
∨

∼

ϵ∨⊗id µ∨

induced by the identity diagrams for G. Hence we deduce statement (1).

https://stacks.math.columbia.edu/tag/02KD
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Let us now consider statement (2). It is straightforward to verify that G▽ := Spec (A∨)
is an R-group with comultiplication m∨

A, counit s∨, and coinverse ι∨. Let B be an arbitrary
R-algebra. In light of Lemma 1.1.2, we wish to establish a canonical isomorphism

G∨(B) ∼= G▽(B). (1.1)

Let µB, ϵB, and ιB respectively denote the comultiplication, counit, and coinverse of
GB ∼= Spec (AB). By the affine description of Gm given in Example 1.1.7, we find

G∨(B) = HomB-grp(GB, (Gm)B) ∼=
{
f ∈ HomB-alg(B[t, t−1], AB) : µB(f(t)) = f(t) ⊗ f(t)

}
where the identity µB(f(t)) = f(t) ⊗ f(t) comes from compatibility with comultiplications.
Since we have the canonical isomorphism HomB-alg(B[t, t−1], AB) ∼= A×

B which sends each
f ∈ HomB-alg(B[t, t−1], AB) to f(t), we obtain a natural identification

G∨(B) ∼=
{
u ∈ A×

B : µB(u) = u⊗ u
}
. (1.2)

Meanwhile, as A∨
B is a B-algebra by statement (1), we have

G▽(B) ∼= HomR-alg(A
∨, B) ∼= HomB-alg(A

∨
B, B). (1.3)

Let us denote the ring multiplication map on B by mB and the identity map on B by idB.
By definition, HomB-alg(A

∨
B, B) is the group of B-module homomorphisms A∨

B ! B through
which µ∨B and ϵ∨B are respectively compatible with mB and idB. Taking B-duals, we identify
this group with the group of B-module homomorphisms B ! AB through which m∨

B and
id∨
B are respectively compatible with µB and ϵB. Since we have the canonical isomorphism

HomB-alg(B,AB) ∼= A×
B which sends each f ∈ HomB-alg(B,AB) to f(1), we find

HomB-alg(A
∨
B, B) ∼=

{
u ∈ A×

B : µB(u) = u⊗ u, ϵB(u) = 1
}
. (1.4)

Moreover, the group scheme axioms for GB yields the relation (ϵB ⊗ idB) ◦ µB = idB and
consequently implies that every u ∈ A×

B with µB(u) = u⊗umust satisfy the identity ϵB(u) = 1.
Hence the isomorphisms (1.3) and (1.4) together yield a natural identification

G▽(B) ∼=
{
u ∈ A×

B : µB(u) = u⊗ u
}
. (1.5)

Now we establish the desired isomorphism (1.1) by the identifications (1.2) and (1.5), thereby
completing the proof of statement (2).

It remains to prove statements (3) and (4). Since G∨ is commutative by Lemma 1.1.14
and the commutativity of Gm, we deduce statement (3) from statement (2) by observing that
A∨ is locally free of rank n over R. In addition, we apply statements (1) and (2) to see
that the canonical R-module isomorphism A ∼= (A∨)∨ is indeed an R-algebra isomorphism
which respects comultiplications, counits, and coinverses on both sides, thereby establishing
statement (4). □

Proposition 1.2.5. Given a finite flat R-group G and an R-algebra B, there exists a natural
B-group isomorphism G∨ ×R B ∼= (G×R B)∨.

Proof. It is evident that G∨ ×R B and (G ×R B)∨ are naturally isomorphic as group-
valued functors. Lemma 1.2.1 and Theorem 1.2.4 together imply that these functors are
indeed finite flat B-groups and thus yield the desired assertion. □

Definition 1.2.6. Given a homomorphism f : G! H of finite flat R-groups, we refer to the
induced homomorphism f∨ : G∨ ! H∨ as the dual homomorphism of f .

Example 1.2.7. Given a finite flat R-group G, we have [n]∨G = [n]G∨ for every integer n > 0;
indeed, [n]∨G maps each f ∈ G∨(B) = HomB-grp(GB, (Gm)B) for an arbitrary R-algebra B to
f ◦ [n]GB

= [n]G∨(f).
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Proposition 1.2.8. For every positive integer n, we have (Z/nZ)∨ ∼= µn and µ∨n
∼= Z/nZ.

Proof. Let us set A :=
∏

i∈Z/nZ

R and write ei for the element of A whose only nonzero

entry is 1 in the component corresponding to i. As explained in Example 1.1.7 we have
Z/nZ ∼= Spec (A) with comultiplication µ, counit ϵ, and coinverse ι given by the relations

µ(ei) =
∑
v+w=i

ev ⊗ ew, ϵ(ei) =

{
1 for i = 0

0 otherwise
, ι(ei) = e−i.

Let mA : A ⊗R A ! A and s : R ! A respectively denote the ring multiplication map and
structure morphism of A. We have the dual basis (fi) of A∨ with

fi(ej) =

{
1 for i = j,

0 otherwise.

Theorem 1.2.4 yields a natural identification (Z/nZ)∨ ∼= Spec (A∨) with comultiplication m∨
A,

counit s∨, and coinverse ι∨, where A∨ is an R-algebra with structure morphism ϵ∨ and ring
multiplication map µ∨. The maps µ∨, ϵ∨, m∨

A, s∨, and ι∨ are determined by the identities

µ∨(fi ⊗ fj) = fi+j , ϵ∨(1) = f0, m∨
A(fi) = fi ⊗ fi, s∨(fi) = 1, ι∨(fi) = f−i.

Hence the map A∨ ! R[t]/(tn − 1) sending each fi to ti induces an R-group isomorphism
(Z/nZ)∨ ∼= µn by Example 1.1.7 and in turn yields an R-group isomorphism µ∨n

∼= Z/nZ by
Theorem 1.2.4. □

Proposition 1.2.9. If R has characteristic p, the R-group αp is self-dual.

Proof. As explained in Example 1.1.7, we have αp = Spec (A) for A := R[t]/(tp) with
comultiplication µ, counit ϵ, and coinverse ι given by the relations

µ(ti) =
∑
v+w=i

(
i

v

)
tv ⊗ tw, ϵ(ti) =

{
1 for i = 0

0 otherwise
, ι(ti) = (−t)i.

Let mA : A ⊗R A ! A and s : R ! A respectively denote the ring multiplication map and
structure morphism of A. We have the dual basis (fi) of A∨ with

fi(t
j) =

{
1 for i = j,

0 otherwise.

Theorem 1.2.4 yields a canonical identification α∨
p

∼= Spec (A∨) with comultiplication m∨
A,

counit s∨, and coinverse ι∨, where A∨ is an R-algebra with structure morphism ϵ∨ and ring
multiplication map µ∨. The maps µ∨, ϵ∨, m∨

A, s∨, and ι∨ are determined by the identities

µ∨(fi ⊗ fj) =

(
i+ j

i

)
fi+j , ϵ∨(1) = 0,

m∨
A(fi) =

∑
v+w=i

fv ⊗ fw, s∨(fi) =

{
1 for i = 0

0 otherwise
, ι∨(fi) = (−1)ifi.

Hence the map A∨ ! A sending each fi to ti/i! yields an R-group isomorphism α∨
p
∼= αp. □

Remark. When R has characteristic p, we have an R-scheme isomorphism µp ≃ αp given by
the ring isomorphism R[t]/(tp) ≃ R[t]/(tp− 1) sending t to t+ 1. Propositions 1.2.8 and 1.2.9
together show that µp and αp are not isomorphic as group schemes.
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Proposition 1.2.10. Given an abelian scheme A over R with dual abelian scheme A∨, we
have a natural isomorphism A[n]∨ ∼= A∨[n] for every positive integer n.

Proof. The homomorphism [n]A is surjective by a standard fact about abelian varieties
stated in the Stacks Project [Sta, Tag 03RP]. Hence we have a short exact sequence

0 −! A[n] −! A [n]
−! A −! 0

which gives rise to a long exact sequence

0 −! Hom(A,Gm)
[n]
−! Hom(A,Gm) −! Hom(A[n],Gm) −! Ext1(A,Gm)

[n]
−! Ext1(A,Gm).

In addition, we have natural identifications

Hom(A,Gm) = 0, Hom(A[n],Gm) ∼= A[n]∨, Ext1(A,Gm) ∼= A∨

by definition of Cartier duals and some general fact about abelian varieties stated in the notes
of Milne [Mil, §9]. Therefore we obtain an exact sequence

0 −! A[n]∨ −! A∨ [n]
−! A∨

which yields the desired isomorphism A[n]∨ ∼= A∨[n]. □

Example 1.2.11. If R = k is a field, every elliptic curve E over k admits a natural isomor-
phism E[n]∨ ∼= E[n] for each integer n ≥ 1 by Proposition 1.2.10 and a standard fact that
elliptic curves are self-dual as stated in the notes of Milne [Mil, §9].

Lemma 1.2.12. Given a closed embedding f : H ↪! G of finite flat R-groups, there exists a
canonical isomorphism ker(f∨) ∼= (G/H)∨.

Proof. Let B be an arbitrary R-algebra and fB : HB ↪! GB denote the homomorphism
induced by f . Theorem 1.1.18 and Lemma 1.2.1 together yield a canonical isomorphism
GB/HB

∼= (G/H)B. Hence we obtain an identification

ker(f∨)(B) = { g ∈ HomB-grp(GB, (Gm)B) : g ◦ fB = 0 }
= { g ∈ HomB-grp(GB, (Gm)B) : HB ⊆ ker(g) }
∼= HomB-grp(GB/HB, (Gm)B) ∼= HomB-grp((G/H)B, (Gm)B) = (G/H)∨(B),

thereby establishing the desired assertion. □

Proposition 1.2.13. Given a short exact sequence of finite flat R-groups

0 −! G′ −! G −! G′′ −! 0,

the Cartier duality gives rise to a short exact sequence

0 −! G′′∨ −! G∨ −! G′∨ −! 0.

Proof. Let f and g respectively denote the maps G′ ! G and G ! G′′ in the given
short exact sequence. It is straightforward to verify the injectivity of g∨ by the surjectivity
of g. In addition, Lemma 1.2.12 yields a canonical isomorphism ker(f∨) ∼= G′′∨. Therefore
it remains to establish the surjectivity of f∨. Since G′′∨ is a finite flat closed R-subgroup
of G∨ by Proposition 1.1.11 and Theorem 1.2.4, we obtain the quotient R-group G∨/G′′∨

by Theorem 1.1.18. Now f∨ factors through a homomorphism G∨/G′′∨ ! G′∨, whose dual
coincides with the isomorphism ker(g) ∼= G′ induced by f under the identifications

(G′∨)∨ ∼= G′ and (G∨/G′′∨)∨ ∼= ker((g∨)∨) ∼= ker(g)

given by Theorem 1.2.4 and Lemma 1.2.12. Hence we deduce that f∨ is surjective as desired,
thereby completing the proof. □

https://stacks.math.columbia.edu/tag/03RP
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1.3. Finite étale group schemes

In this subsection, we introduce finite étale group schemes and discuss their properties.

Definition 1.3.1. We say that an affine R-group G = Spec (A) is finite étale if it is finite
flat with ΩA/R = 0, where ΩA/R denotes the module of relative differentials.

Lemma 1.3.2. Let G = Spec (A) be a commutative affine R-group.

(1) G is finite étale if and only if its structure morphism to Spec (R) is finite étale.

(2) When R = k is a field, G is finite étale if and only if there exists a k-algebra

isomorphism A ≃
n∏
i=1

ki where each ki is a finite separable extension of k.

Proof. The first assertion is an immediate consequence of Lemma 1.1.14. The second
assertion follows from the first assertion by a standard fact about étale morphisms stated in
the Stacks project [Sta, Tag 00U3]. □

Lemma 1.3.3. Given a finite étale R-group G and an R-algebra B, the B-scheme GB is a
finite étale B-group.

Proof. The assertion follows from Lemma 1.2.1, Lemma 1.3.2, and a standard fact that a
base change of an étale morphism is étale as stated in the Stacks project [Sta, Tag 02GO]. □

Proposition 1.3.4. Assume that R is a henselian local ring with perfect residue field k.

(1) There exists an equivalence of categories

{ finite étale R-groups } ∼
−! { finite abelian groups with a continuous Γk-action }

which sends each finite étale R-group G to G(k).

(2) If a finite étale R-group G has order n, the abelian group G(k) also has order n.

Proof. Let us first consider statement (1). By some standard facts about finite étale
morphisms stated in the Stacks project [Sta, Tag 09ZS and Tag 0BQ8], there exists an
equivalence of categories

{ finite étale R-schemes } ∼
−! { finite sets with a continuous Γk-action }

which maps each R-scheme T to T (k). Hence we obtain the desired equivalence by passing
to the corresponding categories of commutative group objects.

For statement (2), we write G = Spec (A) for some locally free R-algebra A of rank n. By

Lemma 1.3.2 and Lemma 1.3.3, there exists a k-algebra isomorphism A ⊗R k ≃
m∏
i=1

ki where

each ki is a finite separable extension of k. Hence we find

G(k) ∼= HomR-alg(A, k) ∼= HomR-alg(A⊗R k, k) ≃ HomR-alg(
m∏
i=1

ki, k) ∼=
m∐
i=1

Homk(ki, k)

and in turn deduce that the order of G(k) is
m∑
i=1

dimk(ki) = dimk(A⊗R k) = n,

thereby completing the proof. □

Remark. Primary examples of henselian local rings are complete local rings and fields.

https://stacks.math.columbia.edu/tag/00U3
https://stacks.math.columbia.edu/tag/02GO
https://stacks.math.columbia.edu/tag/09ZS
https://stacks.math.columbia.edu/tag/0BQ8
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Proposition 1.3.5. Let G = Spec (A) be a finite flat R-group with augmentation ideal I.

(1) There exist natural isomorphisms

I/I2 ⊗R A ∼= ΩA/R and I/I2 ∼= ΩA/R ⊗A A/I.

(2) G is étale if and only if we have I = I2.

Proof. Let us consider a commutative diagram

G×R G G×R G

G

(g,h)7!(g,gh−1)

∆ (id,e)

where ∆ and e respectively denote the diagonal morphism and the unit section of G. The
horizontal map is an R-scheme isomorphism whose inverse sends each (g, h) ∈ G ×R G
to (g, h−1g) ∈ G×R G. Hence we obtain a commutative diagram

A⊗R A A⊗R A

A
a⊗b 7!ab

∼

a⊗b7!a·ϵ(b)

where ϵ denotes the counit of G. The horizontal map induces an isomorphism between the
kernels of the two downward maps. Let J denote the kernel of the left downward map. Under
the canonical decomposition

A⊗R A ∼= A⊗R R⊕A⊗R I

given by Lemma 1.1.10, we identify the kernel of the right downward map with A ⊗R I and
consequently obtain a natural isomorphism J ∼= A⊗R I. Now we have

ΩA/R
∼= J/J2 ∼= (A⊗R I)/(A⊗R I)2 ∼= (A⊗R I)/(A⊗R I

2) ∼= A⊗R (I/I2),

where the first identification comes from a standard fact about relative differentials stated in
the Stacks project [Sta, Tag 00RW], and thus find

ΩA/R ⊗A (A/I) ∼=
(
(I/I2) ⊗R A

)
⊗A A/I ∼= (I/I2) ⊗R A/I ∼= (I/I2) ⊗R R ∼= I/I2,

thereby establishing statement (1). Statement (2) immediately follows from statement (1). □

Remark. Let us sketch a slightly different proof of Proposition 1.3.5, which provides some
geometric intuition behind our argument. The R-group G induces a natural action on the
R-module ΩG/Spec (R) = ΩA/R by translations. Let ωA/R denote the R-module of invariant
elements in ΩA/R under this action. It is not hard to show by adapting our argument that
there exist canonical isomorphisms

ωA/R ⊗R A ∼= ΩA/R and ωA/R ∼= ΩA/R ⊗A A/I.

The first isomorphism says that we can get every element in ΩA/R by multiplying a global
section on G to an invariant element, while the second isomorphism implies that we can
determine every invariant element in ΩA/R by its pullback along the unit section. Meanwhile,
since we have the conormal exact sequence

0 −! I/I2 −! ΩA/R ⊗A A/I −! ΩR/R −! 0

given by a standard fact stated in the Stacks project [Sta, Tag 06AA], we obtain the iden-
tification I/I2 ∼= ΩA/R ⊗A A/I by observing that ΩR/R vanishes. Now we find ωA/R ∼= I/I2

and consequently establish the desired assertions.

https://stacks.math.columbia.edu/tag/00RW
https://stacks.math.columbia.edu/tag/06AA
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Proposition 1.3.6. Every finite flat constant group scheme is étale.

Proof. Let M be a finite abelian group with identity element denoted by 0. We denote
by I the augment ideal of M . By the affine description in Example 1.1.7, we have

M ∼= Spec
( ∏
i∈M

R
)

and I =
∏
i∈M
i ̸=0

R.

Hence we obtain the identity I = I2 and in turn deduce from Proposition 1.3.5 that M is
étale as desired. □

Proposition 1.3.7. Assume that R = k is an algebraically closed field.

(1) Every finite étale k-groups is a constant group scheme.

(2) Given a prime p, the k-group Z/pZ is a unique finite étale k-group of order p.

Proof. Proposition 1.3.4 yields an equivalence of categories

{ finite étale k-groups } ∼
−! { finite abelian groups }

which sends each finite étale k-group G to G(k). Meanwhile, for every finite abelian group M ,
the constant group scheme M admits a natural isomorphism M(k) ∼= M by Example 1.1.7.
Hence we establish the desired assertions by Proposition 1.3.6 and the fact that Z/pZ is a
unique group of order p. □

Proposition 1.3.8. A finite flat R-group G is étale if and only if the (scheme theoretic)
image of the unit section is open.

Proof. We write G = Spec (A) for some locally free R-algebra A of finite rank. In
addition, we denote by I the augmentation ideal of G. The (scheme theoretic) image of the
unit section is the closed subscheme Spec (A/I) of Spec (A).

Let us first assume that G is étale. Proposition 1.3.5 shows that I/I2 vanishes. Hence
by Nakayama’s lemma there exists an element a ∈ A with a − 1 ∈ I and aI = 0. We obtain
the equality a2 = a(a − 1) + a = a, which means that a is idempotent. Let us consider the
localization map A! Aa, which is surjective as we have

b

an
=

ba

an+1
=
ba

a
=
b

1
for each b ∈ A and n ≥ 1.

Its kernel consists of elements b ∈ A with anb = 0 for some n ≥ 1, or equivalently ab = 0.
We see that the kernel contains I by the identity aI = 0, while every element b in the kernel
satisfies the relation

b = −(a− 1)b+ ab = −(a− 1)b ∈ I.

Hence the localization map A! Aa has I as its kernel and yields an isomorphism A/I ∼= Aa.
We deduce that the closed embedding Spec (A/I) ↪! Spec (A) is open.

For the converse, we now assume that the embedding Spec (A/I) ↪! Spec (A) is open.
Since open embeddings are flat as stated in the Stacks project [Sta, Tag 0250], the ring
homomorphism A↠ A/I must be flat. Therefore we obtain a short exact sequence

0 −! I ⊗A A/I −! A⊗A A/I −! A/I ⊗A A/I −! 0,

which in turn yields a short exact sequence

0 −! I/I2 −! A/I −! A/I −! 0

with the third arrow being the identity map. We see that I/I2 vanishes and in turn deduce
from Proposition 1.3.5 that G is étale as desired. □

https://stacks.math.columbia.edu/tag/0250
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Theorem 1.3.9. A finite flat R-group G with order invertible in R must be étale.

Proof. Let us write G = Spec (A) for some locally free R-algebra A of finite rank. The
group axioms for G yield commutative diagrams

Spec (R) G

G×R G

(e,e)

e

m

G G

G×R G

(id,e) (e,id)

id

m

where m and e respectively denote the multiplication map and unit section of G. These
diagrams are equivalent to the commutative diagrams

R A

A⊗R A

ϵ

µϵ⊗ϵ

A A

A⊗R A

id

µ

id⊗ϵ ϵ⊗id (1.6)

where µ and ϵ respectively denotes the comultiplication and counit of G. Let us denote the
augmentation ideal of G by I and take an arbitrary element t ∈ I. We have µ(t) ∈ ker(ϵ⊗ ϵ)
by the diagram (1.6). Moreover, under the decomposition

A⊗R A ∼= (R⊗R R) ⊕ (I ⊗R R) ⊕ (R⊗R I) ⊕ (I ⊗R I)

given by Lemma 1.1.10, we obtain a natural identification

ker(ϵ⊗ ϵ) ∼= (I ⊗R R) ⊕ (R⊗R I) ⊕ (I ⊗R I)

and thus find µ(t) ∈ a⊗ 1 + 1 ⊗ b+ I ⊗R I for some a, b ∈ I. Now the diagram (1.6) implies
that a and b are both equal to t, thereby yielding the relation

µ(t) ∈ t⊗ 1 + 1 ⊗ t+ I ⊗R I. (1.7)

We assert that [n]G for each n ≥ 1 induces multiplication by n on I/I2. Let [n]A : A! A
denote the R-algebra homomorphism induced by [n]G. We have commutative diagrams

G G

G×R G

[n]G

([n−1]G,id) m

A A

A⊗R A

[n]A

µ[n−1]A⊗id

and thus apply the relation (1.7) to find [n]A(t) ∈ [n−1]A(t)+ t+I2. Since [1]A is the identity
map on A, a simple induction yields the relation [n]A(t) ∈ nt+ I2 for each n ≥ 1. Hence we
obtain the desired assertion as t is an arbitrary element in I.

Let us denote the order of G by m. Theorem 1.1.17 shows that [m]G factors through the
unit section of G, which implies that the induced map on ΩA/R factors through ΩR/R = 0. We

find that [m]G induces a zero map on I/I2 ∼= ΩA/R ⊗A A/I by Proposition 1.3.5. Meanwhile,

[m]G induces the multiplication by m on I/I2, which is an isomorphism as m is invertible in R.
Hence we deduce that I/I2 vanishes, thereby completing the proof by Proposition 1.3.5. □

Remark. Theorem 1.3.9 is the only result which relies on Theorem 1.1.17 in our discussion.
If R is a field, it is possible to prove Theorem 1.3.9 without using Theorem 1.1.17.

Corollary 1.3.10. Every finite flat group scheme over a field of characteristic 0 is étale.
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1.4. The connected-étale sequence

Throughout this subsection, we assume that R is a henselian local ring and denote its
residue field by k. Our main goal for this subsection is to discuss a fundamental theorem that
every finite flat R-group naturally arises as an extension of an étale R-group by a connected
R-group.

Lemma 1.4.1. A finite flat R-scheme is étale if and only if its special fiber is étale.

Proof. The assertion immediately follows from some standard facts about étale mor-
phisms stated in the Stacks project [Sta, Tag 02GO, Tag 02GM, and Tag 00U3]. □

Remark. Our proof shows that Lemma 1.4.1 does not require R to be henselian.

Lemma 1.4.2. A finite R-scheme T is connected if and only if it satisfies the following equiv-
alent conditions:

(i) T is a spectrum of a henselian local finite R-algebra.

(ii) The action of Γk on T (k) is transitive.

Proof. Let us write T = Spec (B) for some finite R-algebra B. By a general fact about
henselian local rings stated in the Stacks project [Sta, Tag 04GH], we have

B ≃
n∏
i=1

Bi

where each Bi is a henselian local finite R-algebra. Since the spectrum of a local ring is
connected, each Ti := Spec (Bi) corresponds to a connected component of T . Hence T is
connected if and only if it satisfies condition (i).

We denote the residue field of each Bi by ki. Via the isomorphism

T (k) = HomR-alg(B, k) ≃
n∐
i=1

Homk(ki, k),

we identify each Homk(ki, k) as an orbit under the action of Γk on T (k). Therefore T is
connected if and only if it satisfies condition (ii). □

Remark. When k is algebraically closed, a finite R-scheme T is connected if and only if
T (k) is a singleton by Lemma 1.4.2.

Lemma 1.4.3. A finite R-scheme is connected if and only if its special fiber is connected.

Proof. The assertion is evident by Lemma 1.4.2. □

Remark. Lemma 1.4.3 is a special case of a general fact that for every proper R-scheme T
there exists a natural bijection between the connected components of T and the connected
components of Tk, as stated in SGA 4 1/2, Exp. 1, Proposition 4.2.1.

Lemma 1.4.4. Connected components of a finite flat R-scheme T are finite flat over R.

Proof. Let T ◦ be a connected component of T . The closed embedding T ◦ ↪! T is finite
flat by general facts stated in the Stacks project [Sta, Tag 035C, Tag 04PX]. Hence T ◦ is
finite flat over R by a standard fact that the composition of finite flat morphisms is finite flat
as stated in the Stacks project [Sta, Tag 01WK, Tag 01U7]. □

Remark. Our proof shows that Lemma 1.4.4 holds without any assumption on the base ring.

https://stacks.math.columbia.edu/tag/02GO
https://stacks.math.columbia.edu/tag/02GM
https://stacks.math.columbia.edu/tag/00U3
https://stacks.math.columbia.edu/tag/04GH
https://stacks.math.columbia.edu/tag/035C
https://stacks.math.columbia.edu/tag/04PX
https://stacks.math.columbia.edu/tag/01WK
https://stacks.math.columbia.edu/tag/01U7
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Definition 1.4.5. Given an R-group G, its identity component G◦ is the connected compo-
nent of the unit section.

Lemma 1.4.6. For a finite flat R-group G, we have G◦(k) = 0.

Proof. Let us write G = Spec (A) for some locally free R-algebra A of finite rank.
By Lemma 1.4.2 and Lemma 1.4.4, we have G◦ = Spec (A◦) for some henselian local finite
R-algebra A◦. Since the unit section factors through G◦, it induces a surjective ring homo-
morphism A◦ ! R. We denote its kernel by I◦ and obtain an isomorphism A◦/I◦ ∼= R, which
induces an isomorphism between the residue fields of A◦ and R. Hence we find

G◦(k) = HomR-alg(A
◦, k) ∼= Homk(k, k) = 0

as desired. □

Proposition 1.4.7. A finite flat R-group G is connected if and only if we have G(k) = 0.

Proof. If G(k) is trivial, G is connected by Lemma 1.4.2. Conversely, if G is connected,
we have G = G◦ and thus find G(k) = 0 by Lemma 1.4.6. □

Example 1.4.8. Let us present some primary examples of connected R-groups.

(1) If k has characteristic p, the R-group µpv for each integer v ≥ 1 is connected by
Proposition 1.4.7.

(2) If R has characteristic p, the R-group αp is connected by Proposition 1.4.7.

Theorem 1.4.9. Let G be a finite flat R-group. The identity component G◦ is naturally a
finite flat closed R-subgroup of G such that the quotient Gét := G/G◦ is étale.

Proof. Let us first prove that G◦ is a finite flat closed R-subgroup of G. Since we have
(G◦ ×R G

◦)(k) ∼= G◦(k) × G◦(k) = 0 by Lemma 1.4.6, the scheme G◦ ×R G
◦ is connected

by Lemma 1.4.2. Hence the image of G◦ ×R G
◦ under the multiplication map lies in G◦ for

being a connected subscheme of G which contains the unit section. Similarly, the image of
G◦ under the inverse map lies in G◦. Therefore G◦ is an R-subgroup of G, which is evidently
closed by construction. Moreover, G◦ is finite flat by Lemma 1.1.14 and Lemma 1.4.4.

We now consider the finite flat R-group Gét = G/G◦ given by Theorem 1.1.18. Its unit
section G◦/G◦ has an open image as G◦ is open in G by the noetherian hypothesis on R.
Hence we deduce from Proposition 1.3.8 that Gét is étale, thereby completing the proof. □

Definition 1.4.10. Given a finite flat R-group G, we refer to the short exact sequence

0 −! G◦ −! G −! Gét −! 0

given by Theorem 1.4.9 as the connected-étale sequence of G.

Example 1.4.11. Let us describe the connected-étale sequence of µn for each integer n ≥ 1.
If k has characteristic 0, Corollary 1.3.10 and Lemma 1.4.1 together imply that µn is étale,
thereby yielding the connected-étale sequence

0 −! 0 −! µn
id
−! µn −! 0.

Let us henceforth assume that k has characteristic p. We may write n = pvm for some positive
integers v and m such that m is not divisible by p. Then we have a short exact sequence

0 −! µpv −! µn
[pv ]
−! µm −! 0. (1.8)

The R-group µpv is connected as noted in Example 1.4.8. Moreover, since µm has order m
by Example 1.1.15, it is étale as easily seen by Theorem 1.3.9 and Lemma 1.4.1. Hence the
exact sequence (1.8) is indeed the connected-étale sequence of µn.
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Proposition 1.4.12. Let G be a finite flat R-group.

(1) The natural surjection G↠ Gét induces a canonical isomorphism G(k) ∼= Gét(k).

(2) G is étale if and only if we have G◦ = 0.

Proof. The first statement is evident by Lemma 1.4.6 and Theorem 1.4.9. Since the
(scheme theoretic) image of the unit section is closed as noted in Proposition 1.1.11, it is open
if and only if it coincides with its connected component G◦. Therefore the second statement
follows from Proposition 1.3.8. □

Proposition 1.4.13. Let f : G! H be a homomorphism of finite flat R-groups.

(1) If G is connected, f factors through the embedding H◦ ↪! H.

(2) If H is étale, f factors through the surjection G↠ Gét.

(3) f naturally induces homomorphisms f◦ : G◦ ! H◦ and f ét : Gét ! H ét.

Proof. The first statement is evident since the image of G is a connected R-subgroup
of H. The second statement follows from the fact that the image of G◦ lies in H◦ by the
first statement and thus is trivial by Proposition 1.4.12. The last statement is an immediate
consequence of the previous two statements. □

Proposition 1.4.14. Let G, G′, and G′′ be finite flat R-groups with a short exact sequence

0 −! G′ −! G −! G′′ −! 0.

(1) The given exact sequence induces short exact sequences

0 −! (G′)◦ −! G◦ −! (G′′)◦ −! 0,

0 −! (G′)ét −! Gét −! (G′′)ét −! 0.

(2) G is connected if and only if both G′ and G′′ are connected.

(3) G is étale if and only if both G′ and G′′ are étale.

Proof. Theorem 1.4.9 and Proposition 1.4.13 together yield a commutative diagram

0 0 0

0 (G′)◦ G′ (G′)ét 0

0 G◦ G Gét 0

0 (G′′)◦ G′′ (G′′)ét 0

0 0 0

where the rows are exact. Since the middle column is exact, Proposition 1.4.12 implies that
the right column is exact on the level of k-points. We deduce from Proposition 1.3.4 that
the right column is exact and consequently find by the snake lemma (or the nine lemma)
that the left column is exact as well, thereby establishing statement (1). Statement (2) is
an immediate consequence of Proposition 1.4.7. Statement (3) follows from statement (1) by
Proposition 1.4.12. □
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Proposition 1.4.15. Assume that R = k is a perfect field. For every finite flat k-group G,
the connected-étale sequence canonically splits.

Proof. Let Gred denote the reduction of G. If we write G = Spec (A) for some finite
dimensional k-algebra A, we have Gred = Spec (Ared) for Ared := A/n where n denotes the
nilradical of A. We wish to prove that the homomorphism G↠ Gét admits a canonical section
induced by the closed embedding Gred ↪! G.

We assert that Gred is a k-subgroup of G. The scheme Gred×kG
red is reduced by a general

fact that the product of two reduced schemes over a perfect field is reduced as noted in the
Stacks project [Sta, Tag 035Z]. Hence the image of Gred×kG

red under the multiplication map
lies in Gred by a standard fact stated in the Stacks project [Sta, Tag 0356]. Similarly, the
image of Gred under the inverse map lies in Gred. In addition, the unit section of G factors
through Gred as k is reduced. Therefore Gred is a k-subgroup of G as desired.

Let us now prove that Gred is finite étale. By construction, the affine ring Ared of Gred is
a finite dimensional k-algebra. Hence we deduce from some general facts stated in the Stacks
project [Sta, Tag 00J6 and Tag 00JB] that there exists a k-algebra isomorphism

Ared ≃
n∏
i=1

Ared
i

where each Ared
i is a finite dimensional local k-algebra with a unique prime ideal. In fact, since

Ared is reduced, each Ared
i is a finite field extension of k, which is separable as k is perfect.

Now Lemma 1.3.2 implies that Gred is finite étale as desired.

It remains to show that the homomorphism Gred ↪! G ↠ Gét is an isomorphism. The
embedding Gred ↪! G induces an isomorphism Gred(k) ∼= G(k) as k is reduced. Moreover, the
surjection G ↠ Gét induces an isomorphism G(k) ∼= Gét(k) as noted in Proposition 1.4.12.
Therefore the homomorphism Gred ↪! G ↠ Gét yields an isomorphism Gred(k) ∼= Gét(k)
which is clearly Γk-equivariant. Since Gred and Gét are both finite étale, we establish the
desired assertion by Proposition 1.3.4. □

Example 1.4.16. We say that an elliptic curve E over Fp is ordinary if E[p](Fp) is isomorphic

to Z/pZ. We assert that every ordinary elliptic curve E over Fp yields an isomorphism

E[p] ≃ µp × Z/pZ.

Let us consider the connected-étale sequence

0 −! E[p]◦ −! E[p] −! E[p]ét −! 0. (1.9)

We have E[p]ét(Fp) ≃ E[p](Fp) ≃ Z/pZ by Proposition 1.4.12 and thus find E[p]ét ≃ Z/pZ by

Proposition 1.3.7. Therefore the exact sequence (1.9) induces a dual exact sequence

0 −! (Z/pZ)∨ −! E[p]∨ −! (E[p]◦)∨ −! 0

by Proposition 1.2.13, where the second arrow is a closed embedding by Proposition 1.1.11.
Now we apply Proposition 1.2.8 and Example 1.2.11 to identify the map (Z/pZ)∨ ↪! E[p]∨

with a closed embedding µp ↪! E[p], which in turn gives rise to a closed embedding µp ↪! E[p]◦

by Proposition 1.4.13 and Example 1.4.8. Moreover, as Example 1.1.15 and Proposition 1.1.16
show that E[p]ét ≃ Z/pZ and E[p] respectively have order p and p2, Theorem 1.1.18 implies

that E[p]◦ has order p2/p = p. Since µp also has order p by Example 1.1.15, the closed
embedding µp ↪! E[p]◦ is indeed an isomorphism by Theorem 1.1.18. Hence we obtain the
desired isomorphism by Proposition 1.4.15.

https://stacks.math.columbia.edu/tag/035Z
https://stacks.math.columbia.edu/tag/0356
https://stacks.math.columbia.edu/tag/00J6
https://stacks.math.columbia.edu/tag/00JB
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1.5. The Frobenius morphism

For this subsection, we assume that R = k is a field of characteristic p and write σ for the
Frobenius endomorphism of k. We introduce and study homomorphisms of finite flat k-groups
induced by σ.

Definition 1.5.1. Let T = Spec (B) be an affine k-scheme and r be a positive integer.

(1) The pr-Frobenius twists of B and T are respectively

B(pr) := B ⊗k,σr k and T (pr) := T ×k,σr k = Spec (B(pr)),

where the factor k in the products has σr as structure morphism.

(2) The relative pr-Frobenius of B is the k-algebra homomorphism φ
[r]
B : B(pr) ! B

which maps each b⊗ c ∈ B(pr) = B ⊗k,σr k to c · bpr ∈ B.

(3) The relative pr-Frobenius of T is the morphism φ
[r]
T : T ! T (pr) induced by φ

[r]
B .

(4) For r = 1, we often refer to φB := φ
[1]
B and φT := φ

[1]
T as the Frobenii of B and T .

Remark. We can similarly define the Frobenius twists and relative Frobenii for all k-schemes.

Lemma 1.5.2. Let T = Spec (B) be an affine k-scheme and r be a positive integer.

(1) The Frobenius twists satisfy recursive relations

B(pr+1) =
(
B(pr)

)(p)
and T (pr+1) =

(
T (pr)

)(p)
.

(2) The relative Frobenii satisfy recursive relations

φ
[r+1]
B = φ

[r]
B ◦ φB(pr) and φ

[r+1]
T = φT (pr) ◦ φ[r]

T .

Proof. The assertions are evident by definition. □

Proposition 1.5.3. Let T = Spec (B) be a k-variety with B = k[t1, · · · , tn]/(f1, · · · , fm) for
some polynomials f1, · · · , fm in n variables. Fix a positive integer r.

(1) There exists a canonical k-algebra isomorphism

B(pr) ∼= k[t1, · · · , tn]/(f
(pr)
1 , · · · , f (pr)m )

with f
(pr)
i obtained from fi by raising each coefficient to the pr-th power.

(2) The homomorphism φ
[r]
B maps each ti ∈ B(pr) to tp

r

i ∈ B.

(3) For a k-point on T that represents a common root (c1, · · · , cn) of f1, · · · , fm, its

image under φ
[r]
T represents the common root (cp

r

1 , · · · , c
pr
n ) of f

(pr)
1 , · · · , f (p

r)
m .

Proof. Statement (1) follows from the fact that under the canonical identification

k[t1, · · · , tn](p
r) ∼= k[t1, · · · , tn], the natural map k[t1, · · · , tn] ! k[t1, · · · , tn](p

r) raises the
coefficients of each polynomial to their pr-th powers. Statement (2) follows immediately from
statement (1). Statement (3) is a straightforward consequence of statement (2). □

Proposition 1.5.4. Given an affine k-scheme T = Spec (B) and a positive integer r, the

morphism φ
[r]
T induces a natural bijection T (k) ∼= T (pr)(k).

Proof. Let FrobT : T ! T denote the morphism induced by the p-th power map on B.
Under the natural bijection T (pr)(k) = T (k) × (Spec (k)) (k) ∼= T (k) given by the fact that

(Spec (k)) (k) is a singleton, φ
[r]
T maps each t ∈ T (k) to FrobrT (t) by construction. Hence we

establish the desired assertion by observing that FrobrT induces a bijection T (k) ∼= T (k). □
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Definition 1.5.5. Given a morphism f : T ! U of affine k-schemes and a positive integer r,
we refer to the induced morphism f (p

r) : T (pr) ! U (pr) as the pr-Frobenius twist of f .

Example 1.5.6. Given an arbitrary affine k-scheme T = Spec (B), we show the equality(
φ
[r]
T

)(ps)
= φ

[r]

T (ps)

for any positive integers r and s. For r = 1 and s = 1, since we have a commutative diagram

T (p) T (p2) Spec (k)

T T (p) Spec (k)

(φT )(p)

σ

φT

where each square is cartesian, we find (φT )(p) = φT (p) by observing that the morphism

T (p) −! T
φT−! T (p) given by the left square induces the p-th power map on B(p). For

r = 1 and s ≥ 2, we have (φT )(p
s) =

(
(φT )(p

s−1)
)(p)

and thus proceed by induction to find

(φT )(p
s) = φT (ps) . Finally, for r ≥ 2 and s ≥ 2, we have(

φ
[r]
T

)(ps)
=
(
φ
T (pr−1) ◦ φ

[r−1]
T

)(ps)
=
(
φ
T (pr−1)

)(ps) ◦ (φ[r−1]
T

)(ps)
by Lemma 1.5.2 and thus proceed by induction to obtain the desired equality.

Lemma 1.5.7. Let T and U be affine k-schemes. Take a positive integer r.

(1) There exists a natural isomorphism (T ×k U)(p
r) ∼= T (pr) ×k U

(pr) which canonically

identifies φ
[r]
(T×kU) with φ

[r]
T ×k φ

[r]
U .

(2) Every k-scheme morphism f : T ! U gives rises to a commutative diagram

T T (pr)

U U (pr)

φ
[r]
T

f f (p
r)

φ
[r]
U

where all maps are k-scheme morphisms.

Proof. The assertions are straightforward to verify using properties of fiber products. □

Proposition 1.5.8. Let G be an affine k-group and r be a positive integer.

(1) The pr-Frobenius twist G(pr) is naturally an affine k-group.

(2) The relative pr-Frobenius φ
[r]
G is a k-group homomorphism.

(3) If G is finite flat, G(pr) is finite flat with a natural isomorphism
(
G(pr)

)∨ ∼= (G∨)(p
r).

Proof. As we have G(pr) = G×k,σr k, statements (1) and (3) are evident by Lemma 1.2.1
and Proposition 1.2.5. Statements (2) is a straightforward consequence of Lemma 1.5.7. □

Lemma 1.5.9. Let f : G! H be a homomorphism of affine k-groups.

(1) The pr-Frobenius twist f (p
r) is a k-group homomorphism for each r ≥ 1.

(2) If f is a closed embedding, f (p
r) is also a closed embedding for each r ≥ 1.

(3) If f is an isomorphism, f (p
r) is also an isomorphism for each r ≥ 1.

Proof. The first statement is striaghtforward to verify by Lemma 1.5.7. The remaining
statements are evident by the construction of the Frobenius twists via base changes. □
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Definition 1.5.10. Let G be a finite flat k-group and r be a positive integer.

(1) We define the pr-Verschiebung to be ψ
[r]
G :=

(
φ
[r]
G∨

)∨
, regarded as a homomorphism

from G(pr) ∼=
(
(G∨)(p

r)
)∨

to G ∼= (G∨)∨.

(2) For r = 1, we often refer to ψG := ψ
[1]
G = φ∨

G∨ as the Verschiebung of G.

Proposition 1.5.11. We identify the Frobenius and Verschiebung of αp, µp, Z/pZ as follows:

(1) For αp, we have φαp = 0 and ψαp = 0.

(2) For µp, we have φµp = 0 and ψµp = idµp .

(3) For Z/pZ, we have φZ/pZ = idZ/pZ and ψZ/pZ = 0.

Proof. Let us begin with the Frobenii. We use the affine descriptions in Example 1.1.7.

For αp, we find α
(p)
p

∼= αp and φαp = 0 by Proposition 1.5.3. For µp, we similarly find µ
(p)
p

∼= µp

and φµp = 0. Let us now consider Z/pZ. We write A :=
∏

i∈Z/pZ

k for its affine ring and ei for

the element of A whose only nonzero entry is 1 in the component corresponding to i. Since
the A-algebra A(p) admits a natural identification

A(p) =

 ∏
i∈Z/pZ

k

⊗k,σ k ∼=
∏

i∈Z/pZ

(k ⊗k,σ k) ∼=
∏

i∈Z/pZ

k = A,

for each a =
∑

i∈Z/pZ

ciei ∈ A with ci ∈ k we find

φA(a) = φA

 ∑
i∈Z/pZ

ciei

 =
∑

i∈Z/pZ

φA(ciei) =
∑

i∈Z/pZ

cie
p
i =

∑
i∈Z/pZ

ciei = a.

Hence φZ/pZ coincides with the identity map. Now that we have the desired identifications of

the Frobenii, we deduce the identifications for the Verschiebungs from the results on Cartier
duals such as Proposition 1.2.8 and Proposition 1.2.9. □

Lemma 1.5.12. Given a finite flat k-group G, we have ψ
[r+1]
G = ψ

[r]
G ◦ ψG(pr) for each r ≥ 1.

Proof. The assertion is evident by Lemma 1.5.2. □

Lemma 1.5.13. Let G and H be finite flat k-group schemes. Take a positive integer r.

(1) There exists a natural isomorphism (G×kH)(p
r) ∼= G(pr)×kH

(pr) which canonically

identifies ψ
[r]
(G×kH) with ψ

[r]
G ×k φ

[r]
H .

(2) Every homorphism f : G! H of finite flat k-groups induces commutative diagrams

G G(pr)

H H(pr)

f

φ
[r]
G

f (p
r)

φ
[r]
H

G G(pr)

H H(pr)

f f (p
r)

ψ
[r]
G

ψ
[r]
H

where all maps are k-group homomorphisms.

Proof. By Lemma 1.2.1, fiber products of finite flat k-groups are finite flat k-groups.
Hence the assertions follow from Lemma 1.5.7, Proposition 1.5.8, and Lemma 1.5.9. □
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Proposition 1.5.14. Let G = Spec (A) be a finite flat k-group. We denote the symmetric
group of order p by Sp, which acts on A⊗p by permuting factors of pure tensors.

(1) There exists a k-algebra homomorphism γ : (A⊗p)Sp ! A(p) with the following
properties:

(i) For each a ∈ A, we have γ(a⊗p) = a⊗ 1.

(ii) For each pure tensor in A⊗p with unequal factors, the sum of elements in its
Sp-orbit maps to 0 under γ.

(2) The k-algebra homomorphism ψA induced by ψG fits into a commutative diagram

A (A⊗p)Sp A(p)

A⊗p

ψA

γ

with the map A! A⊗p induced by the comultiplication of G.

Proof. Let us work with the natural k-algebra isomorphisms

A ∼= (A∨)∨,
(
SympA∨)∨ ∼= (A⊗p)Sp , A(p) ∼=

(
(A∨)(p)

)∨
,

given by Theorem 1.2.4, Proposition 1.5.8, and the fact that Symp(A∨) is the k-algebra of

Sp-covariants for (A∨)⊗p. Since k has characteristic p, we have (f1 + f2)
⊗p = f⊗p1 + f⊗p2 in

Symp(A∨) for any f1, f2 ∈ A∨. Therefore there exists a unique k-algebra homomorphism

θ : (A∨)(p) ! SympA∨ which maps each f ⊗ c ∈ (A∨)(p) = A∨ ⊗k,σ k to c · f⊗p ∈ SympA∨.
Let us take γ to be the dual of θ. In addition, we identify each a ∈ A with its image ea under
the isomorphism A ∼= (A∨)∨. For each a ∈ A and f ⊗ c ∈ (A∨)(p) = A∨ ⊗k,σ k, we have

γ(a⊗p)(f ⊗ c) = (ea)
⊗p(c · f⊗p) = c · f(a)p = (ea ⊗ 1)(f ⊗ c)

where the last equality follows from the identity f(a)⊗c = 1⊗(c·f(a)p) in A⊗k,σk. Moreover,
given a pure tensor ⊗ai ∈ A⊗p with unequal factors, we denote its Sp-stabilizer by S and find

γ

( ∑
τ∈Sp/S

p⊗
i=1

aτ(i)

)
(f ⊗ c) =

∑
τ∈Sp/S

(
p⊗
i=1

eaτ(i)

)
(c · f⊗p) = c

∑
τ∈Sp/S

p∏
i=1

f(ai) = 0

for each f ⊗ c ∈ (A∨)(p) = A∨ ⊗k,σ k, where the last equality follows from the fact that the
number of elements in Sp/S is divisible by p. Therefore we establish statement (1).

Let us now consider statement (2). By construction, φA∨ fits into a commutative diagram

(A∨)(p) SympA∨ A∨

(A∨)⊗p

θ

φA∨

⊗fi 7!
∏

A∨ fi

where
∏
A∨ denotes the ring multiplication on A∨. Theorem 1.2.4 implies that the dual of

the map (A∨)⊗p ! A∨ in the diagram coincides with the map A ! A⊗p induced by the
comultiplication of G. Since we have ψA = φ∨

A∨ by construction, we obtain the diagram in
statement (2) by dualizing the above diagram, thereby completing the proof. □
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Proposition 1.5.15. Every finite flat k-group G yields the identities

ψ
[r]
G ◦ φ[r]

G = [pr]G and φ
[r]
G ◦ ψ[r]

G = [pr]G(p) for each integer r ≥ 1.

Proof. An inductive argument based on Lemma 1.5.2 and Lemma 1.5.12 shows that it
suffices to establish the desired identities for r = 1. Let us write G = Spec (A) for some
finite dimensional k-algebra A. In addition, we let ψA denote the k-algebra homomorphism
induced by ψG and Sp denote the symmetric group of order p. Proposition 1.5.14 yields a
commutative diagram

A (A⊗p)Sp A(p)

A⊗p A

ψA

γ

φA

⊗ai 7!
∏

A ai

with the diagonal map A ! A⊗p and the bottom horizontal map A⊗p ! A respectively
induced by the comultiplication of G and the multiplication of A. Therefore we have a
commutative diagram

G G(p)

G×p G

ψG

g1···gp [(g1,··· ,gp)
(g,··· ,g) [g

φG

and in turn find ψG ◦ φG = [p]G. Moreover, we have φ
(p)
G = φG(p) as noted in Example 1.5.6

and thus obtain a commutative diagram

G(p) G(p2)

G G(p)

φ
G(p)

ψG
ψ
G(p)

φG

by Lemma 1.5.13. Since we have established the identity ψG ◦ φG = [p]G for an arbitrary
finite flat k-group G, we find φG ◦ψG = ψG(p) ◦φG(p) = [p]G(p) as desired, thereby completing
the proof. □

Remark. Let us briefly discuss the Verschiebung for a general affine k-group G = Spec (A)
which is not necessarily finite flat. Our proof of Proposition 1.5.14 readily shows that state-
ment (1) holds for an arbitrary k-algebra A. In addition, the associativity axiom for G
implies that the k-algebra homomorphism A ! A⊗p induced by the comultiplication of G
factors through the embedding (A⊗p)Sp ↪! A⊗p. Therefore there exists a unique k-algebra

homomorphism ψA : A ! A(p) which fits into the diagram in statement (2). We define the

Verschiebung of G to be the k-scheme morphism ψG : G(p) ! G induced by ψA. It is not hard
to verify that ψA is compatible with the comultiplications, which means that ψG is a k-group
homomorphism. Moreover, for each integer r ≥ 1 we inductively define the k-group homo-

morphism ψ
[r]
G by the recursive relation in Lemma 1.5.12. It turns out that Lemma 1.5.13 and

Proposition 1.5.15 hold for general affine k-groups; indeed, we can establish Lemma 1.5.13
by a straightforward argument on affine rings and in turn deduce Proposition 1.5.15 by the
same proof. In addition, we can suitably adjust our argument in Example 1.5.6 to obtain the

identity (ψ
[r]
G )(p

s) = ψ
[r]

G(ps) for any positive integers r and s.
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Lemma 1.5.16. Let G = Spec (A) be a finite flat k-group.

(1) The Frobenius φG is an isomorphism if and only if it is injective.

(2) If G is connected, A is an artinian local k-algebra with its maximal ideal given by
the augmentation ideal of G.

Proof. Since G and G(p) are of the same order by construction, statement (1) follows
from Proposition 1.1.11 and Theorem 1.1.18. If G is connected, A is an artinian local ring by
Lemma 1.1.14, Lemma 1.4.2, and a general fact that every finite dimensional algebra over a
field is artinian as noted in the Stacks project [Sta, Tag 00J6]. Hence we deduce statement (2)
by observing that the augmentation ideal I of G is a maximal ideal as we have A/I ∼= k. □

Proposition 1.5.17. Let G = Spec (A) be a finite flat k-group.

(1) G is connected if and only if φ
[r]
G vanishes for some integer r ≥ 1.

(2) G is étale if and only if φG is an isomorphism.

Proof. Let us begin with statement (1). If φ
[r]
G vanishes for some r ≥ 1, we find by

Proposition 1.5.4 that G(k) is trivial and thus deduce from Proposition 1.4.7 that G is con-
nected. For the converse, we now assume that G is connected. Its augmentation ideal I is
nilpotent by Lemma 1.5.16 and a standard fact stated in the Stacks project [Sta, Tag 00J8];

in particular, there exists an integer r ≥ 1 with tp
r

= 0 for all t ∈ I. Therefore φ
[r]
A factors

through the surjection A(pr) = A⊗k,σr k ↠ (A/I)⊗k,σr k induced by the unit section of G(pr).

We deduce that φ
[r]
G vanishes and in turn establish statement (1).

It remains to prove statement (2). Let us assume that φG is an isomorphism. It is not hard
to see that φG◦ is an isomorphism, for example by Lemma 1.5.7 and Lemma 1.5.16. Hence

Example 1.5.6 and Lemma 1.5.9 together imply that φ(G◦)(pr) = φ
(pr)
G◦ is an isomorphism for

each r ≥ 1. Now a simple induction based on Lemma 1.5.2 shows that φ
[r]
G◦ is an isomorphism

for each r ≥ 1. Since φ
[r]
G◦ vanishes for some r ≥ 1 by statement (1), we find that G◦ is trivial

and consequently deduce from Proposition 1.4.12 that G is étale.

We now assume for the converse that G is étale. It is not hard to see by Lemma 1.5.7 that
φker(φG) vanishes. Hence statement (1) implies that ker(φG) is connected, which means that
ker(φG) lies in G◦. Since G◦ is trivial by Proposition 1.4.12, we find that ker(φG) is trivial
and in turn deduce from Lemma 1.5.16 that φG is an isomorphism. □

Remark. Proposition 1.5.17 yields similar criteria for G∨ to be connected or étale in terms
of the Verschiebungs.

Example 1.5.18. Let E be an ordinary elliptic curve over Fp. We assert that there exists an
isomorphism ker(φE[p]) ≃ µp. Example 1.4.16 shows that we have E[p]◦ ≃ µp. Lemma 1.5.7
and Proposition 1.5.17 together imply that ker(φE[p]) is connected and thus lies in E[p]◦ ≃ µp.
On the other hand, ker(φE[p]) contains E[p]◦ ≃ µp as φµp vanishes by Proposition 1.5.11.
Therefore we have ker(φE[p]) = E[p]◦ ≃ µp as desired.

Remark. As noted after Definition 1.5.1, we can define the relative Frobenii for general k-
schemes, including abelian k-varieties. Moreover, since abelian varieties admit a notion of
duality, we can define their relative Verschiebungs as in Definition 1.5.10. It turns out that
most results that in this subsection remain valid for abelian varieties. In particular, for an

ordinary elliptic curve E over Fp, we find ker(φE) ⊆ E[p] by the identity ψ
[r]
E ◦ φ[r]

E = [pr]E
and in turn obtain an isomorphsim ker(φE) ≃ µp from Example 1.5.18.

https://stacks.math.columbia.edu/tag/00J6
https://stacks.math.columbia.edu/tag/00J8
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Proposition 1.5.19. Let G = Spec (A) be a finite flat k-group with augmentation ideal I.

(1) For each integer r ≥ 1, there exists a natural isomorphism

ker(φ
[r]
G ) ∼= Spec (A/I(p

r))

where I(p
r) denotes the ideal generated by the pr-th powers of elements in I.

(2) If φG vanishes, the order of G is pd where d denotes the dimension of I/I2 over k.

Proof. Let us denote by e the unit section of G, which we naturally identify with the
closed embedding Spec (A/I) ↪! Spec (A). The unit section of G(pr) is e(p

r), induced by

natural surjection A(pr) = A ⊗k,σr k ↠ (A/I) ⊗k,σr k. Hence statement (1) follows from the

identification of ker(φ
[r]
G ) as the fiber of φ

[r]
G over e(p

r).

It remains to establish statement (2). We chooose a1, · · · , ad ∈ I whose images in I/I2

form a basis over k. Since G is connected by Proposition 1.5.17, we note by Lemma 1.5.16
that A is a local ring with maximal ideal I and in turn deduce from Nakayama’s lemma that
a1, · · · , ad generate I. Therefore statement (1) yields an isomorphism A ∼= A/(ap1, · · · , a

p
d).

Let us take the k-algebra homomorphism

λ : k[t1, · · · , td] −! A ∼= A/(ap1, · · · , a
p
d)

which maps each ti to ai. It is not hard to see by Lemma 1.1.10 that λ is surjective, which
means that λ yields an isomorphism

k[t1, · · · , td]/ ker(λ) ≃ A.

Hence ΩA/k admits an isomorphism

ΩA/k ≃
d⊕
i=1

A · dti
/ ∑

f∈ker(λ)

A · df

by a standard fact about differentials stated in the Stacks project [Sta, Tag 00RU]. Since ΩA/k

is a free A-module of rank d by Proposition 1.3.5, we see that
∑

f∈ker(λ)

A ·df is zero and in turn

find that ker(λ) is stable under partial derivatives. If ker(λ) is not a subset of (tp1, · · · , t
p
d),

we take a nonzero element f ∈ ker(λ)\(tp1, · · · , t
p
d) with minimal degree and observe that its

partial derivatives yield elements in ker(λ), which contradicts the minimality for f . Now we
must have ker(λ) = (tp1, · · · , t

p
d), as ker(λ) evidently contains (tp1, · · · , t

p
d), and consequently

deduce that A ≃ k[t1, · · · , td]/(tp1, · · · , t
p
d) is free of dimension pd over k, thereby establishing

statement (2). □

Proposition 1.5.20. If a finite flat k-group G is connected, its order is a power of p.

Proof. Let us denote the order of G by n. Since the assertion is trivial for n = 1, we
henceforth assume the inequality n > 1 and proceed by induction on n. It is evident by
Proposition 1.4.12 that G is not étale. Hence Lemma 1.5.16 and Proposition 1.5.17 together
imply that ker(φG) is not trivial. In addition, as Proposition 1.1.11 implies that ker(φG) is a
closed k-subgroup of G, we apply Proposition 1.4.14 to see that both ker(φG) and G/ ker(φG)
are connected. Let us write n1 and n2 respectively for the orders of ker(φG) and G/ ker(φG).
By Theorem 1.1.18 we have n = n1n2. If φG does not vanish, we find that both n1 and n2 are
less than n and thus are powers of p by the induction hypothesis, which in particular implies
that n is a power of p. If φG vanishes, Proposition 1.5.19 shows that n is a power of p. Hence
we establish the desired assertion. □

https://stacks.math.columbia.edu/tag/00RU
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Proposition 1.5.21. Given a finite flat k-group G = Spec (A) with unit section e, its tangent
space at e admits a canonical isomorphism tG,e ∼= Homk-grp(G∨,Ga).

Proof. Let us write I for the augmentation ideal of G and regard the unit section e
as a k-point of G via the natural closed embedding Spec (k) ∼= Spec (A/I) ↪! Spec (A).
The tangent space tG,e is by definition canonically isomorphic to the kernel of the natural
homomorphism G(k[t]/(t2))! G(k), which we naturally identify with the group of k-algebra
homomorphisms A ! k[t]/(t2) whose composition with the map k[t]/(t2) ! k equals the
counit ϵ of G. Since we can uniquely write every k-linear map A ! k[t]/(t2) in the form
f0 + tf1 with f0, f1 ∈ A∨ = Homk-mod(A, k), we find

tG,e ∼=
{
f ∈ Homk-alg(A, k[t]/(t2)) : f = ϵ+ tg with g ∈ A∨ }

∼=
{
g ∈ A∨ : ϵ+ tg ∈ Homk-alg(A, k[t]/(t2)

}
.

For each g ∈ A∨, we have ϵ+ tg ∈ Homk-alg(A, k[t]/(t2)) if and only if it satisfies the identities

ϵ(ab) + tg(ab) = (ϵ(a) + tg(a)) (ϵ(b) + tg(b)) and ϵ(1) + tg(1) = 1 for each a, b ∈ A,

which are equivalent to the identities

g(ab) = ϵ(a)g(b) + ϵ(b)g(a) and g(1) = 0 for each a, b ∈ A

by the fact that ϵ is an k-algebra homomorphism. We observe that the second identity is
redundant as it follows from the first identity for a = b = 1. In addition, the first identity is
equivalent to the commutative diagram

A k ∼= k ⊗k k

A⊗k A

g

mA
ϵ⊗g+g⊗ϵ

where mA denotes the ring multiplication map on A. We dualize this diagram under the
identification A∨ = Homk-mod(A, k) ∼= Homk-mod(k,A∨) and find m∨

A(g) = g ⊗ 1 + 1 ⊗ g.
Therefore we obtain a natural isomorphsim

tG,e ∼=
{
g ∈ A∨ : m∨

A(g) = g ⊗ 1 + 1 ⊗ g
}
.

Meanwhile, by Example 1.1.7 and Theorem 1.2.4 we find

Homk-grp(G∨,Ga) ∼=
{
f ∈ Homk-alg(k[t], A∨) : m∨

A(f(t)) = f(t) ⊗ 1 + 1 ⊗ f(t)
}

where the identity m∨
A(f(t)) = f(t) ⊗ 1 + 1 ⊗ f(t) comes from compatibility with comultipli-

cations. Since we have the canonical isomorphism Homk-alg(k[t], A∨) ∼= A∨ which sends each
f ∈ Homk-alg(k[t], A∨) to f(t), we obtain a natural identification

Homk-grp(G∨,Ga) ∼=
{
g ∈ A∨ : m∨

A(g) = g ⊗ 1 + 1 ⊗ g
}
.

Therefore we deduce the desired assertion, thereby completing the proof. □

Proposition 1.5.22. A finite flat k-group G is étale if and only if Homk-grp(G∨,Ga) vanishes.

Proof. Let us write G = Spec (A) for some finite dimensional k-algebra A. We denote
the augmentation ideal of G by I and regard the unit section e as a k-point of G via the closed
embedding Spec (k) ∼= Spec (A/I) ↪! Spec (A). The tangent space tG,e is naturally isomorphic
to the dual of I/I2 by a general fact stated in the Stacks project [Sta, Tag 0B2E]. Therefore,
by Proposition 1.3.5, G is étale if and only if tG,e vanishes. Now the desired assertion follows
from Proposition 1.5.21. □

https://stacks.math.columbia.edu/tag/0B2E
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Theorem 1.5.23. Assume that k is algebraically closed.

(1) Every simple finite flat k-group is either étale or connected.

(2) The simple finite étale k-groups are Z/ℓZ where ℓ ranges over all prime numbers.

(3) The simple connected finite flat k-groups are µp and αp.

Proof. Statement (1) is straightforward to verify by Theorem 1.4.9. Statement (2) fol-
lows from Proposition 1.3.6, Proposition 1.3.7, and the fact that the simple abelian groups
are precisely the cyclic groups of prime order. Hence it remains to prove statement (3).

The k-groups µp and αp are indeed connected as noted in Example 1.4.8. Moreover, they
are of order p by construction and thus are simple by Theorem 1.4.9. We wish to show that
they are the only simple connected finite flat k-groups.

Let G be a simple connected finite flat k-group. Theorem 1.2.4 and Proposition 1.2.13
together imply that G∨ is simple. Hence G∨ is either étale or connected by statement (1).

We consider the case where G∨ is étale. Statement (2) yields an isomorphism G∨ ≃ Z/ℓZ
for some prime ℓ. Hence G has order ℓ by Example 1.1.15 and Theorem 1.2.4. On the other
hand, the order of G is a power of p as noted in Proposition 1.5.20. We thus find ℓ = p and
in turn obtain an isomorphism G ≃ µp by Proposition 1.2.8.

Let us now consider the case where G∨ is connected. It is evident by Proposition 1.4.12
that neither G nor G∨ is étale. Theorem 1.2.4 and Proposition 1.5.22 together yield a nonzero
k-group homomorphism f : G ! Ga, which is indeed a closed embedding as G is simple.
Moreover, Lemma 1.5.16 and Proposition 1.5.17 together imply that ker(φG) is not trivial,
which means that φG vanishes as G is simple. Therefore f must factor through ker(φGa),
which is isomorphic to αp as easily seen by Example 1.1.7 and Proposition 1.5.3. Since αp is
simple, we deduce that f induces an isomorphism G ≃ αp. □

Remark. In the category of finite flat group schemes, the image of a homomorphism is a
scheme theoretic image and thus is closed in the target; in particular, subobjects of a finite
flat k-group scheme is a closed k-subgroup.

Example 1.5.24. We say that an elliptic curve E over Fp is supersingular if E[p](Fp) is trivial.

We assert that every supersingular elliptic curve E over Fp yields a short exact sequence

0 −! αp −! E[p] −! αp −! 0.

Example 1.1.15 and Theorem 1.5.23 together show that the order of every simple finite flat
Fp-group is a prime. Since E[p] has order p2 as noted in Proposition 1.1.16, it is not simple

and thus admits a nonzero proper closed Fp-subgroup H. Let us consider the exact sequence

0 −! H −! E[p] −! E[p]/H −! 0.

Proposition 1.2.13 and Example 1.2.11 together yield a short exact sequence

0 −! (E[p]/H)∨ −! E[p] −! H∨ −! 0.

We note by Proposition 1.4.7 that E[p] is connected and in turn find by Proposition 1.4.14
that H,E[p]/H,H∨, (E[p]/H)∨ are all connected. Moreover, we see that both H and E[p]/H
are simple as they have order p by Theorem 1.1.18. Now Proposition 1.2.8 and Theorem 1.5.23
together imply that both H and E[p]/H are isomorphic to αp, thereby yielding the desired
assertion.

Remark. It turns out that the Fp-subgroup H ≃ αp coincides with ker(φE[p]).
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2. p-divisible groups

In this section, we introduce p-divisible groups and discuss their fundamental properties.
The primary references for this section are the book of Demazure [Dem72] and the article of
Tate [Tat67]. Throughout this section, we let R denote a noetherian base ring.

2.1. Basic definitions and properties

In this subsection, we define p-divisible groups and describe their basic properties inherited
from properties of finite flat group schemes.

Definition 2.1.1. A p-divisible group of height h over R is an ind-scheme G = lim−!
v>0

Gv with

the following properties:

(i) Each Gv is a finite flat R-group of order pvh.

(ii) Each transition map iv : Gv ! Gv+1 fits into a short exact sequence

0 Gv Gv+1 Gv+1.
iv [pv ]

Example 2.1.2. We present some important examples of p-divisible groups.

(1) The R-group 0 is a p-divisible group of height 0 over R via the identification 0 ∼= lim−! 0.

(2) The constant p-divisible group over R is Qp/Zp := lim−!Z/pvZ with natural inclusions.

It is a p-divisible group of height 1 over R.

(3) The p-power roots of unity over R is µp∞ := lim−!µpv with natural inclusions. It is a
p-divisible group of height 1 over R.

(4) Every abelian scheme A of dimension g over R gives rises to a p-divisible group
A[p∞] := lim−!A[pv] of height 2g over R by Proposition 1.1.16.

Remark. When R has characteristic p, we have a finite flat R-group αpv := Spec (R[t]/tp
v
) for

each integer v ≥ 1 with the natural additive group structure on αpv(B) =
{
b ∈ B : bp

v
= 0

}
for each R-algebra B. However, the ind-scheme lim−!αpv over R with natural inclusions is not

a p-divisible group as [p]αv vanishes for each v ≥ 1.

Definition 2.1.3. Let G = lim−!Gv and H = lim−!Hv be p-divisible groups over R.

(1) An ind-scheme morphism f = (fv) from G to H is a homomorphism if each fv is an
R-group homomorphism.

(2) The kernel of a homomorphism f = (fv) from G to H is ker(f) := lim−! ker(fv).

Example 2.1.4. Given a p-divisible group G = lim−!Gv over R and an integer n, the multi-

plication by n on G is the homomorphism [n]G := ([n]Gv).

Lemma 2.1.5. Let B be an R-algebra.

(1) Given a p-divisible group G = lim−!Gv of height h over R, the base change to B yields

a p-divisible group GB = lim−! (Gv)B of height h over B.

(2) Given a short exact sequence of p-divisible groups over R

0 −! G′ −! G −! G′′ −! 0,

the base change to B yields a short exact sequence of p-divisible groups

0 −! (G′)B −! GB −! (G′′)B −! 0.

Proof. The assertions are straightforward to verify by Lemma 1.2.1. □
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Lemma 2.1.6. Every p-divisible group G = lim−!Gv over R yields R-group homomorphisms
iv,w : Gv ! Gv+w and jv,w : Gv+w ! Gw for each v, w ≥ 1 with the following properties:

(i) The map iv,w induces a canonical isomorphism Gv ∼= Gv+w[pv].

(ii) There exists a commutative diagram

Gv+w Gv+w

Gw

[pv ]

jv,w iw,v

(iii) There exists a short exact sequence

0 Gv Gv+w Gw 0.
iv,w jv,w

Proof. Let us write iv : Gv ! Gv+1 for the transition map. For each v, w ≥ 1, the map
iv+w−1 induces a natural isomorphism

Gv+w[pv] ∼= Gv+w[pv+w−1] ∩Gv+w[pv] ∼= Gv+w−1 ∩Gv+w[pv] ∼= Gv+w−1[p
v].

Hence we set iv,w := iv+w−1 ◦ · · · ◦ iv and establish property (i) by induction on w. Moreover,
as the image of [pv]Gv+w lies in Gv+w[pw] by the fact that [pv+w]Gv+w vanishes, property (i)
implies that there exists a unique map jv,w : Gv+w ! Gw with property (ii).

It remains to verify property (iii). The map iv,w is a closed embedding as easily seen by
Proposition 1.1.11. Meanwhile, properties (i) and (ii) together yield an identification

ker(jv,w) = Gv+w[pv] ∼= Gv.

Hence jv,w gives rise to a closed embedding Gv+w/Gv ↪! Gw, which is indeed an isomorphism
by Theorem 1.1.18 as both Gv+w/Gv and Gw have order pw. We deduce that jv,w is surjective
and in turn establish property (iii). □

Proposition 2.1.7. Given p-divisible groups G = lim−!Gv and H = lim−!Hv over R, there exists
a natural identification

Hom(G,H) ∼= lim −HomR-grp(Gv, Hv).

Proof. We note that every R-group homomorphism Gv+1 ! Hv+1 for each v ≥ 1 natu-
rally induces an R-group homomorphism Gv ! Hv and in turn obtain an injective map

lim −HomR-grp(Gv, Hv) ↪−! Hom(G,H).

Moreover, for every homomorphism f = (fv) from G to H, we deduce from Lemma 2.1.6 that
the image of each fv lies in Hv as [pv]Gv vanishes. Hence we establish the desired assertion. □

Proposition 2.1.8. Let G = lim−!Gv be a p-divisible group over R.

(1) There exists a canonical identification Gv ∼= ker([pv]G) for each v ≥ 1.

(2) The homomorphism [p]G is surjective.

Proof. Given an integer v ≥ 1, we obtain a natural isomorphism ker([pv]Gw) ∼= Gv for
each w ≥ v by Lemma 2.1.6 and thus establish statement (1). In addition, we deduce from
Lemma 2.1.6 that the map [p]Gv+1 factors through a surjection Gv+1 ↠ Gv for each v ≥ 1
and consequently establish statement (2). □

Remark. Statement (1) shows that the kernel of a homomorphism between two p-divisible
groups is not necessarily a p-divisible group. For statement (2), we may define the surjectivity
of [p]G in terms of fpqc sheaves over R.
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Proposition 2.1.9. Let G = lim−!Gv be a p-divisible group of height h over R.

(1) The ind-scheme G∨ := lim−!G∨
v with transition maps induced by [p]G is a p-divisible

group of height h over R.

(2) There exists a canonical isomorphism G ∼= (G∨)∨.

Proof. Lemma 2.1.6 yields a commutative diagram

G1

0 Gv Gv+1 Gv+1 Gv 0

i1,v

iv=iv,1

jv,1

[pv ] jv=j1,v

where the horizontal arrows form an exact sequence. Hence we obtain an exact sequence

0 −! G∨
v

j∨v−! G∨
v+1

[pv ]
−! G∨

v+1

by Example 1.2.7 and Proposition 1.2.13. Now the desired assertions immediately follow from
Theorem 1.2.4. □

Definition 2.1.10. Given a p-divisible group G over R, we refer to the p-divisible group G∨

in Proposition 2.1.9 as the Cartier dual of G.

Remark. Some authors refer to G∨ as the Serre dual of G.

Example 2.1.11. Let us record the Cartier duals of p-divisible groups from Example 2.1.2.

(1) The Cartier dual of 0 is evidently 0 by definition.

(2) We have (Qp/Zp)∨ ∼= µp∞ and µ∨p∞
∼= Qp/Zp by Proposition 1.2.8.

(3) Given an abelian scheme A over R, we have A[p∞]∨ ∼= A∨[p∞] by Proposition 1.2.10
where A∨ denotes the dual abelian scheme of A.

Proposition 2.1.12. Assume that R is a henselian local ring with residue field k. Let
G = lim−!Gv be a p-divisible group over R.

(1) There exists a natural exact sequence of p-divisible groups

0 −! G◦ −! G −! Gét −! 0 (2.1)

with G◦ = lim−!G◦
v and Gét = lim−!Gét

v .

(2) If R = k is a perfect field, the exact sequence (2.1) canonically splits.

Proof. Since the order of G1 is a power of p, we deduce from Theorem 1.1.18 that

the R-groups G◦
1 and Gét

1 respectively have order ph
◦

and ph
ét

for some integers h◦ and hét.
Meanwhile, as Lemma 2.1.6 yields a natural isomorphism Gv+1/Gv ∼= G1 for each v ≥ 1, we
find G◦

v+1/G
◦
v
∼= G◦

1 and Gét
v+1/G

ét
v
∼= Gét

1 by Proposition 1.4.14. A simple induction based on

Theorem 1.1.18 shows that the R-groups G◦
v and Gét

v respectively have order pvh
◦

and pvh
ét

.
In addition, Proposition 1.4.14 yields short exact sequences

0 −! G◦
v −! G◦

v+1
[pv ]
−! G◦

v+1 and 0 −! Gét
v −! Gét

v+1
[pv ]
−! Gét

v+1.

Therefore G◦ = lim−!G◦
v and Gét = lim−!Gét

v are p-divisible groups over R. Now the desired
assertions are evident by Proposition 1.4.13 and Proposition 1.4.15. □

Remark. Proposition 2.1.12 implies an interesting fact that for a p-divisible groupG = lim−!Gv
over a henselian local ring R each Gv being connected or étale is equivalent to G1 being
connected or étale.
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Definition 2.1.13. Let G = lim−!Gv be a p-divisible group over R.

(1) We say that G is connected if each Gv is connected.

(2) We say that G is étale if each Gv is étale.

(3) If R is a henselian local ring, we refer to the p-divisible groups G◦ and Gét in Propo-
sition 2.1.12 respectively as the connected part and the étale part of G.

Example 2.1.14. Below are essential examples of étale or connected p-divisible groups.

(1) The constant p-divisible group Qp/Zp is étale by Proposition 1.3.6.

(2) If R is a henselian local ring with residue field of characteristic p, the p-power roots
of unity µp∞ is connected by Example 1.4.8.

Definition 2.1.15. Assume that R = k is a field of characteristic p. Let G = lim−!Gv be a
p-divisible group over k and r be a positive integer.

(1) The pr-Frobenius twist of G is G(pr) := lim−!G
(pr)
v with transition maps given by the

pr-Frobenius twists of the transition maps for G.

(2) We define the pr-Frobenius of G to be φ
[r]
G := (φ

[r]
Gv

) and the pr-Verschiebung of G

to be ψ
[r]
G := (ψ

[r]
Gv

).

(3) For r = 1, we often refer to φG := φ
[1]
G and ψG := ψ

[1]
G respectively as the Frobenius

and the Verschiebung of G.

Proposition 2.1.16. Assume that R = k is a field of characteristic p. Let G be a p-divisible
group of height h over k and r be a positive integer.

(1) The ind-scheme G(pr) is a p-divisible group of height h over k.

(2) The maps φ
[r]
G and ψ

[r]
G are homomorphisms of p-divisible groups.

(3) We have ψ
[r]
G ◦ φ[r]

G = [pr]G and φ
[r]
G ◦ ψ[r]

G = [pr]G(pr) .

Proof. The assertions are direct consequences of Proposition 1.5.8, Lemma 1.5.13, and
Proposition 1.5.15. □

Definition 2.1.17. If R = k is a field, for a p-divisible group G = lim−!Gv over k we define

its Tate module to be Tp(G) := lim −Gv(k) with transition maps induced by [p]G.

Proposition 2.1.18. If R = k is a field, for a p-divisible group G = lim−!Gv over k the Tate

module Tp(G) is naturally a finite free Zp-module with a continuous ΓK-action.

Proof. The assertion is evident as each Gv(k) is a finite free module over Z/pvZ and
carries a canonical continuous Γk-action. □

Proposition 2.1.19. If R = k is a perfect field of characteristic not equal to p, there exists
an equivalence of categories

{ p-divisible groups over k } ∼
−! { finite free Zp-modules with a continuous Γk-action }

which sends each p-divisible group G over k to Tp(G).

Proof. Let G = lim−!Gv be a p-divisible group over k. Since all finite flat k-groups of
p-power order are étale by Theorem 1.3.9, it is not hard to deduce from Proposition 1.3.4 that
the functor is fully faithful. Moreover, given a finite free Zp-module M with a continuous

Γk-action, Proposition 1.3.4 yields a finite étale k-group Gv with Gv(k) = M/(pv) for each
integer v ≥ 1 and in turn provides a p-divisible group G = lim−!Gv with Tp(G) = M . Therefore
we deduce that the functor is an equivalence as desired. □
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2.2. Serre-Tate equivalence for connected p-divisible groups

In this subsection, we introduce formal group laws and explore their relations to p-divisible
groups. Throughout this subsection, we assume that R is a complete reduced noetherian local
ring with residue field k of characteristic p. We often denote the ring R[[t1, · · · , td]] of power
series in d variables by Ad, or simply by A if the context clearly specifies d. We work with
the canonical identifications Ad⊗̂RAd

∼= R[[T,U ]] and Ad⊗̂RAd⊗̂RAd
∼= R[[T,U, V ]], where

we write T := (t1, · · · , td), U := (u1, · · · , ud), and V := (v1, · · · , vd).

Lemma 2.2.1. An R-algebra homomorphism f : R[[t1, · · · , tn]] ! R[[u1, · · · , um]] is continu-
ous if and only if each f(ti) lies in the ideal I := (u1, · · · , um).

Proof. The map f is continuous if and only if there exists an integer v with f(tvi ) ∈ I
for each i = 1, · · · , n. Hence the assertion follows from our assumption that R is reduced. □

Definition 2.2.2. A formal group law of dimension d over R is a continuous R-algebra
homomorphism µ : Ad ! Ad⊗̂RAd such that Φ(T,U) := (µ(ti)) satisfies the following axioms:

(a) associativity axiom Φ(T,Φ(U, V )) = Φ(Φ(T,U), V ),

(b) unit section axiom Φ(T, 0) = T = Φ(0, T ),

(c) commutativity axiom Φ(T,U) = Φ(U, T ).

Example 2.2.3. We present two primary examples of one-dimensional formal group laws.

(1) The additive formal group law over R is the continuous R-algebra homomorphism
µĜa

: R[[t]]! R[[t, u]] with µĜa
(t) = t+ u.

(2) The multiplicative formal group law over R is the continuous R-algebra homomor-
phism µĜm

: R[[t]]! R[[t, u]] with µĜm
(t) = (1 + t)(1 + u) − 1.

Lemma 2.2.4. Let µ : A ! A ⊗̂RA be a formal group law of dimension d over R represented
by Φ(T,U) := (µ(ti)). We have a d-tuple Ξ(T ) = (Ξi(T )) of power series in d variables with

Φ(T,Ξ(T )) = 0 = Φ(Ξ(T ), T ).

Proof. By the commutativity axiom for µ, it suffices to construct a d-tuple Ξ(T ) with
Φ(T,Ξ(T )) = 0. Let us consider the ideal I := (t1, · · · , td) of A . We have a natural
identification I ⊗̂I ∼= (t1, · · · , td, u1, · · · , ud). For each R-module M , we regard M×d as the
set of d-tuples whose entries all lie in M . We wish to present the desired d-tuple as a limit
Ξ(T ) = lim

j!∞
Pj(T ) where each Pj(T ) is a d-tuple of polynomials with

Pj(T ) ∈ Pj−1(T ) + (I j)×d and Φ(Pj(T ), T ) ∈ (I j+1)×d.

The unit section axiom for µ yields the relation

Φ(T,U) ∈ T + U + ((I ⊗̂I )2)×d. (2.2)

Let us set P1(T ) := −T and inductively construct Pj(T ) for each j > 1. By the relation

Φ(Pj−1(T ), T ) ∈ (I j)×d, there exists a d-tuple ∆j(T ) ∈ (I j)×d with

∆j(T ) ∈ −Φ(Pj−1(T ), T ) + (I j+1)×d. (2.3)

For Pj(T ) := Pj−1(T ) + ∆j(T ), we have Pj(T ) ∈ Pj−1(T ) + (I j)×d and find

Φ(Pj(T ), T ) = Φ(Pj−1(T ) + ∆j(T ), T ) ∈ Φ(Pj−1(T ), T ) + ∆j(T ) + (I j+1)×d = (I j+1)×d

by the relations (2.2) and (2.3). Therefore we obtain a desired d-tuple Ξ(T ). □

Remark. Lemma 2.2.4 shows that the inverse axiom is automatic for formal group laws.
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Lemma 2.2.5. Let µ : A ! A ⊗̂RA be a formal group law of dimension d over R.

(1) The formal group law µ yields commutative diagrams

A A ⊗̂RA

A ⊗̂RA A ⊗̂RA ⊗̂RA

µ

µ µ⊗̂id

id⊗̂µ

A ⊗̂RA A ⊗̂RA

A

x⊗̂y 7!y⊗̂x

µµ

(2) The R-algebra map ϵ : A ! R with ϵ(ti) = 0 fits into commutative diagrams

A A A ⊗̂RR

A ⊗̂RA

id

µ

∼

id⊗̂ϵ

A A R⊗̂RA

A ⊗̂RA

id

µ

∼

ϵ⊗̂id

(3) There exists an R-algebra map ι : A ! A that fits into a commutative diagram

A A ⊗̂RA

R A

ϵ

µ

ι⊗̂idid⊗̂ι

Proof. Statements (1) and (2) are evident by the axioms for µ. Statement (3) is a
reformulation of Lemma 2.2.4. □

Remark. We can extend the notion of R-groups to define formal R-groups as group objects
in the category of formal R-schemes. Lemma 2.2.5 shows that every formal group law µ of
dimension d over R corresponds to a unique a formal R-group Gµ = Spf(A ) with comultipli-
cation µ, counit ϵ, and coinverse ι.

Definition 2.2.6. Let µ and ν be formal group laws over R.

(1) A homomorphism from µ to ν is a continuous R-algebra map θ : Ad′ ! Ad with a
commutative diagram

Ad′ Ad′⊗̂RAd′

Ad Ad⊗̂RAd

ν

θ θ⊗̂θ
µ

where d and d′ respectively denotes the dimensions of µ and ν.

(2) A homomorphism θ : Ad′ ! Ad from µ and ν is finite flat if Ad becomes a free
module of finite rank over Ad′ via θ.

Remark. The map θ goes from the power series ring for ν to the power series ring for µ so
that it corresponds to a formal R-group homomorphism Gµ ! Gν . If we consider the tuples
Φ(T,U) := (µ(ti)), Ψ(T,U) := (ν(tj)), and Ξ(T ) := (θ(tj)), the commutative diagram for θ
is equivalent to the identity Ψ(Ξ(T ),Ξ(U)) = Ξ(Φ(T, T )).

Example 2.2.7. Let µ be a formal group law of dimension d over R. For each integer n ≥ 1,
the multiplication by n on µ is the homomorphism [n]µ : A ! A inductively defined by the

relations [1]µ = idA and [n]µ = ([n− 1]µ⊗̂id) ◦ µ.

Remark. The map [n]µ induces the multiplication by n on the formal R-group Gµ.
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Definition 2.2.8. Let µ : A ! A ⊗̂RA be a formal group law of dimension d over R.

(1) We refer to the ideal I := (t1, · · · , td) in A as the augmentation ideal of µ.

(2) We say that µ is p-divisible if the homomorphism [p]µ : A ! A is finite flat.

Remark. The ideal I is the kernel of the counit ϵ : A ! R for the formal R-group Gµ. Hence
our definition here is comparable to the definition of augmentation ideal for affine R-groups.

Example 2.2.9. Let us consider the formal group laws introduced in Example 2.2.3.

(1) The additive formal group law µĜa
is not p-divisible; indeed, [p]µĜa

satisfies the

identity [p]µĜa
(t) = pt and thus is not finite flat for inducing a zero map on A ⊗R k.

(2) The multiplicative formal group law µĜm
is p-divisible; indeed, [p]µĜm

satisfies the

identity [p]µĜm
(t) = (1 + t)p − 1 and thus is finite flat.

Proposition 2.2.10. Let µ : A ! A ⊗̂RA be a p-divisible formal group law of dimension d
over R with augmentation ideal I . We write Av := A /[pv]µ(I ) for each v ≥ 1.

(1) Each µ[pv] := Spec (Av) is naturally a connected finite flat R-group.

(2) The ind-scheme µ[p∞] := lim−!µ[pv] is a connected p-divisible group over R.

Proof. Let us take ϵ and ι as in Lemma 2.2.5. For each v ≥ 1, we have

Av = A /[pv]µ(I ) ∼= A /I ⊗A ,[pv ]µ A ∼= R⊗A ,[pv ]µ A

and thus find that µ[pv] = Spec (Av) is naturally anR-group with comultiplication 1⊗µ, counit
1 ⊗ ϵ, and coinverse 1 ⊗ ι. If we take a basis of A over [p]µ(A ) given by f1, · · · , fr ∈ A ,
a simple induction yields a basis of A over [pv]µ(A ) for each v ≥ 1 given by elements of
the form [pv−1]µ(fiv−1) · · · [p]µ(fi1)fi0 with (i0, · · · , iv−1) ∈ (Z/rZ)v and consequently implies
that µ[pv] is finite flat of order rv over R. Moreover, since R is a local ring, both A and
Av = A /[pv]µ(I ) are local rings as well. We deduce that µ[pv] is connected and in turn
establish statement (1).

Let us now consider statement (2). Lemma 1.4.3 and Proposition 1.5.20 together imply
that µ[p] has order ph for some integer h. Therefore our discussion in the previous paragraph
shows that each µ[pv] has order pvh. Furthermore, the R-algebra homomorphism

Av = A /[pv]µ(I ) −! [p]µ(A )/[pv+1]µ(I )

induced by [p]µ is an isomorphism for being a surjective map between two free R-algebras of
the same rank. Hence we obtain a surjective ring homomorphism

Av+1 = A /[pv+1]µ(I ) ↠ [p]µ(A )/[pv+1]µ(I ) ≃ Av,

which induces an embedding iv : µ[pv] ↪! µ[pv+1]. Since it is evident by construction that
iv identifies µ[pv] with the kernel of [pv] on µ[pv+1], we conclude that µ[p∞] := lim−!µ[pv] is a
connected p-divisible group of height h over R, thereby completing the proof. □

Remark. We can alternatively deduce statement (2) from statement (1) by the identifidcation
µ[pv] ∼= Gµ[pv] for each v ≥ 1.

Definition 2.2.11. Given a p-divisible formal group law µ over R, we define its associated
connected p-divisible group over R to be µ[p∞] as constructed in Proposition 2.2.10.

Example 2.2.12. The multiplicative formal group law µĜm
is p-divisible as explained in

Example 2.2.9. For each v ≥ 1, we have [pv]µĜm
(t) = (1+ t)p

v −1 and thus find µĜm
[pv] ∼= µpv

by Example 1.1.7. Hence we obtain a natural identification µĜm
[p∞] ∼= µp∞ .
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Our main objective for this subsection is to prove a theorem of Serre and Tate that the
association described in Proposition 2.2.10 defines an equivalence between the category of
p-divisible formal group laws and the category of connected p-divisible groups.

Lemma 2.2.13. Let µ : A ! A ⊗̂RA be a formal group law of dimension d over R with
augmentation ideal I . For each integer n ≥ 1, we have

[n]µ(ti) ∈ nti + I 2.

Proof. Let us take d-tuples Φ(T,U) := (µ(ti)) and Ξn(T ) := ([n]µ(ti)) for each n ≥ 1.

Given an R-module M , we regard M×d as the set of d-tuples whose entries all lie in M . Under
the natural identification I ⊗̂I ∼= (t1, · · · , td, u1, · · · , ud), we find

Φ(T,U) ∈ T + U + ((I ⊗̂I )2)×d.

by the unit section axiom for µ. Hence the identity [n]µ = ([n− 1]µ⊗̂id) ◦ µ yield the relation

Ξn(T ) = Φ(Ξn−1(T ), T ) ∈ Ξn−1(T ) + T + (I 2)×d.

Since we have Ξ1(T ) = T by definition, we proceed by induction to find Ξn(T ) ∈ nT +(I 2)×d

for each n ≥ 1, thereby completing the proof. □

Remark. The proof of Theorem 1.3.9 yields an analogous relation for finite flat R-groups.

Lemma 2.2.14. Given a p-divisible formal group law µ : A ! A ⊗̂RA of dimension d over R
with augmentation ideal I , there exists a natural topological R-algebra isomorphism

A ∼= lim −Av

where we write Av := A /[pv]µ(I ) for each v ≥ 1.

Proof. Since R is a local ring, A and Av are also local rings for each v ≥ 1. Moreover,
each Av is a free R-algebra of finite rank as noted in Proposition 2.2.10. Let us write m
for the maximal ideal of R and M := mA + I for the maximal ideal of A . We have
[p]µ(I ) ⊆ pI + I 2 ⊆ MI by Lemma 2.2.13 and thus find [pv]µ(I ) ⊆ MvI for each v ≥ 1.
Hence for each i, v ≥ 1 we have [pv]µ(I ) +miA ⊆ Mw for some w ≥ 1. Meanwhile, for each

i, v ≥ 1 we find Mw′ ⊆ [pv]µ(I ) +miA for some w′ ≥ 1 as A /([pv]µ(I ) +miA ) = Av/m
iAv

is local artinian. Now we obtain a topological R-algebra isomorphism

A ∼= lim −
w

A /Mw ∼= lim −
i,v

A /([pv]µ(I ) + miA ) ∼= lim −
v,i

Av/m
iAv ∼= lim −

v

Av

where the last identification comes from an observation that each Av is m-adically complete
by a general fact stated in the Stacks project [Sta, Tag 031B]. □

Lemma 2.2.15. Given p-divisible formal group laws µ and ν over R, there exists a natural
identification

Hom(µ, ν) ∼= Hom(µ[p∞], ν[p∞]).

Proof. Let us write d and d′ respectively for the dimensions of µ and ν. In addition, we
setAv := Ad/[p

v]µ(Iµ) andBv := Ad′/[p
v]ν(Iν) for each v ≥ 1, where Iµ and Iν respectively

denote the augmentation ideals of µ and ν. Proposition 2.2.10 shows that µ[pv] := Spec (Av)
and ν[pv] := Spec (Bv) are connected finite flat R-groups. Since we have Ad

∼= lim −Av and
Ad′

∼= lim −Bv by Lemma 2.2.14, we apply Proposition 2.1.7 to obtain a natural identification

Hom(µ, ν) ∼= lim −Homνv ,µv(Bv, Av) ∼= lim −HomR-grp(µ[pv], ν[pv]) ∼= Hom(µ[p∞], ν[p∞])

where Homνv ,µv(Bv, Av) denotes the set of R-algebra maps Bv ! Av compatible with the
comultiplications µv on µ[pv] and νv on ν[pv]. □

https://stacks.math.columbia.edu/tag/031B
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Proposition 2.2.16. Let G = lim−!Gv be a connected p-divisible group over R.

(1) There exists a topological k-algebra isomorphism

lim −(Av ⊗R k) ≃ k[[t1, · · · , td]] for some d ≥ 0

where Av denotes the affine ring of Gv.

(2) The special fiber G := G ×R k is a p-divisible group over k such that ker(φG) is a

finite flat k-group of order pd.

Proof. It is evident by Lemma 2.1.5 that G is a p-divisible group over k. Let us write

Gv := Gv ×R k and Hv := ker(φ
[v]

G
) for each v ≥ 1. Proposition 2.1.8 and Proposition 2.1.16

together imply that each Hv is a closed k-subgroup of G[pv] ∼= Gv. Moreover, each Gv is

connected by Lemma 1.4.3 and thus is a k-subgroup of ker(φ
[w]

G
) = Hw for some w ≥ 1 by

Proposition 1.5.17. Now we write Hv = Spec (Bv) for each v ≥ 1 and obtain a topological
k-algebra isomorphism

lim −Av ⊗R k ≃ lim −Bv. (2.4)

We denote the augmentation ideal of Hv by Jv and set J := lim − Jv. Since each Hv is
connected, as easily seen by Proposition 1.5.17, its affine ring Bv is a local k-algebra with
maximal ideal Jv by Lemma 1.5.16. In addition, we have H1

∼= ker(φHv) by Lemma 1.5.7 and

thus apply Proposition 1.5.19 to obtain an isomorphism B1
∼= Bv/J

(p)
v where J

(p)
v denotes

the ideal generated by the p-th powers of elements in Jv. Now we find J1 ∼= Jv/J
(p)
v and in

turn get an identification J1/J
2
1
∼= Jv/J

2
v . Let us take b1, · · · , bd ∈ J whose images in J1/J

2
1

form a k-basis. Nakayama’s lemma implies that Jv admits generators given by the images
of b1, · · · , bd and consequently yields a surjective k-algebra homomorphism k[t1, · · · , td] ↠ Bv

which sends each ti to the image of bi in Bv. Furthermore, as φ
[v]
Hv

vanishes by Lemma 1.5.7,
this map induces a surjective k-algebra homomorphism

λv : k[t1, · · · , td]/(tp
v

1 , · · · , t
pv

d ) ↠ Bv

by Proposition 1.5.19. Hence we obtain a continuous k-algebra homomorphism

λ : k[[t1, · · · , td]] ↠ lim −Bv

via the identification k[[t1, · · · , td]] ∼= lim − k[t1, · · · , td]/(tp
v

1 , · · · , t
pv

d ).

In light of the isomorphism (2.4), we wish to show that λ is a topological isomorphism. We
only need to prove that each λv is an isomorphism. Since each λv is surjective by construction,
it suffices to verify that its source and target have equal k-dimensions; in other words, it is
enough to show that each Bv has k-dimension pdv, or equivalently that each Hv has order pdv.

For v = 1, the assertion follows from Proposition 1.5.19. Let us henceforth assume the

inequality v > 1 and proceed by induction. Proposition 2.1.16 shows that G
(p)

is a p-divisible
group over k with φG ◦ ψG = [p]

G
(p) . Moreover, as [p]

G
(p) is surjective by Proposition 2.1.8,

the map φG is surjective and thus maps Hv = ker(φ
[v]

G
) surjectively onto ker(φ

[v−1]

G
(p) ) ∼= H

(p)
v−1.

We deduce that there exists a short exact sequence

0 −! H1 −! Hv−!H
(p)
v−1 −! 0.

Now the desired assertion follows from Theorem 1.1.18 and the fact that the order of H
(p)
v−1 is

the same as the order of Hv−1. □

Remark. The ind-scheme H = lim−!Hv is not necessarily a p-divisible group.
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Lemma 2.2.17. Given an R-algebra B, its ideal J with J⊗Rk = 0 is trivial if for each maximal
ideal n of B the Bn-module Jn admits a finite set of generators.

Proof. Let us write m for the maximal ideal of R. For each maximal ideal n of B, we
have Jn = mJn ⊆ nJn and thus deduce from Nakayama’s lemma that Jn is trivial. □

Lemma 2.2.18. Let G = lim−!Gv be a p-divisible group over R with Gv = Spec (Av).

(1) G gives rise to a flat R-algebra lim −Av.

(2) If an R-algebra B admits a k-algebra isomorphism

θ : (B ⊗R k)[[t1, · · · , td]]
∼
−! lim −(Av ⊗R k) for some d ≥ 0,

there exists an R-algebra surjection θ : B[[t1, · · · , td]] ↠ lim −Av which lifts θ.

Proof. Since each iv : Gv ! Gv+1 is a closed embedding by Proposition 1.1.11, the
induced map πv : Av+1 ! Av is surjective. Hence statement (1) follows from a general fact
stated in the Stacks project [Sta, Tag 0912]. It remains to establish statement (2).

We assert that each θv : (B ⊗R k)[[t1, · · · , td]] ↠ Av ⊗R k lifts to an R-algebra homomor-
phism θv : B[[t1, · · · , td]]! Av with a commutative diagram

B[[t1, · · · , td]] Av+1 Av+1 ⊗R k

Av Av ⊗R k

θv+1

θv
πv πv⊗id

We take θ1 to be an arbitrary lift of θ1 and proceed by induction on v. Let us write m for
the maximal ideal of R and choose a1, · · · , ad ∈ Av+1 which lift θv+1(t1), · · · , θv+1(td). We
observe that πv(a1), · · · , πv(ad) lift θv(t1), · · · , θv(td) and in turn find θv(ti) − πv(ai) ∈ mAv.
Since πv is surjective, we may choose b1, · · · , bd ∈ mAv+1 with πv(bi) = θv(ti) − πv(ai) and
deduce that θv+1 lifts to a map θv+1 : B[[t1, · · · , td]]! Av+1 with θv+1(ti) = ai+bi as desired.

Now we have an R-algebra homomorphism θ : B[[t1, · · · , td]] ! lim −Av which lifts θ. We

find coker(θ) ⊗R k = coker(θ) = 0 and also observe that coker(θ) admits a generator over
lim −Av given by the image of 1. Therefore Lemma 2.2.17 implies that θ is surjective. □

Lemma 2.2.19. Every connected p-divisible group G = lim−!Gv over R with Gv = Spec (Av)

yields a formal group law µ : A ! A ⊗̂RA via a topological R-algebra isomorphism

A = R[[t1, · · · , td]] ≃ lim −Av for some d ≥ 0.

Proof. Proposition 2.2.16 and Lemma 2.2.18 yield a surjective R-algebra homomorphism
θ : A ↠ lim −Av which lifts a topological isomorphism θ : k[[t1, · · · , td]]

∼
−! lim −(Av ⊗R k).

In addtion, we have ker(θ) ⊗R k = ker(θ) = 0 by Lemma 2.2.18 and a general fact stated in
the Stacks project [Sta, Tag 00HL]. Since A is a notherian local ring, we find ker(θ) = 0 by
Lemma 2.2.17 and in turn deduce that θ is an isomorphism.

The map θ is continuous as the kernel of each θv : A ! Av is open by the fact that the
R-algebra Av is of finite length. Moreover, with θ being a topological isomorphism, we observe
that every power of the ideal I := (t1, · · · , td) contains an open set in its image under θ and
consequently find that θ is open. Therefore θ is a topological R-algebra isomorphism.

Let us denote the comultiplication of each Gv by µv. Via the isomorphism θ we may
identify lim −µv with a continuous R-algebra homomorphism µ : A ! A ⊗̂RA . It is evident
by the axioms for each comultiplication µv that µ is indeed a formal group law over R. □

https://stacks.math.columbia.edu/tag/0912
https://stacks.math.columbia.edu/tag/00HL
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Theorem 2.2.20 (Serre-Tate). There exists an equivalence of categories

{ p-divisible formal group laws over R } ∼
−! { connected p-divisible groups over R }

which maps each p-divisible formal group law µ over R to µ[p∞].

Proof. Since Lemma 2.2.15 shows that the functor is fully faithful, we only need to
prove that the functor is essentially surjective. Let G = lim−!Gv be an arbitrary connected

p-divisible group of height h over R with Gv = Spec (Av). Lemma 2.2.19 yields a formal group
law µ : A ! A ⊗̂RA induced by G via a topological R-algebra isomorphism

A = R[[t1, · · · , td]] ≃ lim −Av for some d ≥ 0.

We wish to show that µ is p-divisible with µ[p∞] ≃ G.

We denote the agumentation ideal of A by I . For each v ≥ 1, we have Gv ∼= ker([pv]G)
by Proposition 2.1.8 and thus find Av ≃ A /[pv]µ(I ). Let us write r := ph and choose
f1, · · · , fr ∈ A whose images in A1 ≃ A /[p]µ(I ) form a basis over R.

For every g ∈ A , a simple induction yields a sequence (gi,j) for each i = 1, · · · , r with

gi,j ∈ gi,j−1 + I j−1 and g ∈
r∑
i=1

[p]µ(gi,j)fi + [p]µ(I )j .

Since we have [p]µ(I ) ⊆ I by Lemma 2.2.1, we set gi := lim
j!∞

gi,j and find g =

r∑
i=1

[p]µ(gi)fi.

Therefore we deduce that f1, · · · , fr generate A over [p]µ(A ).

Meanwhile, each [p]Gv factors through a surjective R-group homomorphism Gv+1 ↠ Gv
by Lemma 2.1.6 and in turn induces a faithfully flat R-algebra homomorphism

ηv : Av ≃ A /[pv]µ(I ) −! A /[pv+1]µ(I ) ≃ Av+1

by a standard fact stated in the Stacks project [Sta, Tag 00HQ]. As we know that each Av
is a free local R-algebra of rank pvh, we see that Av+1 is free over Av of rank r = ph by some
general facts stated in the Stacks project [Sta, Tag 08WP and Tag 00NZ]. Hence the images
of f1, · · · , fr in Av+1 ≃ A /[pv+1]µ(I ) form a basis over Av ≃ A /[pv]µ(I ).

Let us now consider a relation
r∑
i=1

[p]µ(hi)fi = 0 with h1, · · · , hr ∈ A . For each v ≥ 1,

we consider this relation in Av+1 ≃ A /[pv+1]µ(I ) and find [p]µ(h1), · · · , [p]µ(hr) ∈ [pv]µ(I ).
Since we have [pv]µ(I ) ⊆ I v for each v ≥ 1 as easily seen by Lemma 2.2.1, we deduce that
[p]µ(h1), · · · , [p]µ(hr) must all be zero. Therefore we find that f1, · · · , fr form a basis of A
over [p]µ(A ), which in particular implies that µ is p-divisible. As we evidently have µ[p∞] ≃ G
by construction, we deduce the desired assertion and complete the proof. □

Definition 2.2.21. Let G be a p-divisible group over R.

(1) We define its associated formal group law to be the p-divisible formal group law µG
over R corresponding to G◦ under the equivalence in Theorem 2.2.20.

(2) We define its dimension to be the dimension of µG.

Proposition 2.2.22. Given a p-divisible group G over R of dimension d, its special fiber
G := G×R k is a p-divisible group over k such that ker(φG) is finite flat of order pd.

Proof. Proposition 1.5.17 implies that ker(φG) lies in G
◦

:= G◦×Rk. Hence the assertion
follows from Proposition 2.2.16, Lemma 2.2.19, and Theorem 2.2.20. □

https://stacks.math.columbia.edu/tag/00HQ
https://stacks.math.columbia.edu/tag/08WP
https://stacks.math.columbia.edu/tag/00HQ
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Theorem 2.2.23. Let G be a p-divisible group of height h over R. If write d and d∨ respec-
tively for the dimensions of G and G∨, we have h = d+ d∨.

Proof. Lemma 2.1.5 shows that G := G ×R k is a p-divisible group of order h over k.
Let us write G = lim−!Gv where each Gv is a finite flat k-group. Proposition 2.1.16 yields the

equality ψG◦φG = [p]G and in turn implies that ker(φG) is a k-subgroup of G[p]. Moreover, we
note by Proposition 2.1.8 that φG is surjective. Therefore we obtain a commutative diagram

0 ker(φG) G G
(p)

0

0 0 G G 0

φG

[p]G ψG

id

where the rows are evidently exact. By the snake lemma, the diagram yields an exact sequence

0 ker(φG) G[p] ker(ψG) 0.

Proposition 2.2.22 shows that ker(φG) has order pd, while Proposition 2.1.8 implies that

G[p] ∼= G1 has order ph. Hence we deduce from Theorem 1.1.18 that ker(ψG) has order ph−d.

For the desired assertion, it suffices to show that ker(ψG) has order pd
∨
. We have

ker(ψG) ∼= ker(ψG1
) and ker(φ

G
∨) ∼= ker(φ

G
∨
1
)

as easily seen by Proposition 2.1.8 and Proposition 2.1.16. Since the k-groups G1 and G
(p)
1

are of the same order by construction, we apply Theorem 1.1.18 with the identifications

ψG1
(G

(p)
1 ) ∼= G

(p)
1 / ker(ψG1

) and coker(ψG1
) ∼= G1/ψG1

(G
(p)
1 )

to see that ker(ψG1
) and coker(ψG1

) are of the same order. Moreover, Proposition 1.2.13 yields

a natural isomorphism coker(ψG1
) ∼= ker(φ

G
∨
1
) as we have ψG1

= φ∨
G

∨
1

by definition. Therefore

ker(ψG) and ker(φ
G

∨) have the same order. Now we find G
∨ ∼= G∨ ×R k by Proposition 1.2.5

and in turn deduce from Proposition 2.2.22 that ker(ψ
G

∨) has order pd
∨
, thereby establishing

the desired assertion. □

Proposition 2.2.24. Assume that R = k is an algebraically closed field of characteristic p.
Every p-divisible group G = lim −Gv of height 1 over k is isomorphic to either Qp/Zp or µp∞ .

Proof. Let us first consider the case where G is étale. Each Gv is a finite étale k-group
of order pv with Gv = Gv+1[p

v]. Since every finite étale k-group is a constant group scheme
as noted in Proposition 1.3.7, we find Gv ≃ Z/pvZ for each v ≥ 1 by a simple induction and

consequently obtain an isomorphism G ≃ Qp/Zp.
We now turn to the case where G is not étale. By Proposition 2.1.12, a p-divisible group

over R is étale if and only if its dimension is 0. Since the height of G is 1, we deduce
from Theorem 2.2.23 that G∨ is étale and in turn find G∨ ≃ Qp/Zp. Hence we obtain an

isomorphism G ≃ µp∞ by Proposition 2.1.9 and Example 2.1.11, thereby completing the
proof. □

Example 2.2.25. Let E be an ordinary elliptic curve over Fp. Since E[p∞]◦ and E[p∞]ét are

of height 1 with E[p]◦ ≃ µp and E[p]ét ≃ Z/pZ by Example 1.4.16, there exists an isomorphism

E[p∞] ≃ Qp/Zp × µp∞

by Proposition 2.1.12 and Proposition 2.2.24.
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2.3. Dieudonné-Manin classification

Throughout this subsection, we assume that R = k is a perfect field of characteristic p.
We introduce several algebraic objects and discuss their relation to p-divisible groups over k.
We begin by stating the following technical result without a proof.

Theorem 2.3.1. Let A be a perfect Fp-algebra.

(1) There exists a unique (up to isomorphism) ring W (A) which is p-adically complete
with W (A)/pW (A) ∼= A.

(2) Given a p-adically complete ring B, every homomorphism f : A ! B/pB uniquely

lifts to a multiplicative map f̂ : A! B and a homomorphism f : W (A)! B.

Remark. For a proof, we refer readers to the book of Serre [Ser79, §II.5].

Definition 2.3.2. Let A be a perfect Fp-algebra.

(1) We refer to the ring W (A) in Theorem 2.3.1 as the ring of Witt vectors over A.

(2) For each a ∈ A, we define its Teichmüller lift [a] ∈ W (A) to be its image under the
unique multiplicative map A!W (A) which lifts the identity map on A.

Example 2.3.3. We present two important examples which frequently arise in practice.

(1) For an integer r ≥ 1, the ring W (Fpr) is isomorphic to the valuation ring of the
degree r unramified extension of Qp, as easily seen by Theorem 2.3.1.

(2) The ring W (Fp) is isomorphic to the valuation ring of Q̂un
p , where Q̂un

p denotes the
p-adic completion of the maximal unramified extension of Qp.

Proposition 2.3.4. Let A be a perfect Fp-algebra.

(1) For every α ∈W (A), there exists a unique element a0 ∈ A with α− [a0] ∈ pW (A).

(2) Every α ∈W (A) admits a unique expression α =
∞∑
n=0

[an]pn with an ∈ A.

(3) The p-th power map on A uniquely lifts to an automorphism φW (A) on W (A) with

φW (A)

( ∞∑
n=0

[an]pn

)
=

∞∑
n=0

[apn]pn.

Proof. Statement (1) is evident with a0 given by the image of α under the natural
map W (A) ↠ W (A)/pW (A) ∼= A. Statement (2) follows from statement (1) by inductively
constructing a unique sequence (an) in A with

α−
m∑
n=0

[an]pn ∈ pmW (A) for each m ≥ 0.

Statement (3) is straightforward to verify by Theorem 2.3.1 and the perfectness of A. □

Definition 2.3.5. Let A be a perfect Fp-algebra.

(1) For every α ∈W (A), we define its Teichmüller expansion to be the unique expression

α =
∞∑
n=0

[an]pn with an ∈ A given by Proposition 2.3.4.

(2) We call the map φW (A) in Proposition 2.3.4 the Frobenius automorphism of W (A).

Remark. Teichmüller expansions for Zp = W (Fp) are not the same as p-adic expansions.
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Proposition 2.3.6. Given a perfect Fp-algebra A, an element α ∈W (A) is a unit if and only
if the first coefficient in the Teichmüller expansion of α is a unit in A.

Proof. The first coefficient in the Teichmüller expansion of α coincides with the image
of α under the natural map W (A) ↠W (A)/pW (A) ∼= A. Since W (A) is p-adically complete,
the assertion follows from a general fact stated in the Stacks project [Sta, Tag 05GI]. □

Proposition 2.3.7. Let A be a perfect Fp-algebra. Take two arbitrary elements α, β ∈W (A)

with Teichmüller expansions α =

∞∑
n=0

[an]pn and β =

∞∑
n=0

[bn]pn.

(1) The Teichmüller expansion of α+ β has the first two coefficients given by

c0 = a0 + b0 and c1 = a1 + b1 −W1

(
a
1/p
0 , b

1/p
0

)
,

where we write W1(t, u) :=
(t+ u)p − tp − up

p
∈ Z[t, u].

(2) The Teichmüller expansion of αβ has the first two coefficients given by

d0 = a0b0 and d1 = a0b1 + a1b0.

Proof. The addition under the natural surjection W (A) ↠ W (A)/pW (A) ∼= A yields
the identity c0 = a0 + b0. Since every element of A admits a unique p-th root, we have

c
1/p
0 = a

1/p
0 + b

1/p
0 . Hence we find [c

1/p
0 ] ∈ [a

1/p
0 ] + [b

1/p
0 ] + pW (A) and in turn get the relation

[c0] = [c
1/p
0 ]

p
∈
(

[a
1/p
0 ] + [b

1/p
0 ]
)p

+ p2W (A).

Meanwhile, the addition under the natural map W (A) ↠W (A)/p2W (A) yields the relation

[c0] + p[c1] = [a0] + [b0] + p([a1] + [b1]) + p2W (A).

Now we have

p[c1] ∈ p([a1] + [b1]) + [a0] + [b0] −
(

[a
1/p
0 ] + [b

1/p
0 ]
)p

+ p2W (A)

and consequently find

[c1] ∈ [a1] + [b1] −W1

(
[a

1/p
0 ], [b

1/p
0 ]
)

+ pW (A).

We consider the images under the natural surjection W (A) ↠W (A)/pW (A) ∼= A and obtain

the identity c1 = a1 + b1 −W1

(
a
1/p
0 , b

1/p
0

)
. Therefore we establish statement (1).

Let us now consider statement (2). The multiplication under the natural surjection
W (A) ↠ W (A)/pW (A) ∼= A yields the identity d0 = a0b0. Moreover, the multiplication
under the natural map W (A) ↠W (A)/p2W (A) yields the relation

[d0] + p[d1] ∈ [a0b0] + p([a0b1] + [a1b0]) + p2W (A).

Hence we have
p[d1] ∈ p([a0b1] + [a1b0]) + p2W (A)

and consequently find
[d1] ∈ [a0b1] + [a1b0] + pW (A).

We consider the images under the natural surjection W (A) ↠W (A)/pW (A) ∼= A and deduce
the identity d1 = a0b1 + a1b0, thereby completing the proof. □

Remark. The book of Serre [Ser79, §II.6] explains a way to compute other coefficients in
the Teichmüller expansions of α+ β and αβ.

https://stacks.math.columbia.edu/tag/05GI
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Our main objective for this subsection is to discuss fundamental theorems of Dieudonné
and Manin which describe p-divisible groups over k via certain free W (k)-modules. We won’t
provide their proofs, as these theorems will mostly serve as motivations for some constructions
and only play a significant role at the end of Chapter IV. Curious readers may consult the
book of Demazure [Dem72, Chapters III and IV] for an excellent exposition of these results.

Definition 2.3.8. Let us write σ for the Frobenius automorphism of W (k).

(1) Given W (k)-modules D, D′ and an integer r, we say that an additive map f : D ! D′

is σr-semilinear if it satisfies the identity

f(cm) = σr(c)f(m) for each c ∈W (k) and m ∈ D.

(2) A Dieudonné module over W (k) is a finite free W (k)-module D with a σ-semilinear
endomorphism φD, called the Frobenius endomorphism, whose image contains pD.

(3) A W (k)-linear map f : D ! D′ for Dieudonné modules D and D′ over W (k) is a
morphism of Dieudonné modules if it satisfies the identity f ◦ φD = φD′ ◦ f .

Lemma 2.3.9. The ring W (k) is a complete discrete valuation ring with residue field k and
uniformizer p.

Proof. Since W (k) is p-adically complete with W (k)/pW (k) ∼= k by construction, it is
a local ring with maximal ideal pW (k) and residue field k by Proposition 2.3.6 and a general
fact stated in the Stacks project [Sta, Tag 00E9]. Moreover, Proposition 2.3.4 shows that
every element α ∈ W (k) admits a unique expression α = pnu with n ≥ 0 and u ∈ W (k)×.
Therefore we establish the desired assertion. □

Lemma 2.3.10. Let D be a Dieudonné module over W (k).

(1) The Frobenius endomorphism φD is injective.

(2) There exists a unique σ−1-semilinear endomorphism ψD on D such that φD ◦ψD and
ψD ◦ φD coincide with the multiplication by p on D.

Proof. Take e1, · · · , er ∈ D which form a basis over W (k). Since W (k) is a principal
ideal domain by Lemma 2.3.9, statement (1) follows from the rank-nullity theorem and the
fact that φD(D) has rank r for containing pD. Hence we only need to prove statement (2).

We may write pei = φD(e′i) for a unique element e′i ∈ D and in turn obtain a unique
σ−1-semilinear endomorphism ψD on D with φD ◦ ψD being the multiplication by p on D;
indeed, ψD maps each ei to e′i. We wish to prove that ψD◦φD coincides with the multiplication
by p on D. We note that each e′i satisfies the equality

ψD(φD(e′i)) = ψD(φD(ψD(ei))) = ψD(pei) = pe′i,

which means that ψD ◦ φD and the multiplication by p agree on the W (k)-module D′ ⊆ D
spanned by e′1, · · · , e′r. Moreover, D′ has rank r as e′1, · · · , e′r are linearly independent by
construction. Hence we deduce from the rank-nullity theorem that the difference between
ψD ◦ φD and the multiplication by p vanishes on D, thereby completing the proof. □

Definition 2.3.11. Given a Dieudonné module D over W (k), we refer to the σ−1-semilinear
endomorphism ψD in Lemma 2.3.10 as the Verschiebung endomorphism of D.

Lemma 2.3.12. Given a Dieudonné module D over W (k), its dual D∨ = HomW (k)(D,W (k))
is naturally a Dieudonné module over W (k) with

φD∨(f)(m) = σ(f(ψD(m))) for all f ∈ D∨ and m ∈ D.

Proof. The assertion is straightforward to verify by definition. □

https://stacks.math.columbia.edu/tag/00E9
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Theorem 2.3.13 (Dieudonné [Die55]). There is an additive anti-equivalence of categories

D : { p-divisible groups over k } ∼
−! { Dieudonné modules over W (k) }

such that for every p-divisible group G over k we have the following statements:

(1) The rank of D(G) is equal to the height of G.

(2) The maps φG, ψG, and [p]G yield φD(G), ψD(G), and the multiplication by p.

(3) There exists a natural isomorphism D(G∨) ∼= D(G)∨.

Remark. Let us briefly describe the construction of D(G) for a p-divisible group G = lim−!Gv
over k. For each integer n ≥ 1, we have a k-group Wn with Wn(A) = W (A)/pnW (A) for every
perfect k-algebra A. If G∨ is connected, D(G) := lim −

v

lim−!
n

Homk-grp(Gv,Wn) turns out to be a

Dieudonné module over W (k) with Frobenius endomorphism induced by φG. If G∨ is étale, it
is connected by Theorem 2.2.23 and consequently yields a Dieudonné module D(G) := D(G∨)∨

over W (k). In the general case, G admits a natural decomposition

G ∼= Gunip ×Gmult

with (Gunip)∨ connected and (Gmult)∨ étale, thereby giving rise to a Dieudonné module
D(G) := D(Gunip) ⊕ D(Gmult) over W (k).

Definition 2.3.14. We refer to the functor D in Theorem 2.3.13 as the Dieudonné functor.

Example 2.3.15. We describe the Dieudonné functor for some simple p-divisible groups.

(1) D(Qp/Zp) is isomorphic to W (k) with φD(Qp/Zp) = σ and ψD(Qp/Zp) = pσ−1.

(2) D(µp∞) is isomorphic to W (k) with φD(µp∞ ) = pσ and ψD(µp∞ ) = σ−1.

Definition 2.3.16. Let us write K0(k) := W (k)[1/p] for the fraction field of W (k).

(1) We define the Frobenius automorphism of K0(k) to be the unique field automorphism
on K0(k) which extends σ.

(2) An isocrystal over K0(k) is a finite dimensional vector space D over K0(k) with a
σ-semilinear automorphism φD called the Frobenius automorphism of D.

(3) A K0(k)-linear map g : D ! D′ for isocrystals D and D′ over K0(k) is a morphism
of isocrystals if it satisfies the identity

g(φD(v)) = φD′(g(v)) for each v ∈ D.

Lemma 2.3.17. Let σ denote the Frobenius automorphism of K0(k).

(1) Every Dieudonné module D over W (k) yields an isocrystal D[1/p] = D⊗W (k)K0(k)
over K0(k) with Frobenius automorphism φD ⊗ 1.

(2) Given an isocrystal D over K0(k), its dual D∨ = HomK0(k)(D,K0(k)) is naturally
an isocrystal over K0(k) with

φD∨(f)(v) = σ(f(φ−1
D (v))) for all f ∈ D∨ and v ∈ D.

(3) Given two isocrystals D and D′ over K0(k), their tensor product D ⊗K0(k) D
′ is

naturally an isocrystal over K0(k) with Frobenius automorphism φD ⊗ φD′ .

Proof. All statements are straightforward to verify by definition. □

Example 2.3.18. For an isocrystal D of rank r over K0(k), its determinant det(D) = ∧r(D)
is naturally an isocrystal of rank 1 over K0(k) as easily seen by Lemma 2.3.17.
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Definition 2.3.19. We say that a homomorphism of group schemes or p-divisible groups is
an isogeny if it is surjective with finite flat kernel.

Example 2.3.20. We present some examples of isogenies between p-divisible groups.

(1) Given a p-divisible group G over k, the maps [p]G, φG, and ψG are all isogenies by
Proposition 2.1.8 and Proposition 2.1.16.

(2) An isogeny A! B of two abelian varieties over k induces an isogeny A[p∞]! B[p∞].

Proposition 2.3.21. A homomorphism f : G! H of p-divisible groups over k is an isogeny
if and only if it induces an isomorphism D(H)[1/p] ≃ D(G)[1/p].

Proof. Let us first assume that f is an isogeny. Its kernel lies in Gv for some v ≥ 1
and thus is a p-power torsion k-group. Theorem 2.3.13 implies that the map D(H) ! D(G)
induced by f is injective with its cokernel killed by a power of p. We deduce that f induces
an isomorphism D(H)[1/p] ≃ D(G)[1/p].

For the converse, we now assume that f induces an isomorphism D(H)[1/p] ≃ D(G)[1/p].
The map D(H) ! D(G) is injective with D(H) and D(G) having the same rank over W (k).
The cokernel of this map is a p-power torsion W (k)-module by Lemma 2.3.9. Hence we deduce
from Theorem 2.3.13 that f is an isogeny as desired. □

Definition 2.3.22. Let D be a nonzero isocrystal over K0(k).

(1) The degree of D is the unique integer deg(D) with φdet(D)(1) ∈ pdeg(D)W (k)×, where
we fix an isomorphism det(D) ≃W (k).

(2) We write rk(D) for the rank of D and define the slope of D to be µ(D) :=
deg(D)

rk(D)
.

Example 2.3.23. Let λ = d/r be a rational number written in lowest terms with r > 0. The
simple isocrystal of slope λ over K0(k) is an isocrystal Dλ over K0(k) of rank r with

φDλ
(e1) = e2, · · · , φDλ

(er−1) = er, φDλ
(er) = pde1,

where e1, · · · , er are basis vectors. It is evident that Dλ has rank r, degree d, and slope λ.

Proposition 2.3.24. Given a p-divisible group G over k of height h and dimension d, the
associated isocrystal D(G)[1/p] over K0(k) has rank h and degree d.

Proof. As noted in Proposition 2.2.22 and Example 2.3.20, the Frobenius φG is an
isogeny with ker(φG) having order pd. Moreover, Proposition 2.1.16 implies that ker(φG) is
p-torsion. Hence we deduce from Lemma 2.3.9 and Theorem 2.3.13 that φD(G) is injective

with coker(φD(G)) ≃ (W (k)/pW (k))⊕d. Now it is straightforward to verify that D(G)[1/p] has
degree d. Since D(G)[1/p] evidently has rank h over K0(k) by Theorem 2.3.13, we establish
the desired assertion. □

Theorem 2.3.25 (Manin [Man63]). Every isocrystal D over K0(k) admits a direct sum
decomposition

D ≃
n⊕
i=1

D⊕mi
λi

with λi ∈ Q.

Example 2.3.26. If an elliptic curve E over Fp is ordinary, we have

D(E[p∞])[1/p] ≃ D0 ⊕D1

as easily seen by Example 2.2.25 and Example 2.3.15.

Remark. If E is supersingular, D(E[p∞])[1/p] turns out to be isomorphic to D1/2.
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3. Hodge-Tate decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical
results, we prove the Hodge-Tate decomposition for Tate modules of p-divisible groups. The
primary reference for this section is the article of Tate [Tat67].

3.1. Tate twists of p-adic representations

In this subsection, we introduce some basic notions in p-adic Hodge theory, such as p-adic
fields, p-adic representations and their Tate twists. Given a valued field L, we write OL for
its valuation ring, mL for its maximal ideal, and kL for its residue field.

Definition 3.1.1. Let E be an arbitrary field.

(1) A p-adic ΓE-representation is a finite dimensional Qp-vector space V together with
a continuous homomorphism ΓE ! GL(V ).

(2) The p-adic cyclotomic character of E is the character χE : ΓE ! Z×
p via which ΓE

acts on Zp(1) := Tp(µp∞) = lim −µp
v(E).

(3) Given an integer n, the n-fold Tate twist of a Zp[ΓE ]-module M is

M(n) :=

{
M ⊗Zp Zp(1)⊗n for n ≥ 0,

M ⊗Zp (Zp(1)∨)⊗−n for n < 0.

Example 3.1.2. Let E be an arbitrary field.

(1) Given a p-divisible group G over E, its rational Tate module Vp(G) := Tp(G)⊗Zp Qp

is a p-adic ΓE-representation by Proposition 2.1.18.

(2) For a proper smooth variety X over E, the étale cohomology group Hn
ét(XE ,Qp) is

a p-adic ΓE-representation.

Lemma 3.1.3. Let E be an arbitrary field and M be a Zp[ΓE ]-module.

(1) There exist natural ΓE-equivariant isomorphisms

M(n) ∼= M ⊗Zp Zp(n) and M(n)∨ ∼= M∨(−n) for each n ∈ Z.

(2) If ΓE acts on M via a homomorphism ρ : ΓE ! Aut(M), it acts on M(n) for
each n ∈ Z via χnE · ρ.

Proof. Statement (1) is straightforward to verify by definition. Statement (2) is an
immediate consequence of statement (1). □

Definition 3.1.4. A p-adic field is an extension of Qp which is discretely valued and complete
with a perfect residue field of characteristic p.

Example 3.1.5. We present some essential examples of p-adic fields.

(1) Every finite extension of Qp is a p-adic field.

(2) Every perfect field k of characteristic p gives rises to a p-adic field K0(k) = W (k)[1/p]
as noted in Lemma 2.3.9.

Remark. We will see in Chapter III, Proposition 2.2.19 that every p-adic field is a finite
extension of K0(k) for some perfect field k of characteristic p. There are p-adic fields which

are not algebraic over Qp, such as Q̂un
p := K0(Fp). It is worthwhile to mention that for many

authors p-adic fields simply mean finite extensions of Qp.
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For the rest of this section, we let K be a p-adic field. In addition, we write m for its
maximal ideal, k for its residue field, and χ for its p-adic cyclotomic character.

Definition 3.1.6. The completed algebraic closure of K, denoted by CK , is the p-adic com-
pletion of K.

Remark. The field CK is not a p-adic field as its valuation is not discrete.

Example 3.1.7. If K is a finite extension of Qp, we often write Cp = CK and refer to it as
the field of p-adic complex numbers.

Lemma 3.1.8. The action of ΓK on K uniquely extends to a continuous action on CK .

Proof. The assertion is evident by the continuity of the ΓK-action on K. □

Definition 3.1.9. The normalized p-adic valuation on CK is the unique valuation ν on CK
with ν(p) = 1.

Proposition 3.1.10. The field CK is algebraically closed.

Proof. We wish to prove that every nonconstant polynomial f(t) over CK admits a root
in CK . We may replace f(t) by pmdf(t/pm) for some sufficiently large m ∈ Z to assume that
f(t) is a polynomial over OCK

. Let us write

f(t) = td + c1t
d−1 + · · · + cd with ci ∈ OCK

.

For each integer n ≥ 1, we choose a polynomial

fn(t) = td + c1,nt
d−1 + · · · + cd,n

with ci,n ∈ OK and ν(ci − ci,n) ≥ dn. Since OK is integrally closed, each fn(t) admits a
factorization into linear polynomials over OK ; in other words, we have

fn(t) =
d∏
i=1

(t− βn,i) with βn,i ∈ OK . (3.1)

Let us construct a sequence (αn) in OK with fn(αn) = 0 and ν(αn − αn−1) ≥ n− 1. We
set α1 := β1,1 ∈ OK and proceed by induction on n. We have

fn(αn−1) = fn(αn−1) − fn−1(αn−1) =

d∑
i=1

(ci,n − ci,n−1)α
d−i
n−1

and in turn find ν(fn(αn−1)) ≥ d(n − 1) as each ci,n − ci,n−1 = (ci,n − ci) + (ci − ci,n−1)
has valuation at least d(n − 1). We deduce from the identity (3.1) that fn(t) admits a root
αn = βn,i ∈ OK with ν(αn−1 − αn) ≥ n− 1.

The sequence (αn) is Cauchy by construction and thus converges to an element α ∈ OCK
.

Moreover, for each integer n ≥ 1 we obtain the identity

f(αn) = f(αn) − fn(αn) =

d∑
i=1

(ci − ci,n)αd−in

and in turn find ν(f(αn)) ≥ dn. Hence we see that α is a root of f(t), thereby completing
the proof. □

Remark. We can alternatively derive Proposition 3.1.10 from Krasner’s lemma by modifying
our argument. Moreover, we can use Krasner’s lemma to show that K is not complete; in
particular, we have CK ̸= K.
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We assume the following fundamental result about the Tate twists of CK .

Theorem 3.1.11 (Tate [Tat67], Sen [Sen80]). For the Galois cohomology of CK and its Tate
twists, we have the following statements:

(1) H0(ΓK ,CK) admits a natural isomorphism H0(ΓK ,CK) ∼= K.

(2) H1(ΓK ,CK) is an 1-dimensional vector space over K.

(3) H0(ΓK ,CK(n)) and H1(ΓK ,CK(n)) vanish for n ̸= 0.

Remark. We refer curious readers to the notes of Brinon-Conrad [BC, §14] for a proof, which
involves the higher ramification theory and the local class field theory.

Proposition 3.1.12. Every p-adic ΓK-representation V yields a natural CK-linear map

α̃V :
⊕
n∈Z

(
V ⊗Qp CK(−n)

)ΓK ⊗K CK(n)! V ⊗Qp CK

which is ΓK-equivariant and injective.

Proof. For each n ∈ Z, we have a ΓK-equivariant injective K-linear map

α̃
(n)
V,K :

(
V ⊗Qp CK(−n)

)ΓK ⊗K K(n) ↪−! V ⊗Qp CK(−n) ⊗K K(n) ∼= V ⊗Qp CK .

Let us extend each α̃
(n)
V,K to a ΓK-equivariant CK-linear map

α̃
(n)
V :

(
V ⊗Qp CK(−n)

)ΓK ⊗K CK(n)! V ⊗Qp CK

and set α̃V :=
⊕
n∈Z

α̃
(n)
V . We wish to show that α̃V is injective.

Suppose for contradiction that ker(α̃V ) is nonzero. For every n ∈ Z, we take a K-basis

(vm,n) of
(
V ⊗Qp CK(−n)

)ΓK ⊗K K(n) and regard each vm,n as a vector in V ⊗Qp CK via

the map α̃
(n)
V,K . In addition, we choose a nontrivial CK-linear relation

∑
cm,nvm,n = 0 with

minimum number of nonzero terms. We may set cm0,n0 = 1 for some integers m0 and n0. For
every γ ∈ ΓK , we apply Lemma 3.1.3 to find

0 = γ
(∑

cm,nvm,n

)
− χ(γ)n0

(∑
cm,nvm,n

)
=
∑

(γ(cm,n)χ(γ)n − χ(γ)n0cm,n) vm,n.

Since the coefficient of vm0,n0 in the last expression is 0, the minimality of our linear relation
implies that all coefficients in the last expression must vanish and in turn yields the relation

γ(cm,n)χ(γ)n−n0 = cm,n for every γ ∈ ΓK .

Now Lemma 3.1.3 and Theorem 3.1.11 together imply that each cm,n lies in K with cm,n = 0
for n ̸= n0. Hence we have a nontrivial K-linear relation

∑
cm,n0vm,n0 = 0 on the basis

(vm,n0) of
(
V ⊗Qp CK(−n0)

)ΓK ⊗K K(n0), thereby obtaining a desired contradiction. □

Definition 3.1.13. We say that a p-adic ΓK-representation V is Hodge-Tate if the natural
map α̃V in Proposition 3.1.12 is an isomorphism.

Example 3.1.14. Every Tate twist Qp(n) of Qp is Hodge-Tate by Theorem 3.1.11.

Remark. We will see in §3.3 that the rational Tate-module of a p-divisible group over OK is
always Hodge-Tate.
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3.2. Points on p-divisible groups

For the rest of this section, we take the base ring to be R = OK . The main objective for
this subsection is to investigate points on p-divisible groups over OK . We let L denote the
p-adic completion of an algebraic extension of K. A primary example of such a field is CK .

Lemma 3.2.1. The valuation ring OL is m-adically complete; in other words, there exists a
natural isomorphism

OL
∼= lim −OL/m

iOL.

Proof. The ideal m contains p as the residue field k = OK/m is of characteristic p. Since
OK is a discrete valuation ring, we deduce that the p-adic topology coincides with the m-adic
topology and consequently establish the desired assertion by observing that OL is p-adically
complete. □

Definition 3.2.2. Given a p-divisible group G = lim−!Gv over OK , we define its group of
OL-valued points to be

G(OL) := lim −
i

lim−!
v

Gv(OL/m
iOL).

Remark. Readers should be aware that G(OL) is in general not equal to lim−!
v

Gv(OL). This

subtlety comes from the fact that we take points on G as a formal OK-group. In fact, if we
write Gv = Spec (Av) for each v ≥ 1, we argue as in Lemma 2.2.19 to naturally identify G
with a formal OK-group G = Spf(lim −Av) and find G(OL) ∼= G (OL).

Example 3.2.3. We describe the OL-valued points for some p-divisible groups of height 1.

(1) The p-power roots of unity µp∞ admits a natural isomorphism

µp∞(OL) ∼= 1 + mL.

In fact, since mL contains p, we identify lim−!
v

µpv(OL/m
iOL) with the image of 1 +mL

in OL/m
iOL and thus obtain the desired isomorphism by Lemma 3.2.1.

(2) The constant p-divisible group Qp/Zp admits a natural isomorphism

Qp/Zp(OL) ∼= Qp/Zp.

In fact, since OL/m
iOL is connected, we have Z/pvZ(OL/m

iOL) ∼= Z/pvZ and thus
obtain the desired isomorphism.

Proposition 3.2.4. Given a p-divisible group G = lim−!Gv over OK , the group G(OL) is

naturally a Zp-module such that its torsion part G(OL)tors admits a natural identification

G(OL)tors ∼= lim−!
v

lim −
i

Gv(OL/m
iOL).

Proof. Proposition 2.1.8 shows that each lim−!
v

Gv(OL/m
iOL) is a Zp-module and in turn

implies that G(OL) is also a Zp-module. Therefore G(OL)tors consists of p-power torsions. In

addition, we observe by Proposition 2.1.8 that the pv-torsion part of each lim−!
v

Gv(OL/m
iOL)

is Gv(OL/m
iOL). Since filtered colimits are exact in the category of abelian groups as

stated in the Stacks project [Sta, Tag 04B0], we deduce that the pv-torsion part of G(OL) is
lim −
i

Gv(OL/m
iOL). The desired assertion is now evident. □

https://stacks.math.columbia.edu/tag/04B0
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Proposition 3.2.5. Given a p-divisible group G = lim−!Gv over OK with Gv = Spec (Av),
there exists a canonical isomorphism

G(OL) ∼= HomOK−cont(lim −Av,OL).

Proof. For every continuous OK-algebra homomorphism f : lim −Av ! OL, the induced

map fi : lim −Av ! OL/m
iOL for each i ≥ 1 factors through a natural surjection lim −Av ↠ Awi

for some wi ≥ 1. Hence we have a canonical map

HomOK−cont(lim −Av,OL) −! lim −
i

lim−!
v

HomOK
(Av,OL/m

iOL)

which sends each f ∈ HomOK−cont(lim −Av,OL) to (fi) ∈ lim −
i

lim−!
v

HomOK
(Av,OL/m

iOL). It is

not hard to see that this map is an isomorphism by Lemma 3.2.1. Now we obtain the desired
isomorphism from the natural identification

G(OL) ∼= lim −
i

lim−!
v

HomOK
(Av,OL/m

iOL),

thereby completing the proof. □

Remark. Proposition 3.2.5 establishes a canonical isomorphism G(OL) ∼= G (OL) for the
formal OK-group G = Spf(lim −Av).

Proposition 3.2.6. Let G = lim−!Gv be a p-divisible group over OK .

(1) If G is connected of dimension d, it admits a Zp-module isomorphism

G(OL) ≃ HomOK−cont(OK [[t1, · · · , td]],OL)

where the multiplication by p on the target is induced by [p]µG .

(2) IfG is étale, G(OL) is torsion with a natural isomorphismG(OL) ∼= lim−!Gv(OL/mOL).

Proof. Statement (1) is evident by Lemma 2.2.19 and Proposition 3.2.5. Let us now
assume for statement (2) that G is étale. Each Gv is formally étale by a general fact stated
in the Stacks project [Sta, Tag 02HM]; in particular, there exists a natural isomorphism
Gv(OL/m

iOL) ∼= Gv(OL/m
i+1OL) for each integer i ≥ 1. Hence we find

G(OL) = lim −
i

lim−!
v

Gv(OL/m
iOL) ∼= lim−!Gv(OL/mOL)

and in turn deduce from Proposition 2.1.8 that G(OL) is a torsion group. □

Remark. If L is a finite extension of K, we have mOL = mj
L for some integer j ≥ 1 and

thus find Gét(OL) ∼= lim−!Gét
v (OL/mOL) ∼= lim−!Gét

v (OL/mL) ∼= lim−!Gét
v (kL) where the second

isomorphism follows from the fact that each Gét
v is formally étale as noted in the proof.

Lemma 3.2.7. An OK-algebra homomorphism f : OK [[t1, · · · , tn]] ! L is continuous if and
only if each f(ti) lies in mL.

Proof. The map f is continuous if and only if there exists an integer v with f(tvi ) ∈ mL

for each i = 1, · · · , n. Hence the assertion follows from the fact that OK is reduced. □

Remark. Proposition 3.2.6 and Lemma 3.2.7 together show that every p-divisible group G
over OK of dimension d gives rise to an isomorphism G◦(OL) ≃ m⊕d

L with group law on md
L

induced by µG. It turns out that the multiplication and the inverse on m⊕d
L are analytic

functions; in other words, G◦(OL) ≃ m⊕d
L is a p-adic analytic group.

https://stacks.math.columbia.edu/tag/02HM
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Proposition 3.2.8. Every p-divisible group G = lim−!Gv over OK yields an exact sequence

0 −! G◦(OL) −! G(OL) −! Gét(OL) −! 0.

Proof. The sequence is left exact as limits and filtered colimits are left exact in the
category of abelian groups. Hence we only need show that the map G(OL) ! Gét(OL) is
surjective. For each integer v ≥ 1, we let Av, A

◦
v, and Aét

v respectively denote the affine rings
of Gv, G

◦
v, and Gét

v . In addition, we write A := lim −Av, A ◦ := lim −A
◦
v, and A ét := lim −A

ét
v .

By Proposition 3.2.5, it suffices to prove the surjectivity of the map

HomOK−cont(A ,OL)! HomOK−cont(A
ét,OL). (3.2)

Lemma 2.2.19 yields a topological OK-algebra isomorphism

A ◦ ≃ OK [[t1, · · · , td]]
where d denotes the dimension of G. Since k is perfect, we apply Proposition 1.4.15 to obtain
a topological k-algebra isomorphism

(A ét ⊗OK
k)[[t1, · · · , td]] ≃ (A ◦ ⊗OK

k) ⊗̂k(A
ét ⊗OK

k) ∼= A ⊗OK
k.

By Lemma 2.2.18, this map lifts to a surjective OK-algebra homomorphism

θ : A ét[[t1, · · · , td]] −! A .

Moreover, Lemma 2.2.18 shows that A is flat over OK and consequently yields the relation
ker(θ) ⊗OK

k = 0 by a general fact stated in the Stacks project [Sta, Tag 00HL]. For each
v ≥ 1, we take an ideal Jv of A ét[[t1, · · · , td]] with A ét[[t1, · · · , td]]/Jv

∼= A◦
v ⊗OK

Aét
v and

obtain a short exact sequence

0 −! ker(θ)/ ker(θ) ∩ Jv −! A ét[[t1, · · · , td]]/Jv −! A /θ(Jv) −! 0.

We have m (ker(θ)/ ker(θ) ∩ Jv) = ker(θ)/ ker(θ) ∩ Jv and thus find ker(θ) = ker(θ) ∩ Jv

for each v ≥ 1 by Lemma 2.2.17 as A ét[[t1, · · · , td]]/Jv
∼= A◦

v ⊗OK
Aét
v is noetherian. Since

we have
⋂

Jv = 0, we see that ker(θ) is trivial and in turn deduce that θ is an isomorphism.

The map θ is continuous as the kernel of each θv : A ! Av is open by the fact that the
R-algebra Av is of finite length. Moreover, with θ being a topological isomorphism after base
change to k, we observe that every power of the ideal I := (t1, · · · , td) contains an open
set in its image under θ and in turn find that θ is open. Hence θ is a topological R-algebra
isomorphism. Now θ yields a surjective continuous map A ↠ A ét which splits the natural
map A ét ! A . We conclude that the map (3.2) is surjective as desired. □

Proposition 3.2.9. Let G be a p-divisible group over OK .

(1) For every g ∈ G(OL), we have png ∈ G◦(OL) for each n≫ 0.

(2) If L is algebraically closed, G(OL) is p-divisible in the sense that the multiplication
by p on G(OL) is surjective.

Proof. Since statement (1) is an immediate consequence of Proposition 3.2.6 and Propo-
sition 3.2.8, we only need to establish statement (2). In light of Proposition 3.2.8, it suffices to
show that the multiplication by p is surjective on each Gét(OL) and G◦(OL). The surjectivity
on Gét(OL) follows from Proposition 2.1.8 and Proposition 3.2.6. Moreover, we deduce the
surjectivity on G◦(OL) from Proposition 3.2.6 and the p-divisibility of µG. □

Remark. If L is not algebraically closed, for every g ∈ G(OL) we have a finite extension L′

of L and an element h ∈ G(OL′) with the equality g = ph, where we naturally identify G(OL)
as a subgroup of G(OL′).

https://stacks.math.columbia.edu/tag/00HL
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Definition 3.2.10. Let G be a p-divisible group over OK and M be an OK-module. We
write I for the augmentation ideal of µG.

(1) The tangent space of G with values in M is tG(M) := HomOK -mod(I /I 2,M).

(2) The cotangent space of G with values in M is t∗G(M) := I /I 2 ⊗OK
M .

Remark. We may naturally identify tG and t∗G respectively with the tangent space and the
cotangent space of the formal group GµG associated to µG.

Proposition 3.2.11. For a p-divisible group G over OK of dimension d, both tG(L) and t∗G(L)
are vector spaces over L of dimension d.

Proof. We identify the augmentation ideal of µG with I := (t1, · · · , td) ⊆ OK [[t1, · · · , td]]
and obtain the assertion by observing that I /I 2 is a free OK-module of rank d. □

Definition 3.2.12. Given a p-divisible group G over OK of dimension d, we define the
valuation filtration on the group G◦(OL) to be the collection

{
FilλG◦(OL)

}
λ>0

with

FilλG◦(OL) := { f ∈ G◦(OL) : ν(f(α)) ≥ λ for each α ∈ I } ,

where we write I for the augmentation ideal of µG and fix a Zp-module isomorphism
G◦(OL) ≃ HomOK−cont(OK [[t1, · · · , td]],OL) given by Proposition 3.2.6.

Remark. It is not hard to see that the collection
{

FilλG◦(OL)
}
λ>0

does not depend on

the choice of the isomorphism G◦(OL) ≃ HomOK−cont(OK [[t1, · · · , td]],OL). If we take

an isomorphism G◦(OL) ≃ m⊕d
L as remarked after Lemma 3.2.7, for each λ > 0 we have

FilλG◦(OL) ≃ m⊕d
L,λ with mL,λ := { c ∈ OL : ν(c) ≥ λ }.

Lemma 3.2.13. Given a p-divisible group G over OK , we have⋃
λ>0

FilλG◦(OL) = G◦(OL) and
⋂
λ>0

FilλG◦(OL) = 0.

Proof. The assertion is evident by Lemma 3.2.7 and the completeness of OL. □

Lemma 3.2.14. Let G be a p-divisible group over OK and λ be a positive real number. For
every f ∈ FilλG◦(OL), we have pf ∈ FilκG◦(OL) with κ = min(λ+ 1, 2λ).

Proof. Let I denote the augmentation ideal of µG and take an arbitrary element α ∈ I .
We may write [p]µG(α) = pα+ β for some β ∈ I 2 by Lemma 2.2.13 and in turn find

(pf)(α) = f([p]µG(α)) = f(pα+ β) = pf(α) + f(β).

Therefore we have ν((pf)(α)) ≥ min(λ+ 1, 2λ) as desired. □

Lemma 3.2.15. Let G be a p-divisible group over OK . If L is a finite extension of K, we have

∞⋂
n=1

pnG◦(OL) = 0.

Proof. Since the valuation on L is discrete, there exists a minimum positive valuation δ
on OL given by the valuation of the uniformizer. Hence we find pnG◦(OL) ⊆ Filnδ G◦(OL) for
each n ≥ 1 by Lemma 3.2.14 and in turn deduce the desired assertion from Lemma 3.2.13. □
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Proposition 3.2.16. Let G be a p-divisible group over OK and write I for the augmentation
ideal of µG. There exists a map logG : G(OL)! tG(L) with

logG(g)(α) = lim
n!∞

(png)(α)

pn
for every g ∈ G(OL) and α ∈ I ,

where α denotes the image of α in I /I 2.

Proof. Let us take arbitrary elements g ∈ G(OL) and α ∈ I . We have png ∈ G◦(OL)
for each n ≫ 0 as noted in Proposition 3.2.9. Therefore Lemma 3.2.14 implies that there
exists c ∈ R with png ∈ Filn+cG◦(OL) for each n≫ 0 and in turn yields the inequality

ν

(
(png)(β)

pn

)
≥ 2(n+ c) − n = n+ 2c for each β ∈ I 2. (3.3)

Meanwhile, for each n≫ 0 we find

(pn+1g)(α)

pn+1
− (png)(α)

pn
=

(png)([p]µG(α))

pn+1
− (png)(α)

pn
=

(png)([p]µG(α) − pα)

pn+1
.

Since we have [p]µG(α)−pα ∈ I 2 by Lemma 2.2.13, we deduce from the inequality (3.3) that

the sequence

(
(png)(α)

pn

)
converges in L. Moreover, if α lies in I 2 the inequality (3.3) shows

that the sequence converges to 0. The desired assertion is now evident. □

Definition 3.2.17. Given a p-divisible group G over OK , we refer to the map logG given by
Proposition 3.2.16 as the logarithm of G.

Example 3.2.18. Let us provide an explicit description of logµp∞ . Choose isomorphisms

µp∞(OL) ≃ HomOK−cont(OL[[t]],OL) and tµp∞ (L) ≃ L

respectively given by Proposition 3.2.6 and Proposition 3.2.11. Since we have µĜm
[p∞] ∼= µp∞

as noted in Example 2.2.12, for each g ∈ µp∞(OL) we find

(png)(t) = g
(
(1 + t)p

n − 1
)

= (1 + g(t))p
n − 1.

Meanwhile, under the identification µp∞(OL) ∼= 1 + mL noted in Example 3.2.3, we identify
each g ∈ µp∞(OL) with 1 + g(t). Hence obtain the identity

logµp∞ (1 + x) = lim
n!∞

(1 + x)p
n − 1

pn
= lim

n!∞

pn∑
i=1

1

pn

(
pn

i

)
xi for each x ∈ mL.

Moreover, for integers i and n we have

1

pn

(
pn

i

)
− (−1)i−1

i
=

(pn − 1) · · · (pn − i+ 1) − (−1)i−1(i− 1)!

i!
.

We observe that the numerator is divisible by pn and in turn find

ν

(
1

pn

(
pn

i

)
− (−1)i−1

i

)
≥ n− ν(i!) ≥ n−

∞∑
j=1

i

pj
= n− i

p− 1
.

Hence we obtain the expression

logµp∞ (1 + x) =
∞∑
i=1

(−1)i−1

i
xi for each x ∈ mL,

which coincides with the p-adic logarithm.
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Let us state the following technical result about the logarithm maps without a proof.

Proposition 3.2.19. Let G be a p-divisible group over OK and write I for the augmentation
ideal of µG. The map logG is a local homeomorphism which induces an isomorphism

FilλG◦(OL) ≃
{
τ ∈ tG(L) : ν(τ(f)) ≥ λ for each f ∈ I /I 2

}
for every λ ≥ 1.

Remark. A key fact for the proof of Proposition 3.2.19 is that the multiplication by p on the
group G◦(OL) induces an isomorphism FilλG◦(OL) ∼= Filλ+1G◦(OL) as stated in the book of
Serre [Ser92, Theorem 9.4]. It turns out that logG admits a local inverse expλG on

Filλ tG(L) :=
{
τ ∈ tG(L) : ν(τ(f)) ≥ λ for each f ∈ I /I 2

}
.

In fact, for every τ ∈ Filλ tG(L) we have expλG(τ)(ti) = lim
n!∞

gn(ti) with each gn ∈ FilλG◦(OL)

determined by the relation (pngn)(ti) = pnτ(ti).

Proposition 3.2.20. LetG be a p-divisible group over OK and denote by I the augmentation
ideal of µG.

(1) logG is a Zp-linear homomorphism.

(2) The kernel of logG is the torsion subgroup G(OL)tors of G(OL).

(3) logG induces a Qp-linear isomorphism G(OL) ⊗Zp Qp ≃ tG(L).

Proof. Let us write A ◦ := OK [[t1, · · · , td]] where d is the dimension of G. Take arbitrary
elements g, h ∈ G(OL) and α ∈ I . We have png, pnh ∈ G◦(OL) for each n≫ 0 as noted in
Proposition 3.2.9. Since the axioms for µG yield the relation

µG(α) ∈ 1 ⊗ α+ α⊗ 1 + (I ⊗̂A ◦I )2,

for each n≫ 0 we may write

(pn(g + h))(α) = (png ⊗ pnh) ◦ µG(α) = (png)(α) + (pnh)(α) + βn

with βn ∈ (png)(I ) · (pnh)(I ). Moreover, we deduce from Lemma 3.2.14 that there exists a
real number c with png, pnh ∈ Filn+cG◦(OL) for each n≫ 0 and in turn find ν(βn) ≥ 2(n+c).
Now we obtain the identity

lim
n!∞

(pn(g + h))(α)

pn
= lim

n!∞

(png)(α)

pn
+ lim
n!∞

(pnh)(α)

pn

and consequently establish statement (1) by Proposition 3.2.19.

For statement (2), we only need to show that ker(logG) lies in G(OL)tors; indeed, we have
G(OL)tors ⊆ ker(logG) as tG(L) is torsion free for being a vector space over L. Let us take
an arbitrary element g ∈ ker(logG). Proposition 3.2.9 and Lemma 3.2.14 together imply that
we have png ∈ Fil1G◦(OL) for some n ≫ 0. Since png lies in ker(logG) by statement (1), it
must vanish by Proposition 3.2.19. We deduce that g is a torsion element and thus obtain
statement (2).

Statement (2) readily implies that logG induces an injective map G(OL)⊗Zp Qp ! tG(L).
Moreover, we observe by Proposition 3.2.19 that this map is surjective as for each τ ∈ tG(L)
there exists an integer n with pnτ ∈ Fil1 tG(L). Hence we establish statement (3), thereby
completing the proof. □

Remark. For G = µp∞ and L = CK , the map logµp∞ naturally extends to a ΓK-equivariant

group homomorphism logp : C×
K ! CK with logp(p) = 0, called the Iwasawa logarithm.
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3.3. Hodge-Tate decomposition for Tate modules

In this subsection, we establish the main result for this chapter by exploiting our accu-
mulated knowledge of finite flat group schemes and p-divisible groups.

Lemma 3.3.1. Every p-divisible group G = lim−!Gv over OK yields canonical isomorphisms

Gv(K) ∼= Gv(CK) ∼= Gv(OCK
) for each v ≥ 1.

Proof. Since the generic fiber of each Gv is finite étale as easily seen by Corollary 1.3.10,
the first isomorphism follows from Proposition 3.1.10 and a standard fact stated in the Stacks
project [Sta, Tag 0BND]. The second isomorphism is evident by the valuative criterion. □

Lemma 3.3.2. Let G be a p-divisible group over OK .

(1) G(OCK
) and tG(CK) admit natural ΓK-actions with canonical identifications

G(OCK
)ΓK ∼= G(OK) and tG(CK)ΓK ∼= tG(K).

(2) The map logG : G(OCK
)! tG(CK) is ΓK-equivariant.

Proof. The group ΓK naturally acts on G(OCK
) by Proposition 3.2.5 and on tG(CK) by

construction. Hence statement (1) follows from the identities CΓK
K = K and OΓK

CK
= OK given

by Theorem 3.1.11. Statement (2) is straightforward to verify. □

Definition 3.3.3. Let G = lim−!Gv be a p-divisible group over OK .

(1) The Tate module of G is Tp(G) := Tp(G×OK
K) = lim −Gv(K).

(2) The Tate comodule of G is Φp(G) := lim−!Gv(K).

Example 3.3.4. We have Tp(µp∞) = Zp(1) by definition and identify Φp(µp∞) = lim−!µpv(K)

with the group of p-power roots of unity in K.

Lemma 3.3.5. Let G be a p-divisible group G of height h over OK .

(1) Tp(G) is a free Zp-module of rank h with a natural continuous ΓK-action.

(2) Φp(G) is a torsion Zp-module with a natural continuous ΓK-action.

Proof. Let us write G = lim−!Gv where each Gv is a finite flat OK-group. Corollary 1.3.10
shows that the generic fiber of each Gv is finite étale. Hence we deduce from Proposition 1.3.4
that each Gv(K) is a free module of rank h over Z/pvZ with a natural continuous ΓK-action
and in turn establish the desired assertions. □

Lemma 3.3.6. Every p-divisible group G over OK naturally gives rise to a short exact sequence

0 −! Tp((G
ét)∨) −! Tp(G

∨) −! Tp((G
◦)∨) −! 0.

Proof. Let us write G = lim−!Gv where each Gv is a finite flat OK-group. For each v ≥ 1,
Proposition 1.2.13 and Lemma 2.1.6 together yield a natural commutative diagram

0 (Gét
v+1)

∨(K) G∨
v+1(K) (G◦

v+1)
∨(K) 0

0 (Gét
v )∨(K) G∨

v (K) (G◦
v)

∨(K) 0

where both rows are exact. Therefore we obtain the desired exact sequence by a general fact
stated in the Stacks project [Sta, Tag 03CA]. □

https://stacks.math.columbia.edu/tag/0BND
https://stacks.math.columbia.edu/tag/03CA
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Proposition 3.3.7. Given a p-divisible group G = lim−!Gv over OK , there exist canonical
ΓK-equivariant Zp-module isomorphisms

Tp(G) ∼= HomZp(Tp(G
∨),Zp(1)) and Φp(G) ∼= HomZp

(
Tp(G

∨),Φp(µp∞)
)
.

Proof. Corollary 1.3.10 implies that the generic fiber of each Gv is finite étale. Hence
each Gv gives rise to a canonical identification

Gv(K) ∼= (G∨
v )∨(K) = HomK-grp

(
(G∨

v )K , (µpv)K
) ∼= Hom(G∨

v (K), µpv(K)) (3.4)

by Theorem 1.2.4, Lemma 1.2.3, and Proposition 1.3.4. We deduce that Tp(G) admits a
natural ΓK-equivariant isomorphism

Tp(G) = lim −Gv(K) ∼= lim −Hom(G∨
v (K), µpv(K))

= HomZp(lim −G
∨
v (K), lim −µp

v(K)) = HomZp(Tp(G
∨),Zp(1)).

Moreover, under the isomorphism Φp(G) = lim−!Gv(K) ∼= lim−!HomZp(G∨
v (K),Φp(µp∞)) given

by the identification (3.4), we have a natural ΓK-equivariant map

HomZp(Tp(G
∨),Φp(µp∞)) = HomZp(lim −G

∨
v (K),Φp(µp∞)) −! Φp(G)

which we verify to be an isomorphism using Lemma 2.1.6. □

Proposition 3.3.8. Every p-divisible group G = lim−!Gv over OK yields a short exact sequence

0 Φp(G) G(OCK
) tG(CK) 0.

logG

Proof. Since G(OCK
) is p-divisible by Proposition 3.1.10 and Proposition 3.2.9, we de-

duce from Proposition 3.2.20 that logG is surjective. In addition, we have

ker(logG) = G(OCK
)tors ∼= lim−!

v

lim −
i

Gv(OCK
/miOCK

) = lim−!
v

Gv(OCK
) ∼= lim−!

v

Gv(K) = Φp(G)

by Proposition 3.2.20, Proposition 3.2.4, Lemma 3.2.1, and Lemma 3.3.1. □

Lemma 3.3.9. Every p-divisible group G over OK yields ΓK-equivariant Zp-linear maps

α : G(OCK
) −! HomZp(Tp(G

∨), 1 + mCK
) and dα : tG(CK) −! HomZp(Tp(G

∨),CK)

via a natural isomorphism Tp(G
∨) ∼= Homp-div grp

(
GOCK

, (µp∞)OCK

)
.

Proof. Let us write G = lim−!Gv where each Gv is a finite flat OK-group. Lemma 3.3.1
and Lemma 1.2.3 together yield a canonical identification

Tp(G
∨) = lim −G

∨
v (K) ∼= lim −G

∨
v (OCK

)

= lim −HomOCK -grp

(
(Gv)OCK

, (µpv)OCK

)
= Homp-div grp

(
GOCK

, (µp∞)OCK

)
.

In addition, we have µp∞(OCK
) ∼= 1 + mCK

and tµp∞ (CK) ∼= CK as noted in Example 3.2.18.

Hence each w ∈ Tp(G
∨) gives rise to maps

wOCK
: G(OCK

) −! µp∞(OCK
) ∼= 1 + mCK

and dwCK
: tG(CK) −! tµp∞ (CK) ∼= CK .

Now we obtain the desired maps α and dα by setting

α(g)(w) := wOCK
(g) and dα(τ)(w) := dwCK

(τ)

for each g ∈ G(OCK
), τ ∈ tG(CK), and w ∈ Tp(G

∨). □
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Proposition 3.3.10. Given a p-divisible group G over OK , there exists a canonical commu-
tative diagram

0 Φp(G) G(OCK
) tG(CK) 0

0 HomZp (Tp(G
∨),Φp(µp∞)) HomZp (Tp(G

∨), 1 + mCK
) HomZp (Tp(G

∨),CK) 0
∼

logG

α dα

with exact rows and ΓK-equivariant arrows.

Proof. The vertical arrows in the diagram are the natural ΓK-equivariant maps given
by Proposition 3.3.7 and Lemma 3.3.9. The horizontal arrows in the diagram are the natural
maps given by Proposition 3.3.8 and are ΓK-equivariant by Lemma 3.3.2. We observe that
both rows are exact by Lemma 3.3.5 and Proposition 3.3.8. In addition, it is straightforward
to verify that the diagram is commutative. Hence it remains to prove that α and dα are
injective. We only need to show that dα is injective as we have ker(α) ≃ ker(dα) by the snake
lemma.

We assert that α is injective on G(OK). Suppose for contradiction that there exists a
nonzero element g ∈ ker(α). The Zp-linear map dα is in fact Qp-linear as both tG(CK) and
HomZp (Tp(G

∨),CK) are vector spaces over Qp. We deduce that ker(α) ≃ ker(dα) is also a
vector space over Qp and thus is torsion free. Now we may assume by Proposition 3.2.9 that
g lies in G◦(OK). Lemma 3.3.9 yields a commutative diagram

G◦(OCK
) G(OCK

)

HomZp(Tp((G
◦)∨), 1 + mCK

) HomZp(Tp(G
∨), 1 + mCK

)

α◦ α

where the injectivity of the horizontal maps follow from Proposition 3.2.8 and Lemma 3.3.6.
We find g ∈ ker(α◦) ∩ G◦(OK) and obtain the identification ker(α◦) ∩ G◦(OK) = ker(α◦)ΓK

by Lemma 3.3.2. Since ker(α◦)ΓK is a vector space over Qp, for every integer n ≥ 0 there
exists an element gn ∈ ker(α◦)∩G◦(OK) with g = pngn. We deduce from Lemma 3.2.15 that
g must be zero and in turn obtain a desired contradiction.

Now we show that dα is injective on tG(K). It is enough to establish the injectivity on
logG(G(OK)) as we have logG(G(OK))⊗Zp Qp = tG(K) by Proposition 3.2.20. Let us take an
arbitrary element h ∈ G(OK) with logG(h) ∈ ker(dα). Since logG induces the isomorphism
ker(α) ≃ ker(dα) by the snake lemma, we find logG(h) = logG(h′) for some h′ ∈ ker(α).
Proposition 3.2.20 implies that h − h′ is torsion, which means that there exists n ≥ 0 with
pn(h − h′) = 0 or equivalently pnh = pnh′. Hence we have pnh ∈ ker(α) ∩ G(OK) and in
turn find pnh = 0 by the injectivity of α on G(OK). We deduce from Proposition 3.2.20 that
logG(h) is zero, which implies that dα is injective on logG(G(OK)).

Our discussion in the previous paragraph shows that dα factors through an injective map

tG(CK) ∼= tG(K) ⊗K CK ↪−! HomZp(Tp(G
∨),CK)ΓK ⊗K CK .

In addition, Proposition 3.1.12 yields an injective map

HomZp(Tp(G
∨),CK)ΓK ⊗K CK ↪−! HomZp(Tp(G

∨),K) ⊗K CK ∼= HomZp(Tp(G
∨),CK)

where the isomorphism comes from the fact that Tp(G
∨) is free over Zp by Lemma 3.3.5.

Now we identify dα with the composition of these maps and in turn establish its injectivity,
thereby completing the proof. □
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Theorem 3.3.11 (Tate [Tat67]). Let G be a p-divisible group over OK .

(1) There exist natural isomorphisms

G(OK) ∼= HomZp(Tp(G
∨), 1 + mCK

)ΓK and tG(K) ∼= HomZp(Tp(G
∨),CK)ΓK .

(2) The tangent spaces tG(CK) and tG∨(CK) are orthogonal complements with respect
to a CK-linear ΓK-equivariant perfect pairing

HomZp(Tp(G),CK) × HomZp(Tp(G
∨),CK)! CK(−1).

Proof. Proposition 3.3.10 and the snake lemma together yield a commutative diagram

0 G(OCK
) HomZp(Tp(G

∨), 1 + mCK
) coker(α) 0

0 tG(CK) HomZp(Tp(G
∨),CK) coker(dα) 0

α

logG

∼

dα

where both rows are exact. We apply Lemma 3.3.2 to obtain a commutative diagram

0 G(OK) HomZp(Tp(G
∨), 1 + mCK

)ΓK coker(α)ΓK

0 tG(K) HomZp(Tp(G
∨),CK)ΓK coker(dα)ΓK

αK

∼

dαK

where both rows are exact. We observe that the middle vertical map induces an injective map

coker(αK) ↪−! coker(dαK). (3.5)

In addition, we switch the roles of G and G∨ to get an injective map

dα∨
K : tG∨(K) ↪−! HomZp(Tp(G),CK)ΓK .

Let us denote the height of G by h. Proposition 2.1.9 and Lemma 3.3.5 together show
that V := HomZp(Tp(G),CK) and W := HomZp(Tp(G

∨),CK) are vector spaces over CK of
dimension h. Moreover, Proposition 3.3.7 yields a ΓK-equivariant Zp-linear perfect pairing

Tp(G) × Tp(G
∨)! Zp(1),

which in turn gives rise to a ΓK-equivariant CK-linear perfect pairing

V ×W ! CK(−1). (3.6)

This pairing maps V ΓK ×WΓK into CK(−1)ΓK , which is zero by Theorem 3.1.11. We deduce
that V ΓK ⊗K CK and WΓK ⊗K CK are orthogonal and consequently find

dimK(V ΓK ) + dimK(WΓK ) ≤ dimCK
(V ) = h.

Meanwhile, the injectivity of dαK and dα∨
K yields the inequality

dimK(V ΓK ) + dimK(WΓK ) ≥ dimK(tG(K)) + dimK(tG∨(K)) = h

where the equality follows from Theorem 2.2.23 and Proposition 3.2.11. Therefore all in-
equalities are in fact equalities. We deduce that the injective map dαK is an isomorphism
and in turn find by the injective map (3.5) that αK is also an isomorphism. Now we establish
statement (1), which in particular yields natural identifications

tG(CK) ∼= WΓK ⊗K CK and tG∨(CK) ∼= V ΓK ⊗K CK .
Our discussion readily shows that these spaces are orthogonal under the pairing (3.6) with
dimCK

(tG(CK)) + dimCK
(tG∨(CK)) = dimCK

(V ), thereby implying statement (2). □
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Proposition 3.3.12. Given a p-divisible group G of dimension d over OK , we have

d = dimK

(
HomZp(Tp(G

∨),CK)ΓK
)

= dimK(Tp(G) ⊗Zp CK(−1))ΓK .

Proof. The first equality is evident by Proposition 3.2.11 and Theorem 3.3.11. The
second equality follows from the identification

Tp(G) ⊗Zp CK(−1) ∼= HomZp(Tp(G
∨),Zp(1)) ⊗Zp CK(−1) ∼= HomZp(Tp(G

∨),CK)

given by Lemma 3.3.5 and Proposition 3.3.7. □

Remark. Lemma 3.3.5 and Proposition 3.3.12 together show that we can compute the height
and the dimension of G from Tp(G).

Theorem 3.3.13 (Tate [Tat67]). Every p-divisible group G over OK gives rise to a canonical
CK [ΓK ]-module isomorphism

HomZp(Tp(G),CK) ∼= tG∨(CK) ⊕ t∗G(CK)(−1).

Proof. We identify t∗G(CK) with the CK-dual tG(CK) and find

HomCK
(tG(CK),CK(−1)) ∼= t∗G(CK)(−1).

Since Theorem 3.3.11 yields a CK-linear ΓK-equivariant perfect pairing

HomZp(Tp(G),CK) × HomZp(Tp(G
∨),CK)! CK(−1)

under which tG(CK) and tG∨(CK) are orthogonal complements, we get a short exact sequence

0 −! tG∨(CK) −! HomZp(Tp(G),CK) −! t∗G(CK)(−1) −! 0 (3.7)

where all maps are CK-linear and ΓK-equivariant. Let us write d := dimCK
(tG(CK)) and

d∨ := dimCK
(tG∨(CK)). We have isomorphisms

Ext1CK [ΓK ](t
∗
G(CK)(−1), tG∨(CK)) ≃ Ext1CK [ΓK ](CK(−1)⊕d

∨
,C⊕d

K ) ≃ H1(ΓK ,CK(1))⊕dd
∨
,

HomCK [ΓK ](t
∗
G(CK)(−1), tG∨(CK)) ≃ HomCK [ΓK ](CK(−1)⊕d

∨
,C⊕d

K ) ≃ H0(ΓK ,CK(1))⊕dd
∨
.

Theorem 3.1.11 shows that both H0(ΓK ,CK(1)) and H1(ΓK ,CK(1)) vanish. Hence we deduce
that the exact sequence (3.7) canonically splits, thereby establishing the desired assertion. □

Definition 3.3.14. Given a p-divisible group G over OK , we refer to the isomorphism in
Theorem 3.3.13 as the Hodge-Tate decomposition for G.

Corollary 3.3.15. For every p-divisible group G over OK , the rational Tate-module

Vp(G) = Tp(G) ⊗Zp Qp

is a Hodge-Tate p-adic ΓK-representation.

Proof. Let us identify the CK-duals of tG∨(CK) and t∗G(CK) respectively with t∗G∨(CK)
and tG(CK). Theorem 3.3.13 yields a natural decomposition

Vp(G) ⊗Qp CK ∼= t∗G∨(CK) ⊕ tG(CK)(1).

Therefore we apply Theorem 3.1.11 to find

(
Vp(G) ⊗Qp CK(−n)

)ΓK ∼=


t∗G∨(K) for n = 0,

tG(K) for n = 1,

0 for n ̸= 0, 1.

The desired assertion is now evident. □

Remark. Our proof of Corollary 3.3.15 shows that we can find tG(K) from Tp(G).
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Proposition 3.3.16. Let A be an abelian variety over K.

(1) There exists a canonical isomorphism

H1
ét(AK ,Qp) ∼= HomZp(Tp(A[p∞]),Zp) ⊗Zp Qp.

(2) If A has good reduction, its integral model A over OK yields natural isomorphisms

H0(A,Ω1
A/K) ∼= t∗A[p∞](K) and H1(A,OA) ∼= tA∨[p∞](K).

(3) Given integers i, j ≥ 0 and n ≥ 0, we have natural identifications

Hn
ét(AK ,Qp) ∼=

∧n
H1

ét(AK ,Qp),

H i(A,Ωj
A/K) ∼=

∧i
H1(A,OA) ⊗

∧j
H0(A,Ω1

A/K).

Proof. All assertions are standard facts about abelian varieties stated in the notes of
Milne [Mil, §7, §12] and the book of Mumford [Mum70, §4]. □

Theorem 3.3.17. Given an abelian variety A over K with good reduction, there exists have
a canonical ΓK-equivariant isomorphism

Hn
ét(AK ,Qp) ⊗Qp CK ∼=

⊕
i+j=n

H i(A,Ωj
A/K) ⊗K CK(−j) for each n ≥ 1.

Proof. Since A has good reduction, it admits an integeral model A over OK . We have
Tp(A[p∞]) = Tp(A[p∞]) by definition and find A∨[p∞] ∼= A[p∞]∨ by Example 2.1.11. Hence
Theorem 3.3.13 and Proposition 3.3.16 together yield a canonical ΓK-equivariant isomorphism

H1
ét(AK ,Qp) ⊗Qp CK ∼= (H1(A,OA) ⊗K CK) ⊕ (H0(A,Ω1

A/K) ⊗K CK(−1)).

Now we deduce the desired assertion from Proposition 3.3.16. □

Remark. Theorem 3.3.17 is a special case of the Hodge-Tate decomposition theorem that
we have introduced in Chapter I, Theorem 1.2.2. The proof of the Hodge-Tate decomposition
theorem for the general case requires ideas that are beyond the scope of our discussion. We
refer curious readers to the notes of Bhatt [Bha19] for a wonderful exposition of the proof
by Scholze [Sch13] using his theory of perfectoid spaces.

Corollary 3.3.18. For every abelian variety A over K with good reduction, the étale coho-
mology Hn

ét(AK ,Qp) for each n ≥ 1 is a Hodge-Tate p-adic ΓK-representation.

Proof. Let us take an arbitary integer m. If we have 0 ≤ m ≤ n, Theorem 3.1.11 and
Theorem 3.3.17 together yield a natural isomorphism(

Hn
ét(AK ,Qp) ⊗Qp CK(m)

)ΓK ∼= Hn−m(A,Ωm
A/K).

Otherwise, Theorem 3.1.11 and Theorem 3.3.17 imply that
(
Hn

ét(AK ,Qp) ⊗Qp CK(m)
)ΓK is

trivial. Now the desired assertion is straightforward to verify. □

Remark. In fact, given a proper smooth variety X over K, the Hodge-Tate decomposition
theorem implies that the étale cohomology Hn

ét(XK ,Qp) for each integer n ≥ 1 is a Hodge-Tate
p-adic ΓK-representation.
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Exercises

1. In this exercise, we study homomorphisms between the R-groups Ga and Gm.

(1) Show that every homomorphism from Gm to Ga is trivial.

(2) If R is reduced, show that every homomorphism from Ga to Gm is trivial.

(3) If R contains a nonzero element α with α2 = 0, construct a nonzero homomorphism
from Ga to Gm.

2. Assume that R = k is a field.

(1) Establish a canonical isomorphism Endk-grp(Gm) ∼= Z.

(2) If k has characteristic 0, establish a natural identification Endk-grp(Ga) ∼= k.

(3) If k has characteristic p, show that Endk-grp(Ga) is isomorphic to the (possibly non-
commutative) polynomial ring k⟨φ⟩ with φc = cpφ for any c ∈ k.

3. Assume that R = k is a field of characteristic p.

(1) Show that the k-algebra homomorphism k[t] ! k[t] which sends t to tp − t induces
a k-group homomorphism f : Ga ! Ga.

(2) Show that ker(f) is isomorphic to Z/pZ.

4. Assume that R = k is a field of characteristic p.

(1) Verify that the k-group αp2 := Spec (k[t]/tp
2
) with the natural additive group struc-

ture on αp2(B) =
{
b ∈ B : bp

2
= 0

}
for each k-algebra B is finite flat of order p2.

(2) Show that α∨
p2 admits an isomorphism α∨

p2
∼= Spec (k[t, u]/(tp, up)) with the multi-

plication on α∨
p2(B) ∼=

{
(b1, b2) ∈ B2 : bp1 = bp2 = 0

}
for each k-algebra B given by

(b1, b2) · (b′1, b
′
2) =

(
b1 + b′1, b2 + b′2 −W1(b1, b2)

)
where we write W1(t, u) :=

(t+ u)p − tp − up

p
∈ Z[t, u].

Hint. We can show that a B-algebra homomorphism f : B[t, t−1] ! B[t]/(tp
2
)

induces a B-group homomorphism αp2 ! Gm if and only if f(t) admits an identity

f(t) =

p−1∑
i=0

(b1t)
i

i!

p−1∑
j=0

(b2t
p)j

i!

for some b1, b2 ∈ B with bp1 = bp2 = 0.

(3) For k = Fp, show that αp2 fits into a nonsplit short exact sequence

0 −! αp −! αp2 −! αp −! 0.

Remark. For k = Fp, there exists a natural identification

Ext1Fp-grp
(αp, αp) ∼= (Z/2Z)2

with elements given by α2
p, αp2 , α∨

p2 , and the p-torsion part of a supersingular elliptic curve.
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5. Assume that R = k is a perfect field.

(1) Given a finite abelian group M with a continuous Γk-action, show that the scheme

MΓk := Spec (A) for A :=
( ∏
i∈M

k
)Γk

is naturally a finite étale k-group.

Hint. Since M is finite, the Γk-action should factor through a finite quotient.

(2) Prove that the inverse functor for the equivalence in Proposition 1.3.4 maps each
finite abelian group M with a continuous Γk-action to MΓk .

(3) Prove that a finite étale group scheme G over a field k is a constant group scheme if
and only if the Γk-action on G(k) is trivial.

6. Given a nonperfect field k of characteristic p, let c be an element of k which is not a p-th

power and set G :=

p−1∐
i=0

Gi with Gi := Spec
(
k[t]/(tp − ci)

)
.

(1) Given a k-algebra B, verify a natural identification

Gi(B) ∼=
{
b ∈ B : bp = ci

}
for each i = 0, · · · , p− 1

and show that G(B) is a group with multiplication given by the following maps:

• mij : Gi(B) ×Gj(B)! Gi+j(B) for i+ j < p sending each (g, g′) to gg′,

• mij : Gi(B) ×Gj(B)! Gi+j−p(B) for i+ j ≥ p sending each (g, g′) to gg′/c.

(2) Show that G yields a nonsplit connected-étale sequence

0 −! µp −! G −! Z/pZ −! 0.

Hint. To show that the sequence does not split, compare G0 with Gi for i ̸= 0.

Remark. This exercise shows that Proposition 1.4.15 fails when the base field is not perfect.
The notes of Pink [Pin, §15] provide an analogous example with Gi = Spec (k[t]/(tp − ic)).

7. Assume that R = k is a field.

(1) Give a proof of Theorem 1.3.9 when R = k is a field without using Theorem 1.1.17.

Hint. If k has characteristic 0, we can adjust the proof of Proposition 1.5.19 to show
that G◦ is trivial.

(2) Prove Theorem 1.1.17 when R = k is a field.

Hint. If k has characteristic 0, we can deduce the assertion from Lagrange’s theorem
for finite groups by observing that G is étale. If k has characteristic p, we can reduce
to the case where G is simple with k algebraically closed.

8. Let E be an elliptic curve over Fp.
(1) Show that E is either ordinary or supersingular.

(2) If E is supersingular, show that ker(φE[p]) is isomorphic to αp.
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9. Assume that R = k is a perfect field.

(1) Show that the dual of every étale p-divisible group over k is connected.

(2) Show that every p-divisible G over k admits a natural decomposition

G ∼= Gll ×Gmult ×Gét

with the following properties:

(i) Gll is connected with (Gll)∨ being connected.

(ii) Gmult is connected with (Gmult)∨ being étale.

(iii) Gét is étale with (Gét)∨ being connected.

10. Assume that R = k is a field of characteristic 0. Establish an isomorphism between the
formal group laws µĜa

and µĜm
over k.

Hint. Consider the map k[[t]]! k[[t]] sending t to exp(t) − 1 =

∞∑
n=1

tn

n!
.

11. Let K be a finite extension of Qp with uniformizer π and residue field Fq.
(1) Show that there exists a unique formal group law µπ over OK of dimension 1 with

an endomorphism [π] : OK [[t]]! OK [[t]] sending t to πt+ tq.

(2) Show that µπ is p-divisible.

Remark. The formal group law µπ is a Lubin-Tate formal group law, introduced by the work
of Lubin-Tate [LT65] as a means to construct the totally ramified abelian extensions of K.

12. If R = k is an algebraically closed field of characteristic p, prove that every étale p-divisible
group of height h over k is isomorphic to (Qp/Zp)h.

13. In this exercise, we study the p-adic expansion and the Teichmüler expansion on Zp.
(1) Show that the 2-adic expansion agrees with the Teichmüler expansion on Z2.

(2) Show that the p-adic expansion does not agree with the Teichmüler expansion on Zp
for p > 2.

(3) Find the 3-adic expansion for [2] ∈ Z3.

(4) Find the first four coefficients of the 5-adic expansion for [2] ∈ Z5.

Hint. The Teichmüler lift of an element a ∈ Fp is the unique lift [a] ∈ Zp with [a]p = [a]. We
can inductively find its image in Zp/pnZp = Z/pnZ for each n ≥ 1 by Hensel’s lemma.

14. Assume that R = k is a perfect field of characteristic p and write K0(k) := W (k)[1/p].

(1) For every λ ∈ Q, establish a natural isomorphism of isocrystals D∨
λ
∼= D−λ.

(2) For every λ, λ′ ∈ Q, establish a natural isomorphism of isocrystals

Dλ ⊗K0(k) Dλ′
∼= D⊕n

λ+λ′ with n ≥ 1.
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15. Let E be an arbitrary field.

(1) Show that the p-adic ΓE-representation Vp(Qp/Zp) is trivial.

(2) If E has characteristic p, show that the p-adic cyclotomic character χE is trivial.

16. Let K be a p-adic field.

(1) Prove that the algebraic closure K of K is not p-adically complete.

Hint. There are at least two ways to proceed as follows:

(a) We can observe that K is a countable union of nowhere dense subspaces and
apply the Baire category theorem to conclude.

(b) Alternatively, we can use Krasner’s lemma to produce a Cauchy sequence in K
whose limit is not algebraic over K.

(2) Given an extension L of K with L ⊆ K, prove that its closure L̂ in CK yields an

identity L = L̂ ∩K.

17. In this exercise, we study the logarithm of µp∞ over OK for a p-adic field K.

(1) Give a proof of Proposition 3.2.19 for G = µp∞ .

(2) Show that the map logµp∞ naturally extends to a ΓK-equivariant group homomor-

phism logp : C×
K ! CK with logp(p) = 0.

18. Let K be a p-adic field and G be a p-divisible group over OK .

(1) Show that there exist canonical Zp-linear ΓK-equivariant isomorphisms

Tp(G) ∼= HomZp(Qp/Zp,Φp(G)) and Φp(G) ∼= Tp(G) ⊗Zp Qp/Zp.
(2) Given a p-divisible group H over OK , show that the generic fibers of G and H are

isomorphic if and only if G and H satisfy the following equivalent conditions:

(i) The Zp[ΓK ]-modules Tp(G) and Tp(H) are isomorphic.

(ii) The Zp[ΓK ]-modules Φp(G) and Φp(H) are isomorphic.

19. Let K be a p-adic field and E be an elliptic curve over OK .

(1) Prove that E gives rise to a natural ΓK-equivariant Zp-linear perfect pairing

Tp(E[p∞]) × Tp(E[p∞]) −! Zp(1).

(2) Prove that the determinant character of the ΓK-representation Vp(E[p∞]) coincides
with the p-adic cyclotomic character.

Remark. The perfect pairing in the first part coincides with the Weil pairing on E.

20. Let K be a p-adic field and G be a p-divisible group over OK with an exact sequence

0 −! Qp(m) −! Vp(G) −! Qp(n) −! 0.

(1) Show that m and n respectively satisfy the inequalities 0 ≤ m ≤ 1 and 0 ≤ n ≤ 1.

(2) Show that G is étale if and only if m and n satisfy the equality m = n = 0.

(3) Show that G is connected if and only if m and n satisfy the equality m = n = 1.





CHAPTER III

Period rings and functors

1. Fontaine’s formalism on period rings

The main goal of this section is to discuss the formalism developed by Fontaine [Fon94a]
for p-adic period rings and their associated functors. Our primary references for this section
are the notes of Brinon-Conrad [BC, §5] and the notes of Fontaine-Oiyang [FO, §2.1].

Throughout this chapter, we let K be a p-adic field with absolute Galois group ΓK , inertia
group IK , and residue field k. In addition, we write RepQp

(ΓK) for the category of p-adic
ΓK-representations and χ for the p-adic cyclotomic character of K.

1.1. Basic definitions and examples

In this subsection, we define some key notions for our formalism and relate them to
Hodge-Tate representations.

Definition 1.1.1. An integral domain B over Qp with an action of ΓK is (Qp,ΓK)-regular if
it satisfies the following conditions:

(i) We have BΓK = CΓK , where C denotes the fraction field of B endowed with a natural
ΓK-action extending the ΓK-action on B.

(ii) A nonzero b ∈ B is a unit if Qpb = { cb ∈ B : c ∈ Qp } is stable under the ΓK-action.

Remark. For any field F and any group Γ, we can similarly define (F,Γ)-regular rings. The
formalism that we develop in this section readily extends to (F,Γ)-regular rings.

Example 1.1.2. Every field extension of Qp with an action of ΓK is (Qp,ΓK)-regular.

Definition 1.1.3. Let B be a (Qp,ΓK)-regular ring with E := BΓK .

(1) We define the functor associated to B to be DB : RepQp
(ΓK)! VectE with

DB(V ) := (V ⊗Qp B)ΓK for every V ∈ RepQp
(ΓK),

where VectE denotes the category of vector spaces over E.

(2) We say that V ∈ RepQp
(ΓK) is B-admissible if it satisfies the equality

dimE DB(V ) = dimQp V.

Example 1.1.4. For every (Qp,ΓK)-regular ring B, trivial p-adic ΓK-representations are
B-admissible.

Definition 1.1.5. Given a character η : ΓK ! Q×
p and a Qp[ΓK ]-module M , we define the

η-twist of M to be the Qp[ΓK ]-module

M(η) := M ⊗Qp Qp(η)

where Qp(η) denotes the ΓK-representation on Qp given by η.

Example 1.1.6. Given a Qp[ΓK ]-module M , we have an identification M(n) ∼= M(χn) for
every n ∈ Z by Lemma 3.1.3 in Chapter II.

81
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We assume the following generalization of Theorem 3.1.11 in Chapter II.

Theorem 1.1.7 (Tate [Tat67], Sen [Sen80]). Let η : ΓK ! Q×
p be a continuous character.

(1) If η(IK) is finite, both H0(ΓK ,CK(η)) and H1(ΓK ,CK(η)) are 1-dimensional vector
spaces over K.

(2) If η(IK) is infinite, both H0(ΓK ,CK(η)) and H1(ΓK ,CK(η)) vanish.

Remark. By Theorem 1.1.7, the p-adic ΓK-representation Qp(η) is CK-admissible if and only
if η(IK) is finite. In fact, by a deep result of Sen [Sen80], a p-adic ΓK-representation V is
CK-admissible if and only if the IK-action on V factors through a finite quotient.

Lemma 1.1.8. The group χ(IK) is infinite.

Proof. We have ker(χ) =
⋂
v≥1

Gal(K(µpv(K))/K) as χ encodes the action of ΓK on

Zp(1) = lim −µp
v(K). Let us write ev for the ramification degree of K(µpv(K)) over K and e

for the ramification degree of K over Qp. We find eve ≥ pv−1(p − 1) by noting that eve and

pv−1(p− 1) are respectively equal to the ramification degrees of K(µpv(K)) and Qp(µpv(K))
over Qp. We deduce that ev grows arbitrarily large and thus obtain the desired assertion. □

Remark. Since we have CK(n) ∼= CK(χn) for each n ∈ Z as noted in Example 1.1.6, we can
deduce Theorem 3.1.11 in Chapter II from Lemma 1.1.8 and Theorem 1.1.7.

Definition 1.1.9. The Hodge-Tate period ring is BHT :=
⊕
n∈Z

CK(n).

Proposition 1.1.10. The Hodge-Tate period ring BHT is (Qp,ΓK)-regular.

Proof. Let us first prove the identity BΓK
HT = CΓK

HT , where CHT denotes the fraction field of
the integral domain BHT. We consider the natural action of ΓK on CK((t)) with γ(t) = χ(γ)t
for every γ ∈ ΓK . Lemma 3.1.3 in Chapter II yields ΓK-equivariant isomorphisms

BHT ≃ CK [t, t−1] and CHT ≃ CK(t).

Since we have BΓK
HT = K by Theorem 3.1.11 in Chapter II, it suffices to establish the identity

CK((t))ΓK = K. The group ΓK acts on each f(t) =
∑
cnt

n ∈ CK((t)) via the relation

γ
(∑

cnt
n
)

=
∑

γ(cn)χ(γ)ntn for every γ ∈ ΓK .

Hence f(t) =
∑
cnt

n ∈ CK((t)) is ΓK-invariant if and only if we have cn = γ(cn)χ(γ)n for
each n ∈ Z and γ ∈ ΓK , or equivalently cn ∈ CK(n)ΓK for every n ∈ Z by Lemma 3.1.3 in
Chapter II. The desired identity CK((t))ΓK = K follows from Theorem 3.1.11 in Chapter II.

It remains to show that every nonzero b ∈ BHT with Qpb being stable under the ΓK-action
is a unit. Let us identify b with f(t) =

∑
cnt

n ∈ CK [t, t−1] via the ΓK-equivariant isomor-
phism BHT ≃ CK [t, t−1]. The group ΓK acts continuously on BHT as it acts continuously on
each CK(n); in particular, it acts on f(t) via a continuous character η : ΓK ! Q×

p . For each

n ∈ Z and γ ∈ ΓK , we find η(γ)cn = γ(cn)χ(γ)n or equivalently cn = (η−1χn)(γ)γ(cn). Hence
we have cn ∈ CK(η−1χn)ΓK for every n ∈ Z and in turn deduce from Theorem 1.1.7 that
(η−1χn)(IK) is finite for every n ∈ Z with cn ̸= 0. Let us now choose m ∈ Z with cm ̸= 0. If we
have cn ̸= 0 for some n ̸= m, we see that the image of IK under χn−m = (η−1χn) · (η−1χm)−1

must be finite, which contradicts Lemma 1.1.8. We find that f(t) = cmt
m ∈ CK [t, t−1] is a

unit, thereby completing the proof. □
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Proposition 1.1.11. A p-adic representation V of ΓK is Hodge-Tate if and only if it is
BHT-admissible.

Proof. Since we have

DBHT
(V ) = (V ⊗Qp BHT)ΓK =

⊕
n∈Z

(V ⊗Qp CK(n))ΓK , (1.1)

the desired assertion follows from Proposition 3.1.12 in Chapter II. □

Example 1.1.12. Given a p-adic ΓK-representation V which fits into an exact sequence

0 −! Qp(m) −! V −! Qp(n) −! 0

with m ̸= n, we assert that V is Hodge-Tate. For every i ∈ Z, we have an exact sequence

0 −! CK(i+m) −! V ⊗Qp CK(i) −! CK(i+ n) −! 0

which gives rise to a long exact sequence

0 −! CK(i+m)ΓK −! (V ⊗Qp CK(i))ΓK −! CK(i+ n)ΓK −! H1(ΓK ,CK(i+m)).

Therefore Theorem 3.1.11 in Chapter II yields an identification

(V ⊗Qp CK(i))ΓK ∼=

{
K for i = −m,−n,
0 for i ̸= −m,−n.

Now we find

dimK DBHT
(V ) =

∑
i∈Z

dimK(V ⊗Qp CK(i))ΓK = 2 = dimQp V

and in turn establish the desired assertion.

Remark. On the other hand, a self extension of Qp is not necessarily Hodge-Tate. For
example, we can show that the two-dimensional Qp-vector space with the ΓK-action given by

the matrix

(
1 logp ◦χ
0 1

)
is not Hodge-Tate, where logp denotes the Iwasawa logarithm.

Proposition 1.1.13. For a continuous character η : ΓK ! Q×
p , the ΓK-representation Qp(η)

is Hodge-Tate if and only if there exists some n ∈ Z with (ηχn)(IK) finite.

Proof. By Proposition 3.1.12 in Chapter II, the ΓK-representation Qp(η) is Hodge-Tate
if and only if there exists an integer n with (Qp(η) ⊗Qp CK(n))ΓK ̸= 0, or equivalently

CK(ηχn)ΓK ̸= 0 by Example 1.1.6. Hence the assertion follows from Theorem 1.1.7. □

Definition 1.1.14. Given a Hodge-Tate ΓK-representation V , an integer n is a Hodge-Tate
weight of V with multiplicity m if we have

dimK(V ⊗Qp CK(n))ΓK = m > 0.

Remark. Readers should be aware that many authors use the opposite sign convention for
Hodge-Tate weights. We will explain the reason for our choice in Proposition 2.4.4.

Example 1.1.15. We record the Hodge-Tate weights for some Hodge-Tate representations.

(1) For every n ∈ Z, the Tate twist Qp(n) of Qp has Hodge-Tate weight −n.

(2) For a p-divisible group G over OK , the rational Tate module Vp(G) has Hodge-Tate
weights 0 or −1 (possibly both) by Theorem 3.3.13 in Chapter II.

(3) For an abelian variety A over K with good reduction, the étale cohomology group
Hn

ét(AK ,Qp) has Hodge-Tate weights 0, 1, · · · , n by Theorem 3.3.17 in Chapter II.
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1.2. Formal properties of admissible representations

Throughout this subsection, we fix a (Qp,ΓK)-regular ring B and write E := BΓK . In

addition, we denote by RepBQp
(ΓK) the category of B-admissible ΓK-representations.

Theorem 1.2.1. Let V be a p-adic ΓK-representation.

(1) There exists a natural map

αV : DB(V ) ⊗E B −! V ⊗Qp B

which is B-linear, ΓK-equivariant, and injective.

(2) V satisfies the inequality

dimE DB(V ) ≤ dimQp V (1.2)

with equality precisely when αV is an isomorphism.

Proof. Let us first consider statement (1). We have the natural map

αV : DB(V ) ⊗E B −! (V ⊗Qp B) ⊗E B ∼= V ⊗Qp (B ⊗E B) −! V ⊗Qp B,

which is clearly B-linear and ΓK-equivariant. We wish to show that αV is injective. Since
the fraction field C of B is (Qp,ΓK)-regular as noted in Example 1.1.2, we obtain a canonical
C-linear map

βV : DC(V ) ⊗E C −! V ⊗Qp C

which fits into a commutative diagram

DB(V ) ⊗E B V ⊗Qp B

DC(V ) ⊗E C V ⊗Qp C

αV

βV

with injective vertical maps. It suffices to prove that βV is injective. Suppose for contradiction
that ker(βV ) is nonzero. Take an E-basis (ei) of DC(V ) = (V ⊗QpC)ΓK and choose a nontrivial
C-linear relation

∑
ciei = 0 with minimal number of nonzero terms. We may set cj = 1 for

some j. For every γ ∈ ΓK , we find∑
(γ(ci) − ci)ei = γ

(∑
ciei

)
−
∑

ciei = 0 and γ(cj) − cj = γ(1) − 1 = 0.

By the minimality of our relation, each ci satisfies the equality ci = γ(ci) for every γ ∈ ΓK
and thus lies in CΓK = E. Now we have a nontrivial E-linear relation

∑
ciei = 0 for the

E-basis (ei) of DC(V ), thereby obtaining a desired contradiction.

It remains to verify statement (2). Since the inequality (1.2) is evident by statement (1), we
only need to consider the equality condition. If αV is an isomorphism, the inequality becomes
an equality. For the converse, we henceforth assume the identity dimE DB(V ) = dimQp V .

Let us choose an E-basis (ui) of DB(V ) = (V ⊗Qp B)ΓK and a Qp-basis (vi) of V . We may
represent αV by a d × d matrix MV with d = dimE DB(V ) = dimQp V . We wish to show
that det(MV ) is a unit in B. We have det(MV ) ̸= 0 as the map DB(V ) ⊗E C ! V ⊗Qp C
induced by αV is an isomorphism for being an injective map between vector spaces of equal
dimension. Meanwhile, ΓK acts trivially on u1 ∧ · · · ∧ ud and via some Qp-valued character η
on v1 ∧ · · · ∧ vd. Since the ΓK-equivariant map αV yields the identity

(∧dαV )(u1 ∧ · · · ∧ ud) = det(MV )(v1 ∧ · · · ∧ vd),
we deduce that ΓK acts on det(MV ) via η−1 and in turn find det(MV ) ∈ B× as desired. □
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Proposition 1.2.2. The functor DB is exact and faithful on RepBQp
(ΓK).

Proof. Let V and W be arbitrary B-admissible ΓK-representations. Theorem 1.2.1
yields natural ΓK-equivariant B-linear isomorphisms

DB(V ) ⊗E B ∼= V ⊗Qp B and DB(W ) ⊗E B ∼= W ⊗Qp B.

Given f ∈ HomQp[ΓK ](V,W ) with the associated map DB(f) : DB(V )! DB(W ) being zero,
we observe that the map V ⊗Qp B !W ⊗Qp B induced by f is zero and in turn deduce that

f must be zero. Therefore the functor DB is faithful on RepBQp
(ΓK).

It remains to verify that DB is exact on RepBQp
(ΓK). Let us consider an arbitrary short

exact sequence of B-admissible ΓK-representations

0 −! U −! V −!W −! 0.

We obtain a short exact sequence

0 −! U ⊗Qp B −! V ⊗Qp B −!W ⊗Qp B −! 0,

which we naturally identify with a short exact sequence

0 −! DB(U) ⊗E B −! DB(V ) ⊗E B −! DB(W ) ⊗E B −! 0

by Theorem 1.2.1. The desired assertion is now evident as B is faithfully flat over the field E
by a standard fact stated in the Stacks project [Sta, Tag 00HQ]. □

Remark. The functor DB is not fully faithful on RepBQp
(ΓK) with values in the category

of vector spaces over E; indeed, the isomorphism class of DB(V ) for every V ∈ RepBQp
(ΓK)

depends only on the dimension of V . In practice, however, we enhance DB to a functor that
takes values in a category of vector spaces over E with some additional structures, as briefly
described in Chapter I, §2.1. We will see in §3 that such an enhanced functor is fully faithful
for the crystaline period ring B = Bcris.

Proposition 1.2.3. The category RepBQp
(ΓK) is closed under taking subquotients.

Proof. Consider a short exact sequence of p-adic ΓK-representations

0 −! U −! V −!W −! 0 (1.3)

with V ∈ RepBQp
(ΓK). We wish to show that both U and W are B-admissible. We note that

the functor DB is left exact on RepQp
(ΓK) by construction and thus obtain an exact sequence

0 −! DB(U) −! DB(V ) −! DB(W ). (1.4)

In addition, by Theorem 1.2.1 we have

dimE DB(U) ≤ dimQp U and dimE DB(W ) ≤ dimQp W.

Now the exact sequences (1.3) and (1.4) together yield the relation

dimE DB(V ) ≤ dimE DB(U) + dimE DB(W ) ≤ dimQp U + dimQp W = dimQp V.

Since V is B-admissible, all inequalities are in fact equalities. Therefore we deduce that both
U and W are B-admissible as desired. □

Remark. In general, the category RepBQp
(ΓK) is not closed under taking extensions. For

example, the category of Hodge-Tate representations is not closed under taking extensions by
the remark following Example 1.1.12.

https://stacks.math.columbia.edu/tag/00HQ
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Proposition 1.2.4. Given B-admissible ΓK-representations V and W , their tensor product
V ⊗Qp W is B-admissible with a natural isomorphism

DB(V ) ⊗E DB(W ) ∼= DB(V ⊗Qp W ).

Proof. Theorem 1.2.1 yields natural ΓK-equivariant B-linear isomorphisms

αV : DB(V ) ⊗E B
∼
−! V ⊗Qp B and αW : DB(W ) ⊗E B

∼
−!W ⊗Qp B.

Let us consider the natural map

DB(V ) ⊗E DB(W ) −! (V ⊗Qp B) ⊗E (W ⊗Qp B) −! (V ⊗Qp W ) ⊗Qp B

with the first arrow given by the identifications

DB(V ) = (V ⊗Qp B)ΓK and DB(W ) = (W ⊗Qp B)ΓK .

Since the second arrow is evidently ΓK-equivariant, we obtain a natural E-linear map

DB(V ) ⊗E DB(W ) −!
(
(V ⊗Qp W ) ⊗Qp B

)ΓK ∼= DB(V ⊗Qp W ). (1.5)

It is not hard to see that this map is injective; indeed, this map extends to a B-linear map

(DB(V ) ⊗E DB(W )) ⊗E B
(
(V ⊗Qp B) ⊗E (W ⊗Qp B)

)
⊗E B (V ⊗Qp W ) ⊗Qp B

which coincides with the isomorphism αV ⊗ αW under the identifications

(DB(V ) ⊗E DB(W )) ⊗E B ∼= (DB(V ) ⊗E B) ⊗B (DB(W ) ⊗E B),(
(V ⊗Qp B) ⊗E (W ⊗Qp B)

)
⊗E B ∼= (V ⊗Qp B ⊗E B) ⊗B (W ⊗Qp B ⊗E B),

(V ⊗Qp W ) ⊗Qp B
∼= (V ⊗Qp B) ⊗B (W ⊗Qp B).

Therefore we obtain the inequality

dimE DB(V ⊗Qp W ) ≥ (dimE DB(V )) · (dimE DB(W )) = dimQp V ⊗Qp W

where the equality follows from the B-admissibility of V and W . We find by Theorem 1.2.1
that this inequality is indeed an equality and in turn deduce that V ⊗Qp W is B-admissible
with the natural isomorphism (1.5). □

Proposition 1.2.5. Given a B-admissible ΓK-representation V and a positive integer n, both
∧n(V ) and Symn(V ) are B-admissible with natural filtered isomorphisms

∧n(DB(V )) ∼= DB(∧n(V )) and Symn(DB(V )) ∼= DB(Symn(V )).

Proof. Let us only consider exterior powers here, as the same argument works with
symmetric powers. Proposition 1.2.4 implies that V ⊗n is B-admissible with a natural isomor-
phism DB(V ⊗n) ∼= DB(V )⊗n. We find that ∧n(V ) is B-admissible by Proposition 1.2.3 and
in turn obtain a natural surjective E-linear map

DB(V )⊗n
∼
−! DB(V ⊗n) ↠ DB(∧n(V ))

by Proposition 1.2.2. It is straightforward to check that this map factors through the natural
surjection DB(V )⊗n ↠ ∧n(DB(V )). Hence we have a natural surjective E-linear map

∧n(DB(V )) ↠ DB(∧n(V )),

which turns out to be an isomorphism since we have

dimE ∧n(DB(V )) = dimE DB(∧n(V ))

by the B-admissibility of V and ∧n(V ). □
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Lemma 1.2.6. Every d-dimensional p-adic ΓK-representation V admits natural ΓK-equivariant
Qp-linear isomorphisms

∆ : det(V ∨)
∼
−! det(V )∨ and Λ : det(V ∨) ⊗Qp ∧d−1V

∼
−! V ∨.

Proof. Take arbitrary elements f1, · · · , fd ∈ V ∨ and v1, · · · , vd ∈ V . Let M denote the
d× d matrix whose (i, j)-entry is fi(vj). We obtain ∆ and Λ as Qp-linear maps with

∆(f1 ∧ · · · ∧ fd)(v1 ∧ · · · ∧ vd) = det(M),

Λ ((f1 ∧ · · · ∧ fd) ⊗ (v2 ∧ · · · ∧ vd)) (v1) = det(M).

It is straightforward to verify that ∆ and Λ are ΓK-equivariant isomorphisms. □

Proposition 1.2.7. For every B-admissible ΓK-representation V , the dual representation V ∨

is B-admissible with a natural E-linear perfect pairing

DB(V ) ⊗E DB(V ∨) ∼= DB(V ⊗Qp V
∨) −! DB(Qp) ∼= E. (1.6)

Proof. Let us first consider the case where V has dimension 1 over Qp. We fix a nonzero
vector v ∈ V and take f ∈ V ∨ = HomQp(V,Qp) with f(v) = 1. In addition, we represent the

ΓK-action on V by a continuous character η : ΓK ! Q×
p . We obtain the equalities

γ(v) = η(γ)v and γ(f) = η(γ)−1f for every γ ∈ ΓK .

Since DB(V ) = (V ⊗Qp B)ΓK is 1-dimensional over E by the B-admissibility of V , it admits
a basis given by a vector v ⊗ b for some b ∈ B. Now we find

v ⊗ b = γ(v ⊗ b) = γ(v) ⊗ γ(b) = η(γ)v ⊗ γ(b) = v ⊗ η(γ)γ(b) for every γ ∈ ΓK

or equivalently

b = η(γ)γ(b) for every γ ∈ ΓK .

Moreover, we have b ∈ B× as v⊗ b yields a B-basis for V ⊗Qp B via the natural isomorphism

DB(V ) ⊗E B ∼= V ⊗Qp B given by Theorem 1.2.1. Hence DB(V ∨) = (V ∨ ⊗Qp B)ΓK contains

a nonzero vector f ⊗ b−1. We deduce that the inequality

dimE DB(V ∨) ≤ dimQp V
∨ = 1

given by Theorem 1.2.1 must be an equality, which means that V ∨ is B-admissible. We also
observe that f ⊗ b−1 yields an E-basis for DB(V ∨) and in turn find that the map (1.6) is a
perfect pairing.

We now consider the general case. Let us write d := dimQp V for notational convenience.

Proposition 1.2.5 implies that both det(V ) = ∧dV and ∧d−1V are B-admissible. Since det(V )
has dimension 1 over Qp, we deduce from Proposition 1.2.4 and Lemma 1.2.6 that V ∨ is
B-admissible. Hence it remains to prove that the map (1.6) is a perfect pairing. We have

d = dimE DB(V ) = dimE DB(V ∨)

by the B-admissibility of V and V ∨. Upon choosing E-bases for DB(V ) and DB(V ∨), we can
represent the pairing (1.6) by a d× d matrix M . It suffices to show that det(M) is nonzero,
or equivalently that the induced pairing

det(DB(V )) ⊗E det(DB(V ∨)) −! E

is perfect. Proposition 1.2.5 yields natural isomorphisms

det(DB(V )) ∼= DB(det(V )) and det(DB(V ∨)) ∼= DB(det(V ∨)).

Hence the desired assertion is evident by our discussion in the first paragraph. □
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2. de Rham representations

In this section, we define and study the de Rham period ring and de Rham representations.
The primary references for this section are the notes of Brinon-Conrad [BC, §4 and §6] and
the article of Scholze [Sch12].

2.1. Perfectoid fields and their tilts

Let us begin with the notion of perfectoid fields, which provides a modern perspective of
Fontaine’s original work.

Definition 2.1.1. A perfectoid field is a complete nonarchimedean field C of residue charac-
teristic p with the following properties:

(i) The valuation on C is nondiscrete.

(ii) The p-th power map on OC/pOC is surjective.

Remark. By convention, we assume that the valuation on a nonarchimedean field is not
trivial. On the other hand, the valuation on a valued field may be trivial.

Lemma 2.1.2. Let C be a complete nonarchimedean field of residue characteristic p. If the
p-th power map on C is surjective, the field C is a perfectoid field.

Proof. Let us denote by ν the valuation on C and take an arbitrary element x ∈ C.
Since the p-th power map on C is surjective by our assumption, there exists an element y ∈ C
with x = yp. If x has positive valuation, we find

0 < ν(y) = ν(x)/p < ν(x). (2.1)

We deduce that C does not have an element with minimum positive valuation, which in
particular implies that the valuation ν is not discrete. Moreover, we note that the p-th power
map on OC is surjective; indeed, if x lies in OC we have y ∈ OC by the relation (2.1). Hence
the p-th power map on OC/pOC is also surjective. The desired assertion is now evident. □

Remark. The converse of Lemma 2.1.2 does not hold; in other words, the p-th power map
on a perfectoid field is not neccessarily surjective.

Example 2.1.3. Since CK is algebraically closed as noted in Chapter II, Proposition 3.1.10,
it is a perfectoid field by Lemma 2.1.2.

Remark. In fact, Lemma 2.1.2 shows that every complete nonarchimedean algebraically
closed field of residue characteristic p is a perfectoid field.

Proposition 2.1.4. A nonarchimedean field of characteristic p is perfectoid if and only if it
is complete and perfect.

Proof. By definition, every perfectoid field of characteristic p is complete and perfect.
Conversely, every complete nonarchimedean perfect field of characteristic p is perfectoid by
Lemma 2.1.2. □

Definition 2.1.5. Let C be a perfectoid field.

(1) The tilt of C is C♭ := lim −
x 7!xp

C endowed with the natural multiplication.

(2) The sharp map associated to C is the map C♭ ! C which sends each c = (cn) ∈ C♭

to the first component c♯ = c0.
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For the rest of this subsection, we fix a perfectoid field C with a valuation ν. We aim to
show that the multiplicative monoid C♭ is naturally a perfectoid field of characteristic p.

Proposition 2.1.6. Fix an element ϖ ∈ C× with 0 < ν(ϖ) ≤ ν(p).

(1) Given arbitrary elements x, y ∈ OC with x− y ∈ ϖOC we have

xp
n − yp

n ∈ ϖn+1OC for each integer n ≥ 0.

(2) The natural projection OC ↠ OC/ϖOC induces a multiplicative bijection

lim −
x 7!xp

OC
∼= lim −

x 7!xp
OC/ϖOC . (2.2)

(3) The monoid lim −
x 7!xp

OC is naturally a ring of characteristic p via the map (2.2).

Proof. The inequality ν(ϖ) ≤ ν(p) implies that p is divisible by ϖ in OC . In addition,
for elements x, y ∈ OC and an integer n ≥ 1 we find

xp
n − yp

n
=
(
yp

n−1
+ (xp

n−1 − yp
n−1

)
)p

− yp
n
.

Hence we obtain statement (1) by a simple induction.

Let us now consider statement (2). We wish to construct an inverse map

f : lim −
x 7!xp

OC/ϖOC −! lim −
x7!xp

OC .

Take an arbitrary element c = (cn) ∈ lim −
x 7!xp

OC/ϖOC and choose a lift cn ∈ OC of each cn.

We have

cp
l

n+m+l − cn+m ∈ ϖOC for all l,m, n ≥ 0

and consequently find

cp
m+l

n+m+l − cp
m

n+m ∈ ϖm+1OC for all n,m ≥ 0

by statement (1). We see that for each n ≥ 0 the sequence (cp
m

n+m)m≥0 converges in OC for

being Cauchy. In addition, statement (1) implies that the limit of the sequence (cp
m

n+m)m≥0

for each n ≥ 0 does not depend on the choice of cn. Now we write

fn(c) := lim
m!∞

cp
m

n+m for each n ≥ 0

and obtain the desired inverse by setting

f(c) := (fn(c)) ∈ lim −
x 7!xp

OC .

It remains to verify statement (3). Since ϖ divides p in OC as already noted in the first
paragraph, the ring OC/ϖOC is of characteristic p and thus induces a natural ring structure
on lim −

x 7!xp
OC

∼= lim −
x 7!xp

OC/ϖOC . Moreover, this ring structure does not depend on ϖ; indeed,

for arbitrary elements a = (an) and b = (bn) in lim −
x 7!xp

OC we find

ab = (anbn) and a+ b =
(

lim
m!∞

(am+n + bm+n)p
m
)
.

Now we establish statement (3) as lim −
x 7!xp

OC is evidently of characteristic p. □

Remark. If C has characteristic 0, it is customary to take ϖ = p.
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Proposition 2.1.7. The tilt C♭ of C is naturally a field of characteristic p which satisfies the
following properties:

(i) It is complete under the natural valuation ν♭ with ν♭(c) = ν(c♯) for every c ∈ C♭.

(ii) For every ϖ ∈ C× with 0 < ν(ϖ) ≤ ν(p), there exists a natural identification

OC♭ = lim −
x 7!xp

OC
∼= lim −

x 7!xp
OC/ϖOC .

Proof. Let us fix an element ϖ ∈ C× with 0 < ν(ϖ) ≤ ν(p). Proposition 2.1.6 shows
that O := lim −

x 7!xp
OC is naturally a ring of characteristic p with a canonical identification

O ∼= lim −
x 7!xp

OC/ϖOC . (2.3)

We may identify C♭ with the fraction field of O, which is evidently perfect of characteristic p.

We assert that the function ν♭ on C♭ with ν♭(c) = ν(c♯) for every c ∈ C♭ is indeed a

valuation. It is clear by construction that ν♭ is a monoid homomorphism with respect to the
multiplication on C♭. Let us take arbitrary elements a = (an) and b = (bn) in C♭. Without

loss of generality, we may assume the inequality ν♭(a) ≥ ν♭(b). Since we have

ν(an) =
1

pn
ν(a0) =

1

pn
ν♭(a) ≥ 1

pn
ν♭(b) =

1

pn
ν(b0) = ν(bn) for each n ≥ 0,

we write a = bu for some u ∈ O and find

ν♭(a+ b) = ν♭((u+ 1)b) = ν♭(u+ 1) + ν♭(b) ≥ ν♭(b) = min(ν♭(a), ν♭(b))

where the inequality follows from the observation that u + 1 is an element of O. Therefore
we deduce that ν♭ is a valuation as desired.

Let us now take an arbitrary element c = (cn) ∈ C♭. We find

ν(cn) =
1

pn
ν(c0) =

1

pn
ν♭(c) for each n ≥ 0

and in turn verify that O is the valuation ring of C♭. Moreover, given an integer m > 0 we
have ν(cn) ≥ ν(ϖ) for each n ≤ m if and only if c satisfies the inequality ν♭(c) ≥ pmν(ϖ).

Hence the map (2.3) is a topological isomorphism with respect to the ν♭-adic topology on O
and the inverse limit topology on lim −

x 7!xp
OC/ϖOC . It is not hard to see that lim −

x 7!xp
OC/ϖOC is

complete, which implies that both OC♭ = O and C♭ are complete. □

Remark. Proposition 2.1.6 and Proposition 2.1.7 remain valid if we replace C by an arbitrary
complete nonarchimedean field L with its “tilt” L♭ := lim −

c 7!cp
L. However, if L is not perfectoid

the valuation on L♭ may be trivial. For example, if L is a p-adic field L♭ is isomorphic to its
residue field with the trivial valuation.

Proposition 2.1.8. The sharp map associated to C is continuous on OC♭ .

Proof. Proposition 2.1.7 yields a topological isormohpsim

OC♭
∼= lim −

x 7!xp
OC/pOC .

Given an integer m ≥ 1, if we have elements a = (an) and b = (bn) in OC♭ with an = bn for
each n ≤ m, we apply Proposition 2.1.6 to find a♯− b♯ ∈ pm+1OC . Therefore we establish the
desired assertion. □
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Lemma 2.1.9. For every c ∈ OC there exists an element c♭ ∈ OC♭ with c− (c♭)
♯ ∈ pOC .

Proof. Proposition 2.1.7 yields a natural isormohpsim

OC♭
∼= lim −

x 7!xp
OC/pOC .

Let c denote the image of c in OC/pOC . Since the p-th power map on OC/pOC is surjective,

we obtain the desired assertion by taking c♭ = (c♭n) ∈ lim −
x 7!xp

OC/pOC
∼= OC♭ with c♭0 = c. □

Proposition 2.1.10. The map OC♭ ! OC/pOC which sends each c ∈ OC♭ to the image of c♯

in OC/pOC is a surjective ring homomorphism.

Proof. Since we have OC♭ = lim −
x 7!xp

OC as noted in Proposition 2.1.7, the assertion is

straightforward to verify by Proposition 2.1.6 and Lemma 2.1.9. □

Remark. The sharp map associated to C is a multiplicative map but is not a ring homomor-
phism unless C is of characteristic p.

Proposition 2.1.11. The valued fields C and C♭ have the same value groups.

Proof. Let ν♭ denote the valuation on C♭. Since we have ν♭
(
(C♭)×

)
⊆ ν(C×) by Propo-

sition 2.1.7, we only need to establish the relation ν(C×) ⊆ ν♭
(
(C♭)×

)
. Consider an arbitrary

element c ∈ C×. We wish to find an element c♭ ∈ (C♭)× with ν♭(c♭) = ν(c). As we know
that ν is nondiscrete, we can choose an element ϖ ∈ OC with 0 < ν(ϖ) < ν(p). Let us
write c = ϖnu for some n ∈ Z and u ∈ OC with ν(u) < ν(ϖ). Lemma 2.1.9 yields elements

ϖ♭, u♭ ∈ OC♭ with ϖ − (ϖ♭)
♯ ∈ pOC and u− (u♭)

♯ ∈ pOC . By Proposition 2.1.7, we find

ν♭(ϖ♭) = ν((ϖ♭)
♯
) = ν

(
ϖ − (ϖ − (ϖ♭)

♯
)
)

= ν(ϖ),

ν♭(u♭) = ν((u♭)
♯
) = ν

(
u− (u− (u♭)

♯
)
)

= ν(u).

Hence we take c♭ = (ϖ♭)nu♭ and obtain the equality ν♭(c♭) = ν(c) as desired. □

Proposition 2.1.12. The field C♭ is a perfectoid field of characteristic p.

Proof. Proposition 2.1.11 implies that the value group of C♭ is not trivial. Since C♭ is
perfect by construction, the assertion follows from Proposition 2.1.4 and Proposition 2.1.7. □

Remark. A main result of Scholze [Sch12] establishes a canonical bijection between the finite

extensions of C and the finite extensions of C♭, called the tilting equivalence. In Chapter V,
we will exploit this equivalence to present a classification of all p-adic ΓK-representations in
terms of certain modules over a field of characteristic p.

Example 2.1.13. The field CK is perfectoid as noted in Example 2.1.3 and thus gives rise
to a perfectoid field F := C♭K of characteristic p by Proposition 2.1.12.

Remark. Since CK is algebraically closed by Proposition 3.1.10 in Chapter II, the tilting
equivalence implies that F is algebraically closed. We will prove this fact in Chapter IV.

Proposition 2.1.14. If C is of characteristic p, there exists a natural identification C♭ ∼= C.

Proof. The assertion is evident as C is perfect by Proposition 2.1.4. □
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2.2. The de Rham period ring BdR

For the rest of this chapter, we denote by ν the normalized p-adic valuation on CK and
by ν♭ the valuation on F = C♭K with ν♭(c) = ν(c♯) for every c ∈ F .

Lemma 2.2.1. The ring OF is a perfect Fp-algebra.

Proof. The assertion is evident by Proposition 2.1.4 and Proposition 2.1.12. □

Definition 2.2.2. The infinitesimal period ring is Ainf := W (OF ).

Remark. Our definition of Ainf relies on Lemma 2.2.1.

Lemma 2.2.3. The ring Ainf is an integral domain.

Proof. Since Ainf is naturally a subring of W (F ), we deduce the desired assertion from
Lemma 2.3.9 in Chapter II. □

Proposition 2.2.4. There exists a surjective ring homomorphism θ : Ainf ↠ OCK
with

θ

( ∞∑
n=0

[cn]pn

)
=

∞∑
n=0

c♯np
n for all cn ∈ OF . (2.4)

Proof. Proposition 2.1.10 yields a surjective ring homomorphism θ : OF ↠ OCK
/pOCK

with θ(c) = c♯ for each c ∈ OF , where c♯ denotes the image of c♯ in OCK
/pOCK

. Moreover,

by construction θ lifts to a multiplicative map θ̂ : OF ! OCK
with θ̂(c) = c♯ for each c ∈ OF .

Hence we obtain a ring homomorphism θ : Ainf ! OCK
which satisfies the identity (2.4) by

Theorem 2.3.1 in Chapter II.

It remains to establish the surjectivity of θ. Let x be an arbitrary element in OCK
. Since

OCK
is p-adically complete, it suffices to find a sequence (cn) in OF with

x−
m∑
n=0

c♯np
n ∈ pm+1OCK

for each m ≥ 0.

In fact, we can use Lemma 2.1.9 to inductively construct such a sequence by setting each cm
to be an element in OF with

1

pm

(
x−

m−1∑
n=0

c♯np
n

)
− c♯m ∈ pOCK

,

thereby completing the proof. □

Remark. Our proof remains valid if we replace CK by an arbitrary perfectoid field C; in other
words, every perfectoid field C yields a surjective ring homomorphism θC : W (OC♭) ↠ OC .

Definition 2.2.5. We refer to the map θ in Proposition 2.2.4 as the Fontaine map and let
θ[1/p] : Ainf [1/p]! CK denote the ring homomorphism induced by θ.

Remark. As explained by Brinon-Conrad [BC, Lemma 4.4.1], we can construct the Fontaine
map θ without using Theorem 2.3.1 from Chapter II. In this approach, we first define θ as a
set theoretic map given by the identity (2.4) and show that θ is indeed a ring homomorphism
using descriptions of the ring operations on Ainf = W (OF ).

Proposition 2.2.6. The ring homomorphism θ[1/p] : Ainf [1/p]! CK is surjective.

Proof. For every c ∈ CK , there exists an integer n ≥ 0 with pnc ∈ OCK
. Hence the

assertion immediately follows from Proposition 2.2.4. □
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Definition 2.2.7. We define the de Rham local ring to be

B+
dR := lim −

i

Ainf [1/p]/ ker(θ[1/p])i

and let θ+dR : B+
dR ↠ Ainf [1/p]/ ker(θ[1/p]) denote the natural projection.

Remark. We will soon define the de Rham period ring BdR to be the fraction field of B+
dR

after verifying that B+
dR is a discrete valuation ring. At this point, it is instructive to explain

Fontaine’s insight behind the construction of BdR. As briefly discussed in Chapter I, Fontaine
introduced the rings BHT and BdR respectively to formulate the Hodge-Tate decomposition
and the de Rham comparison isomorphism. The de Rham cohomology of a proper smooth
variety over K admits the Hodge filtration with the Hodge cohomology as its graded vector
space. Fontaine sought BdR as the fraction field of a complete discrete valuation ring B+

dR

with residue field CK so that it admits a filtration { Filn(BdR) }n∈Z :=
{
tnB+

dR

}
n∈Z for

a uniformizer t ∈ B+
dR with its graded ring isomorphic to BHT. For a perfect field k of

characteristic p, the theory of Witt vectors yields a complete discrete valuation ring with
residue field k by Lemma 2.3.9 in Chapter II. Fontaine judiciously adjusted the construction
of Witt vectors for the field CK of characteristic 0 by passing to characteristic p, or by tilting
the perfectoid field CK in modern language. He began by taking the ring OCK

/pOCK
which is

evidently of characteristic p. As OCK
/pOCK

turns out to be not perfect, Fontaine considered
its perfection lim −

x7!xp
OCK

/pOCK
∼= OF by adding all p-power roots of elements in OCK

/pOCK
.

Fontaine then discovered that Ainf = W (OF ) gives rise to a surjective ring homomorphism
θ[1/p] : Ainf [1/p] ↠ CK . Moreover, as we will soon see, ker(θ[1/p]) turned out to be a principal
ideal. Therefore Fontaine obtained the desired ring B+

dR as the completion of Ainf [1/p] with
respect to ker(θ[1/p]).

Lemma 2.2.8. For each integer n ≥ 0 we have ker(θ) ∩ pnAinf = pn ker(θ).

Proof. Since we evidently have pn ker(θ) ⊆ ker(θ) ∩ pnAinf , we only need to show that
every a ∈ ker(θ) ∩ pnAinf is an element of pn ker(θ). Let us write a = pnb for some b ∈ Ainf .
From the identity

0 = θ(a) = θ(pnb) = pnθ(b)

we find θ(b) = 0 as OCK
is torsion free. Therefore we deduce that a = pnb lies in pn ker(θ) as

desired. □

Lemma 2.2.9. The sharp map associated to CK is surjective.

Proof. The field CK is algebraically closed as noted in Chapter II, Proposition 3.1.10.
Hence we deduce that the p-th power map on CK is surjective and in turn obtain the desired
assertion. □

Remark. It is worthwhile to mention that Lemma 2.2.9 is not essential for our discussion.
In fact, we use Lemma 2.2.9 only to give a simple description of an element generating ker(θ).
For an arbitrary perfectoid field C, we can still show that the kernel of the surjective ring
homomorphism θC : W (OC♭) ↠ OC is principal by explicitly presenting a generator.

Definition 2.2.10. A distinguished element of Ainf is an element of the form ξ = [p♭]−p ∈ Ainf

for some p♭ ∈ OF with (p♭)
♯

= p.

Remark. The existence of p♭ follows from Lemma 2.2.9. We may regard p♭ as a system of
p-power roots of p in CK .
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For the rest of this chapter, we fix a distinguished element ξ = [p♭] − p ∈ Ainf .

Lemma 2.2.11. Every element a ∈ ker(θ) is an Ainf -linear combination of ξ and p.

Proof. We wish to show that a lies in the ideal generated by ξ and p, or equivalently by
[p♭] and p. Let us write

a =
∑
n≥0

[cn]pn = [c0] + p
∑
n≥1

[cn]pn−1 with cn ∈ OF .

It suffices to show that [c0] is divisible by [p♭]. Since we have 0 = θ(a) =
∑
n≥0

c♯np
n, we deduce

that c♯0 is divisible by p and consequently find

ν♭(c0) = ν(c♯0) ≥ ν(p) = ν((p♭)
♯
) = ν♭(p♭).

Hence there exists an element u ∈ OF with c0 = p♭u or equivalently [c0] = [p♭][u]. □

Proposition 2.2.12. The element ξ ∈ Ainf generates the ideal ker(θ) in Ainf .

Proof. The ideal ker(θ) contains ξ as we have

θ(ξ) = θ([p♭] − p) = (p♭)
♯ − p = p− p = 0.

Hence we only need to show that every a ∈ ker(θ) lies in the ideal ξAinf . Since Ainf is p-adically
complete by construction, it suffices to present a sequence (cn) in Ainf with

a−
m∑
n=0

cnξp
n ∈ pm+1Ainf for each m ≥ 0.

We take c0 ∈ Ainf with a− c0ξ ∈ pAinf given by Lemma 2.2.11 and inductively construct cm
for each m ≥ 1. In fact, by Lemma 2.2.8 we have

a−
m−1∑
n=0

cnξp
n ∈ ker(θ) ∩ pmAinf = pm ker(θ)

and thus find bm, cm ∈ Ainf with

a−
m−1∑
n=0

cnξp
n = pm(pbm + cmξ)

or equivalently

a−
m∑
n=0

cnξp
n = pm+1bm

as desired. □

Remark. Proposition 2.2.12 yields a natural isomorphism Ainf/ξAinf
∼= OCK

, which turns
out to be a topological isomorphism. Since the construction of Ainf depends only on the
field F , the principal ideal ξAinf ⊆ Ainf contains all necessary information for recovering the
perfectoid field CK from its tilt F . In fact, we will see in Chapter IV that every perfectoid
field C with C♭ ≃ F arises as the fraction field of Ainf/I for a unique principal ideal I ⊆ Ainf .

Proposition 2.2.13. The element ξ ∈ Ainf generates the ideal ker(θ[1/p]) in Ainf [1/p].

Proof. For every a ∈ ker(θ[1/p]), we have pna ∈ ker(θ) for some n > 0. Hence the
assertion follows from Proposition 2.2.12. □
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Lemma 2.2.14. Every a ∈ Ainf [1/p] with ξa ∈ Ainf is an element in Ainf .

Proof. Since we have θ(ξa) = θ[1/p](ξa) = 0 by Proposition 2.2.13, we find ξa ∈ ξAinf

by Proposition 2.2.12 and in turn apply Lemma 1.1.8 to see that a lies in Ainf . □

Lemma 2.2.15. For each integer i ≥ 1, we have Ainf ∩ ker(θ[1/p])i = ker(θ)i.

Proof. Since we clearly have ker(θ)i ⊆ Ainf ∩ ker(θ[1/p])i, we only need to show that
every a ∈ Ainf ∩ ker(θ[1/p])i lies in ker(θ)i. Proposition 2.2.13 yields an element b ∈ Ainf [1/p]
with a = ξib. Hence we find b ∈ Ainf by Lemma 2.2.14 and consequently deduce the desired
assertion from Proposition 2.2.12. □

Proposition 2.2.16. We have

∞⋂
i=1

ker(θ)i =

∞⋂
i=1

ker(θ[1/p])i = 0.

Proof. By Lemma 2.2.15 we have
∞⋂
i=1

ker(θ[1/p])i =

( ∞⋂
i=1

ker(θ)i

)
[1/p].

Hence it suffices to establish the identity
∞⋂
i=1

ker(θ)i = 0. Let us take an arbitrary element

c ∈
∞⋂
i=1

ker(θ)i and write c =
∑

[cn]pn with cn ∈ OF . Proposition 2.2.12 shows that c is

divisible by every power of ξ = [p♭]− p in Ainf , which in particular implies that c0 is divisible

by every power of p♭ in OF . Since we have ν♭(p♭) = ν((p♭)
♯
) = ν(p) = 1 > 0, we find c0 = 0

and in turn write c = pc′ for some c′ ∈ Ainf . Moreover, Lemma 2.2.15 yields the relation

c′ ∈ Ainf ∩

( ∞⋂
i=1

ker(θ)i

)
[1/p] = Ainf ∩

( ∞⋂
i=1

ker(θ[1/p])i

)
=

∞⋂
i=1

ker(θ)i.

Now a simple induction shows that c is infinitely divisible by p and thus is zero. □

Proposition 2.2.17. The ring B+
dR is a complete discrete valuation ring with ker(θ+dR) as the

maximal ideal, CK as the residue field, and ξ as a uniformizer.

Proof. Since we have B+
dR/ ker(θ+dR) ∼= CK by Proposition 2.2.6, we deduce from some

general facts stated in the Stacks project [Sta, Tag 05GI and Tag 00E9] that B+
dR is a local

ring with ker(θ+dR) as the maximal ideal and CK as the residue field. Let us now consider an

arbitrary nonzero element b ∈ B+
dR. For each integer i ≥ 0, we write bi and ξi respectively

for the images of b and ξ under the projection B+
dR ↠ Ainf [1/p]/ ker(θ[1/p])i. In addition, we

take the largest integer j ≥ 0 with bj = 0. Proposition 2.2.12 implies that for each i > j we

may write bi = ξji ui with ui /∈ ker(θ[1/p])/ ker(θ[1/p])i. For each i > j we let u′i denote the
image of ui in Ainf [1/p]/ ker(θ[1/p])i−j . We observe that the sequence (u′i)i>j depends only on
b and gives rise to a unique unit u ∈ B+

dR with b = ξju. Therefore B+
dR is a discrete valuation

ring with ξ as a uniformizer. Now we deduce from Proposition 2.2.12 and Proposition 2.2.16
that B+

dR is complete, thereby establishing the desired assertion. □

Remark. Our argument so far in this subsection remains valid if we replace CK by an
arbitrary algebraically closed perfectoid field of characteristic 0.

Definition 2.2.18. The de Rham period ring BdR is the fraction field of B+
dR.

https://stacks.math.columbia.edu/tag/05GI
https://stacks.math.columbia.edu/tag/07BH
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Proposition 2.2.19. Let K0 denote the fraction field of W (k).

(1) The field K is a finite totally ramified extension of K0.

(2) There exists a natural commutative diagram

K0 Ainf [1/p]

K B+
dR

CK

θ+dR

where the diagonal map is the natural inclusion.

Proof. Let us take a uniformizer π of OK . There exists an integer e > 0 with p = πeu
for some unit u ∈ OK . Hence we obtain a natural ring homomorphism

k = OK/πOK −! OK/π
eOK = OK/pOK (2.5)

which identifies OK/pOK as a k-algebra with a basis given by 1, π, · · · , πe−1. The map (2.5)
induces a ring homomorphism W (k)! OK by Theorem 2.3.1 in Chapter II.

We assert that 1, π, · · · , πe−1 generate OK over W (k). Take an arbitrary element c ∈ OK .
Since OK is p-adically complete, it suffices to find sequences (a0,n), · · · , (ae−1,n) in W (k) with

c−
e−1∑
i=0

m∑
n=0

ai,np
nπi ∈ pm+1OK for each m ≥ 0.

In fact, we use the map (2.5) to inductively obtain a0,m, · · · , ae−1,m ∈W (k) with

1

pm

(
c−

e−1∑
i=0

m−1∑
n=0

ai,np
nπi

)
−

e−1∑
i=0

ai,mπ
i ∈ pOK

and consequently obtain the desired assertion.

Our discussion in the previous paragraph shows that K is a finite extension of K0 and
in turn yields statement (1) as both K0 and K have residue field k. Hence it remains to
establish statement (2). The map (2.5) induces a ring homomorphism k ! OCK

/pOCK
.

Since k is perfect, this map gives rise to a natural homomorphism

k −! lim −
x!xp

OCK
/pOCK

∼= OF

with the isomorphism given by Proposition 2.1.7 and in turn yields the top horizontal map
by Theorem 2.3.1 in Chapter II. Moreover, we get the left vertical map from statement (1)
and take the right vertical map to be the natural map

Ainf [1/p]! lim −
i

Ainf [1/p]/ ker(θ[1/p])i = B+
dR

which is injective by Proposition 2.2.16. We may now identify K0 as a subring of B+
dR.

Statement (1) and Proposition 2.2.17 together show that K is a separable algebraic extension
of K0 which lies in the residue field CK of the complete discrete valuation ring B+

dR. Therefore

Hensel’s lemma implies that K admits a unique embedding into B+
dR which fits in the desired

diagram. □
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In order to study some additional properties of BdR, we invoke the following technical
result without a proof.

Proposition 2.2.20. There exists a refinement of the discrete valuation topology on B+
dR

with the following properties:

(i) The natural map Ainf ! B+
dR identifies Ainf as a closed subring of B+

dR.

(ii) The map θ[1/p] is continuous and open with respect to the p-adic topology on CK .

(iii) There exists a continuous map log : Zp(1)! B+
dR with

log(c) =
∞∑
n=1

(−1)n+1 ([c] − 1)n

n
for every c ∈ Zp(1)

under the natural identification Zp(1) =
{
c ∈ OF : c♯ = 1

}
.

(iv) The ring B+
dR is complete.

Remark. We will eventually prove Proposition 2.2.20 in Chapter IV after constructing the
Fargues-Fontaine curve. There will be no circular reasoning as the construction of the Fargues-
Fontaine curve relies only on results that we have discussed prior to Proposition 2.2.20. Cu-
rious readers may consult the notes of Brinon-Conrad [BC, Exercise 4.5.3] for a sketch of a
proof which does not involve the Fargues-Fontaine curve.

Let us briefly explain why Proposition 2.2.20 is essential for our discussion. The discrete
valuation topology on B+

dR has a major defect of not carrying much information about the

p-adic topology on CK . In fact, if we only consider the discrete valuation topology on B+
dR the

map θ[1/p] is not continuous with respect to the p-adic topology on CK . Proposition 2.2.20
allows us to incoorporates the p-adic topology on CK in our discussion, which is pivotal for
studying continuous ΓK-representations.

Definition 2.2.21. We refer to the map log : Zp(1) ! B+
dR given by Proposition 2.2.20 as

the cyclotomic logarithm.

Lemma 2.2.22. Let ε be a basis element of Zp(1) =
{
c ∈ OF : c♯ = 1

}
over Zp.

(1) The element ξ divides [ε] − 1 in Ainf .

(2) We have ν♭(ε− 1) =
p

p− 1
.

Proof. Since [ε] − 1 satisfies the equality

θ([ε] − 1) = ε♯ − 1 = 1 − 1 = 0,

statement (1) follows from Proposition 2.2.12. Let us now write ε = (ζpn) where each ζpn is a

primitive pn-th root of unity in K. We use Proposition 2.1.7 and the continuity of ν to find

ν♭(ε− 1) = ν
(

(ε− 1)♯
)

= ν
(

lim
n!∞

(ζpn − 1)p
n
)

= lim
n!∞

pnν(ζpn − 1).

In addition, we note that the minimal polynomial of ζpn − 1 over Qp is f(x) =

p−1∑
i=0

(x+ 1)ip
n−1

of degree pn−1(p−1) with constant term p. Since the roots of the irreducible polynomial f(x)
over Qp have the same p-adic valuation, we obtain the equality

ν(ζpn − 1) =
ν(p)

pn−1(p− 1)
=

1

pn−1(p− 1)

and in turn establish statement (2). □
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Proposition 2.2.23. Let ε be a basis element of Zp(1) =
{
c ∈ OF : c♯ = 1

}
over Zp.

(1) The element t := log(ε) ∈ B+
dR is a uniformizer.

(2) For every m ∈ Zp, we have log(εm) = m log(ε).

Proof. Let us first consider statement (1). By Proposition 2.2.19 and Lemma 2.2.22, we

have [ε] − 1 ∈ ξAinf and
([ε] − 1)n

n
∈ ξ2B+

dR for each n ≥ 2. Hence we find

t =
∞∑
n=1

(−1)n+1 ([ε] − 1)n

n
∈ ([ε] − 1) + ξ2B+

dR.

Since ξ is a uniformizer of B+
dR as noted in Proposition 2.2.17, it suffices to show that [ε] − 1

is not divisible by ξ2 in B+
dR.

Suppose for contradiction that [ε]− 1 lies in ξ2B+
dR. Proposition 2.2.17 shows that [ε]− 1

maps to 0 under the projection B+
dR ↠ Ainf [1/p]/ ker(θ[1/p])2. Hence Proposition 2.2.12 and

Lemma 2.2.15 together imply that [ε] − 1 is divisible by ξ2 in Ainf . Since the first terms in

the Teichmüller expansions for [ε] − 1 and ξ2 are respectively [ε− 1] and [(p♭)2], we have

ν♭(ε− 1) ≥ ν♭((p♭)2) = 2ν♭(p♭) = 2ν((p♭)
♯
) = 2ν(p) = 2.

If p is odd, we find ν♭(ε− 1) < 2 by Lemma 2.2.22 and in turn obtain a desired contradiction.
For p = 2, we write [ε] − 1 = ξ2a for some a ∈ Ainf and compare the coefficients of p in
the Teichmüller expansions using Proposition 2.3.7 from Chapter II to deduce the equality
ε−1 = c21(p

♭)4, where c1 denotes the coefficient of p in the Teichmüller expansion of a. Hence
for p = 2 we have

ν♭(ε− 1) ≥ ν♭((p♭)4) = 4ν♭(p♭) = 4ν((p♭)
♯
) = 4ν(p) = 4

and accordingly obtain a desired contradiction by Lemma 2.2.22.

It remains to establish statement (2). If m is an integer, we have

log((1 + x)m) = m log(1 + x)

as formal power series and thus set x = ε − 1 to find log(εm) = m log(ε). For the general
case, let us choose a sequence (mn) of integers with each mn − m divisible by pn. It is
straightforward to verify the equality

lim
n!∞

εmn = εm,

for example by writing ε = (ζpn) with each ζpn being a primitive pn-th root of unity in K.
Hence we apply Proposition 2.2.20 to find

log(εm) = log
(

lim
n!∞

εmn

)
= lim

n!∞
log(εmn) = lim

n!∞
mn log(ε) = m log(ε),

thereby completing the proof. □

Remark. We can adjust our argument in the first paragraph to show that the power series
for log(ε) converges under the discrete valuation topology on B+

dR. Hence the topology given
by Proposition 2.2.20 is not necessary for constructing the cyclotomic logarithm.

Definition 2.2.24. A cyclotomic uniformizer of B+
dR is an element of the form t = log(ε) for

some basis element ε of Zp(1).

Proposition 2.2.25. A cyclotomic uniformizer of B+
dR is unique up to Z×

p -multiple.

Proof. The assertion is evident by Proposition 2.2.23. □
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Theorem 2.2.26 (Fontaine [Fon82]). The ring BdR admits a natural action of ΓK with the
following properties:

(i) The cyclotomic logarithm and θ+dR are ΓK-equivariant.

(ii) Given a cyclotomic uniformizer t ∈ B+
dR, we have γ(t) = χ(γ)t for every γ ∈ ΓK .

(iii) Every cyclotomic uniformizer t ∈ B+
dR yields a natural ΓK-equivariant isomorphism⊕

n∈Z
tnB+

dR/t
n+1B+

dR
∼=
⊕
n∈Z

CK(n) = BHT.

(iv) BdR is (Qp,ΓK)-regular with a canonical identification BΓK
dR

∼= K.

Proof. Let us first describe the natural action of ΓK on BdR. The action of ΓK on CK
naturally induces an action on F = lim −

x 7!xp
CK as the p-th power map on CK is ΓK-equivariant.

In fact, given an arbitrary element x = (xn) ∈ F we have γ(x) = (γ(xn)) for every γ ∈ ΓK .
Since OF is stable under the action of ΓK , we apply Theorem 2.3.1 in Chapter II to obtain a
natural action of ΓK on Ainf [1/p] with

γ
(∑

[cn]pn
)

=
∑

[γ(cn)]pn for each γ ∈ ΓK and cn ∈ OF .

Now we find that θ and θ[1/p] are both ΓK-equivariant by construction, whicn in particular
implies that both ker(θ) and ker(θ[1/p]) are stable under the action of ΓK . Hence ΓK naturally
acts on B+

dR = lim −iAinf [1/p]/ ker(θ[1/p])i and its fraction field BdR.

With our discussion in the preceding paragraph, property (i) is straightforward to verify.
Moreover, property (i) and Proposition 2.2.23 togther show that every γ ∈ ΓK acts on a
cyclotomic uniformizer t = log(ε) ∈ B+

dR by the relation

γ(t) = γ(log(ε)) = log(γ(ε)) = log(εχ(γ)) = χ(γ) log(ε) = χ(γ)t

and thus yield property (ii). Now we note by property (i) that the natural isomorphism

B+
dR/tB

+
dR = B+

dR/ ker(θ+dR) ∼= CK
is ΓK-equivariant and in turn obtain a ΓK-equivariant isomorphism

tnB+
dR/t

n+1B+
dR ≃ CK(n) for every n ∈ Z

by property (ii) and Lemma 3.1.3 in Chapter II. Since Proposition 2.2.25 shows that a cyclo-
tomic uniformizer of B+

dR is unique up to Z×
p -multiple, we deduce that this isomorphism is

canonical and consequently establish property (iii).

It remains to verify property (iv). Example 1.1.2 shows that BdR is (Qp,ΓK)-regular for
being a field extension of Qp. In addition, property (i) implies that the natural injective

homomorphism K ↪! B+
dR given by Proposition 2.2.19 is ΓK-equivariant and in turn induces

an injective homomorphism

K = K
ΓK ↪−! (B+

dR)ΓK ↪−! BΓK
dR . (2.6)

Now by property (iii) we get an injective K-algebra homomorphism⊕
n∈Z

(BΓK
dR ∩ tnB+

dR)/(BΓK
dR ∩ tn+1B+

dR) ↪−! BΓK
HT .

Since we have BΓK
HT

∼= K by Theorem 3.1.11 in Chapter II, the K-algebra on the source has

dimension at most 1. Hence we find dimK B
ΓK
dR ≤ 1 and in turn deduce that the map (2.6) is

an isomorphism, thereby completing the proof. □
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2.3. Filtered vector spaces

In this subsection, we set up a categorical framework for our discussion of BdR-admissible
representations in the next subsection.

Definition 2.3.1. Let L be an arbitrary field.

(1) A filtration on a vector space V over L is a collection of subspaces { Filn(V ) }n∈Z
with Filn(V ) ⊇ Filn+1(V ) for every n ∈ Z.

(2) A filtered vector space over L is an L-vector space V with a filtration { Filn(V ) }n∈Z
that satisfies the relations

⋂
n∈Z

Filn(V ) = 0 and
⋃
n∈Z

Filn(V ) = V .

(3) A graded vector space over L is an L-vector space V with a decomposition V =
⊕
n∈Z

Vn.

(4) For a filtered vector space V over L, its associated graded vector space is

gr(V ) :=
⊕
n∈Z

grn(V ) with grn(V ) :=
⊕
n∈Z

Filn(V )/Filn+1(V ).

Remark. Many authors do not require the relations
⋂
n∈Z

Filn(V ) = 0 and
⋃
n∈Z

Filn(V ) = V

for a filtered vector space V .

Example 2.3.2. We present some examples given by Proposition 1.1.10 and Theorem 2.2.26.

(1) The de Rham period ring BdR is a filtered K-algebra with

Filn(BdR) := tnB+
dR and gr(BdR) ∼= BHT

where t is a cyclotomic uniformizer of B+
dR.

(2) Every V ∈ RepQp
(ΓK) naturally gives rise to a graded K-vector space

DHT(V ) := (V ⊗Qp BHT)ΓK =
⊕
n∈Z

(V ⊗Qp CK(n))ΓK

and a filtered K-vector space

DdR(V ) := (V ⊗Qp BdR)ΓK with Filn(DdR(V )) := (V ⊗Qp t
nB+

dR)ΓK .

Definition 2.3.3. Let L be an arbitrary field.

(1) Given filtered vector spaces V and W over L, an L-linear map f : V !W is filtered
if it maps each Filn(V ) into Filn(W ).

(2) Given graded vector spaces V =
⊕
n∈Z

Vn and W =
⊕
n∈Z

Wn over L, an L-linear map

f : V !W is graded if it maps each Vn into Wn.

Remark. A filtered isomorphism is a filtered bijection with a filtered inverse. Similarly, a
graded isomorphism is a graded bijection with a graded inverse.

Example 2.3.4. As mentioned in Chapter I, every proper smooth variety X over K yields a
canonical K-linear graded isomorphism

DHT(Hn
ét(XK ,Qp)) ∼=

⊕
i+j=n

H i(X,Ωj
X/K)

and a canonical K-linear filtered isomorphism

DdR(Hn
ét(XK ,Qp)) ∼= Hn

dR(X/K).
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Proposition 2.3.5. Let V =
⊕
n∈Z

Vn be a graded vector space over a field L.

(1) Given a graded vector space W =
⊕
n∈Z

Wn over L, the tensor product V ⊗L W is

naturally a graded L-vector space with

V ⊗LW =
⊕
n∈Z

 ⊕
i+j=n

Vi ⊗LWj

 .

(2) The dual V ∨ is naturally a graded L-vector space with V ∨ =
⊕
n∈Z

V ∨
−n.

Proof. The assertions are stragithforward to verify. □

Proposition 2.3.6. Let V be a filtered vector space over a field L.

(1) Given a filtered L-vector space W , the tensor product V ⊗LW is naturally a filtered
L-vector space with

Filn(V ⊗LW ) =
∑
i+j=n

Fili(V ) ⊗L Filj(W ) for every n ∈ Z.

(2) The dual V ∨ is naturally a filtered L-vector space with

Filn(V ∨) =
{
f ∈ V ∨ : Fil1−n(V ) ⊆ ker(f)

} ∼=
(
V/Fil1−n(V )

)∨
for every n ∈ Z.

Proof. The assertions are stragithforward to verify. □

Example 2.3.7. Every field L is canonically a filtered vector space over itself with

Filn(L) =

{
L for n ≤ 0,

0 for n > 0.

Given a filtered vector space V over L, we find

Filn(V ⊗L L) =
∑
i+j=n

Fili(V ) ⊗L Filj(L) ∼=
∑
i≥n

Fili(V ) = Filn(V ) for every n ∈ Z

by Proposition 2.3.6 and consequently obtain canonical filtered isomorphisms

V ∼= V ⊗L L ∼= L⊗L V.

Moreover, the natural linear bijection L ∼= L∨ is a filtered isomorphism as Proposition 2.3.6
yields an identification

Filn(L∨) ∼=
(
L/Fil1−n(L)

)∨ ∼=

{
L for n ≤ 0,

0 for n > 0.

Proposition 2.3.8. Given a filtered vector space V over a field L, the natural L-linear
bijection V ∼= (V ∨)∨ is a filtered isomorphism.

Proof. For every n ∈ Z, we apply Proposition 2.3.6 to find

V ∨/Fil1−n(V ∨) ∼= V ∨/ (V/Filn(V ))∨ ∼= Filn(V )∨

and in turn obtain an identification

Filn
(
(V ∨)∨

) ∼= (V ∨/Fil1−n(V ∨)
)∨ ∼= Filn(V )

as desired. □
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Proposition 2.3.9. Let V be a filtered vector space over a field L.

(1) Given a finite dimensional filtered L-vector space W , there exists a natural graded
isomorphism

gr(V ⊗LW ) ∼= gr(V ) ⊗L gr(W ).

(2) The dual V ∨ yields a natural graded isomorphism

gr(V ∨) ∼= gr(V )∨.

Proof. Let us begin with statement (1). By Proposition 2.3.5, it suffices to establish a
canonical identification

grn(V ⊗LW ) ∼=
⊕
i+j=n

gri(V ) ⊗L grj(W ) for every n ∈ Z. (2.7)

Since W is finite dimensional, we have Filr(W ) = W and Fils(W ) = 0 for some r, s ∈ Z.
Hence Proposition 2.3.6 yields a natural isomorphism

Filn(V ⊗LW ) =
s∑
j=r

Filn−j(V ) ⊗L Filj(W ) for every n ∈ Z.

We can construct a basis (vi,i′) of V such that each Film(V ) with n− s ≤ m ≤ n− r+ 1 has a

basis (vi,i′)i≥m; indeed, we may fix a basis for Filn−r+1(V ) and inductively extend a basis for

each Film(V ) to Film−1(V ). Similarly, we can find a basis (wj,j′) of W such that each Film(W )

has a basis (wj,j′)j≥m. Let us denote the image of each vi,i′ under the map Fili(V ) ↠ gri(V )

by vi,i′ and the image of each wj,j′ under the map Filj(W ) ↠ grj(W ) by wj,j′ . We obtain
the isomorphism (2.7) by observing that both sides admit a basis (vi,i′ ⊗ wj,j′)i+j=n. It is
straightforward to verify that this isomorphism does not depend on bases (vi,i′) and (wj,j′).

It remains to establish statement (2). For every n ∈ Z we apply Proposition 2.3.6 to find

grn(V ∨) ∼= Filn(V ∨)/Filn+1(V ∨) ∼=
(
V/Fil1−n(V )

)∨
/
(
V/Fil−n(V )

)∨
∼=
(
Fil−n(V )/Fil−n+1(V )

)∨ ∼= gr−n(V )∨.

Hence we deduce the desired assertion from Proposition 2.3.5. □

Proposition 2.3.10. Given a field L, a bijective L-linear filtered map f : V !W is a filtered
isomorphism if and only if the induced map gr(f) : gr(V )! gr(W ) is bijective.

Proof. If f is a filtered isomorphism, the induced map gr(f) is clearly a graded isomor-
phism. Conversely, let us henceforth assume that gr(f) is bijective. We wish to show that for
every n ∈ Z the induced map Filn(f) : Filn(V )! Filn(W ) is an isomorphism. The bijectivity
of f implies that each Filn(f) is injective. Hence it remains to show that each Filn(f) is
surjective. For every n ∈ Z we obtain a commutative diagram

0 Filn+1(V ) Filn(V ) grn(V ) 0

0 Filn+1(W ) Filn(W ) grn(W ) 0

Filn+1(f) Filn(f) grn(f)

with exact rows. Since each grn(f) is bijective, the snake lemma implies that the inclusion
Filn+1(W ) ↪! Filn(W ) induces a canonical isomorphism coker(Filn(f)) ∼= coker(Filn+1(f)).
Moreover, every w ∈ Filn(W ) lies in the image of Film(V ) for some m < n by the surjectivity
of f and thus has zero image in coker(Film(f)) ∼= coker(Filn(f)). Hence we deduce that each
coker(Filn(f)) vanishes as desired. □
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2.4. Properties of de Rham representations

For the rest of this chapter, we write VectK , FilK , and GrdK respectively for the categories
of K-vector spaces, filtered K-vector spaces, and graded K-vector spaces. In addition, we fix
a cyclotomic uniformizer t = log(ε) of B+

dR for some basis element ε of Zp(1).

Definition 2.4.1. Let V be a p-adic ΓK-representation.

(1) We refer to DHT(V ) and DdR(V ) in Example 2.3.2 respectively as the Hodge-Tate
graded space and the de Rham filtered space associated to V .

(2) We say that V is de Rham if it is BdR-admissible.

Example 2.4.2. For every proper smooth varietyX overK, the étale cohomologyHn
ét(XK ,Qp)

is de Rham as briefly discussed in Chapter I.

Proposition 2.4.3. If a p-adic ΓK-representation V is de Rham, it is Hodge-Tate with a
natural K-linear graded isomorphism

gr(DdR(V )) ∼= DHT(V ).

Proof. For every n ∈ Z we have a short exact sequence

0 −! tn+1B+
dR −! tnB+

dR −! tnB+
dR/t

n+1B+
dR −! 0,

which induces an exact sequence

0 −!
(
V ⊗Qp t

n+1B+
dR

)ΓK −!
(
V ⊗Qp t

nB+
dR

)ΓK −!
(
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK

and in turn yields an injective K-linear map

grn(DdR(V )) = Filn(DdR(V ))/Filn+1(DdR(V )) ↪−!
(
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK .

Hence we obtain an injective K-linear graded map

gr(DdR(V )) ↪−!
⊕
n∈Z

(
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK ∼= (V ⊗Qp BHT)ΓK = DHT(V )

with the first identification given by Theorem 2.2.26. Moreover, we find

dimK DdR(V ) = dimK gr(DdR(V )) ≤ dimK DHT(V ) ≤ dimQp V

where the last inequality follows from Theorem 1.2.1. Since V is de Rham, both inequalities
are indeed equalities and thus yield the desired assertion. □

Proposition 2.4.4. Given a de Rham ΓK-representation V , we have grn(DdR(V )) ̸= 0 if and
only if n is a Hodge-Tate weight of V .

Proof. The assertion is an immediate consequence of Proposition 2.4.3. □

Remark. Proposition 2.4.4 shows that Hodge-Tate weights of V under our sign convention
coincide with the locations of jumps in the filtration of DdR(V ).

Example 2.4.5. Every Tate twist Qp(n) of Qp is de Rham; indeed, the inequality

dimK DdR(Qp(n)) ≤ dimQp Qp(n) = 1

given by Theorem 1.2.1 is an equality, as DdR(Qp(n)) = (Qp(n)⊗QpBdR)ΓK contains a nonzero

element 1 ⊗ t−n by Theorem 2.2.26. In addition, Qp(n) has a unique Hodge-Tate weight −n
as noted in Example 1.1.15. Hence Proposition 2.4.4 yields an identification

Film(DdR(Qp(n))) ∼=

{
K for m ≤ −n,
0 for m > −n.
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For the rest of this subsection, we denote by RepdR
Qp

(ΓK) the category of de Rham
ΓK-representations.

Lemma 2.4.6. Given an integer n, a p-adic ΓK-representation V is de Rham if and only if its
Tate twist V (n) is de Rham.

Proof. Since we have V (n) ∼= V ⊗Qp Qp(n) and V ∼= V (n) ⊗Qp Qp(−n), the assertion
follows from Proposition 1.2.4 and Example 2.4.5. □

Example 2.4.7. Let V be an extension of Qp(m) by Qp(n) with m < n. We assert that V
is de Rham. By Lemma 2.4.6, we may assume the equality m = 0 so that V fits into a short
exact sequence

0 −! Qp(n) −! V −! Qp −! 0. (2.8)

The functor DdR is left exact by construction and thus yields an exact sequence

0 −! DdR(Qp(n)) −! DdR(V ) −! DdR(Qp).

We wish to establish the identity dimK DdR(V ) = dimQp V = 2. Since we have

dimK DdR(Qp(n)) = dimK DdR(Qp) = 1

by Example 2.4.5, it suffices to show the surjectivity of the map DdR(V )! DdR(Qp) ∼= K.

The sequence (2.8) gives rise to a short exact sequence

0 −! Qp(n) ⊗Qp B
+
dR −! V ⊗Qp B

+
dR −! Qp ⊗Qp B

+
dR −! 0.

In addition, Theorem 2.2.26 yields natural identifications

(Qp(n) ⊗Qp B
+
dR)ΓK ∼= (tnB+

dR)ΓK = 0 and (Qp ⊗Qp B
+
dR)ΓK ∼= (B+

dR)ΓK ∼= K.

Hence we obtain a long exact sequence

0 −! 0 −! (V ⊗Qp B
+
dR)ΓK −! K −! H1(ΓK , t

nB+
dR).

Since we have (V ⊗Qp B
+
dR)ΓK ⊆ DdR(V ), it is enough to prove that H1(ΓK , t

nB+
dR) vanishes.

By Theorem 2.2.26 we have a short exact sequence

0 −! tn+1B+
dR −! tnB+

dR −! CK(n) −! 0,

which in turn induces a long exact sequence

CK(n)ΓK −! H1(ΓK , t
n+1B+

dR) −! H1(ΓK , t
nB+

dR) −! H1(ΓK ,CK(n)).

Now Theorem 3.1.11 in Chapter II implies that there exists an identification

H1(ΓK , t
n+1B+

dR) ∼= H1(ΓK , t
nB+

dR). (2.9)

Hence by induction we only need to show that H1(ΓK , tB
+
dR) vanishes.

Take an arbitrary cocycle α0 : ΓK ! tB+
dR. For each i ≥ 1, we use the identification (2.9)

to inductively construct a cocycle αi : ΓK ! ti+1B+
dR and an element bi ∈ tiB+

dR with

αi(γ) = αi−1(γ) + γ(bi) − bi for every γ ∈ ΓK .

Since t is a uniformizer in B+
dR, we take b =

∑
bi ∈ B+

dR and find

α0(γ) + γ(b) − b = 0 for every γ ∈ ΓK .

We deduce that α0 has trivial image in H1(ΓK , tB
+
dR), thereby completing the proof.

Remark. It is a highly nontrivial fact that every non-splitting extension of Qp(1) by Qp is
not de Rham, even though it is Hodge-Tate as noted in Example 1.1.12.
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Proposition 2.4.8. Every de Rham ΓK-representation V admits a natural ΓK-equivariant
K-linear filtered isomorphism

DdR(V ) ⊗K BdR
∼= V ⊗Qp BdR.

Proof. Since V is de Rham, Theorem 1.2.1 implies that the natural BdR-linear map

DdR(V ) ⊗K BdR −! (V ⊗Qp BdR) ⊗K BdR
∼= V ⊗Qp (BdR ⊗K BdR) −! V ⊗Qp BdR

is ΓK-equivariant and bijective. Moreover, this map is filtered as each arrow is evidently
filtered. Now by Proposition 2.3.10, it suffices to show the bijectivity of the induced map

gr(DdR(V ) ⊗K BdR) −! gr(V ⊗Qp BdR). (2.10)

Proposition 2.4.3 shows that V is Hodge-Tate with a natural isomorphism

gr(DdR(V )) ∼= DHT(V ).

We apply Theorem 2.2.26 and Proposition 2.3.9 to obtain canonical isomorphisms

gr(DdR(V ) ⊗K BdR) ∼= gr(DdR(V )) ⊗K gr(BdR) ∼= DHT(V ) ⊗K BHT,

gr(V ⊗Qp BdR) ∼= V ⊗Qp gr(BdR) ∼= V ⊗Qp BHT.

Hence we identify the map (2.10) with the natural map

DHT(V ) ⊗K BHT −! V ⊗Qp BHT

given by Theorem 1.2.1 and in turn deduce the desired assertion from Proposition 2.4.3. □

Remark. In our proof of Proposition 2.4.8, the finiteness of dimQp(V ) and dimK(DdR(V ))
are crucial for applying Proposition 2.3.9.

Proposition 2.4.9. The functor DdR with values in FilK is faithful and exact on RepdR
Qp

(ΓK).

Proof. Since the forgetful functor FilK ! VectK is faithful, Proposition 1.2.2 im-
plies that DdR is faithful on RepdR

Qp
(ΓK). Hence it remains to verify that DdR is exact

on RepdR
Qp

(ΓK). Consider an exact sequence of de Rham ΓK-representations

0 −! U −! V −!W −! 0. (2.11)

For every n ∈ Z, we have an exact sequence

0 −! Filn(DdR(U)) −! Filn(DdR(V )) −! Filn(DdR(W )). (2.12)

We wish to show that this sequence extends to a short exact sequence. Proposition 1.2.2
implies that the sequence (2.11) gives rise to a short exact sequence of K-vector spaces

0 −! DHT(U) −! DHT(V ) −! DHT(W ) −! 0.

It is straightforward to verify that this sequence is indeed a short exact sequence in GrdK .
Therefore Proposition 2.4.3 yields a short exact sequence of graded K-vector spaces

0 −! gr(DdR(U)) −! gr(DdR(V )) −! gr(DdR(W )) −! 0.

Now for every n ∈ Z we find

dimK Filn(DdR(V )) =
∑
i≥n

dimK gri(DdR(V ))

=
∑
i≥n

dimK gri(DdR(U)) +
∑
i≥n

dimK gri(DdR(W ))

= dimK Filn(DdR(U)) + dimK Filn(DdR(W ))

and in turn deduce that the sequence (2.12) extends to a short exact sequence as desired. □
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Proposition 2.4.10. Given a de Rham ΓK-representation V , every subquotient W of V is
de Rham with DdR(W ) naturally identified as a subquotient of DdR(V ) in FilK .

Proof. The assertion is evident by Proposition 1.2.3 and Proposition 2.4.9. □

Proposition 2.4.11. Given two de Rham ΓK-representations V and W , their tensor product
V ⊗Qp W is de Rham with a natural K-linear filtered isomorphism

DdR(V ) ⊗K DdR(W ) ∼= DdR(V ⊗Qp W ). (2.13)

Proof. Proposition 1.2.4 shows that V ⊗QpW is de Rham and yields the desired isomor-
phism (2.13) as a K-linear bijection. Since the construction of the map (2.13) rests on the
multiplicative of BdR, it is straightforward to verify that the map (2.13) is filtered. Moreover,
we apply Proposition 2.4.3 and Proposition 2.3.9 to identify the induced map

gr(DdR(V ) ⊗K DdR(W )) −! gr(DdR(V ⊗Qp W )).

with the natural isomorphism

DHT(V ) ⊗K DHT(W ) ∼= DHT(V ⊗Qp W )

given by Proposition 1.2.4. Now we deduce from Proposition 2.3.10 that the map (2.13) is a
K-linear filtered isomorphism, thereby completing the proof. □

Example 2.4.12. Given a de Rham ΓK-representation V , we have

Film(DdR(V (n))) ∼= Film+n(DdR(V )) for each m, n ∈ Z
by Proposition 2.3.6, Example 2.4.5, and Proposition 2.4.11.

Proposition 2.4.13. Given a de Rham ΓK-representation V and a positive integer n, both
∧n(V ) and Symn(V ) are de Rham with natural K-linear filtered isomorphisms

∧n(DdR(V )) ∼= DdR(∧n(V )) and Symn(DdR(V )) ∼= DdR(Symn(V )).

Proof. Proposition 1.2.5 shows that both ∧n(V ) and Symn(V ) are de Rham. Moreover,
Proposition 1.2.5 yields the desired isomorphisms as K-linear bijections. Proposition 2.4.10
and Proposition 2.4.11 together imply that these maps are filtered isomorphisms. □

Proposition 2.4.14. For every de Rham ΓK-representation V , the dual representation V ∨

is de Rham with a natural K-linear filtered perfect paring

DdR(V ) ⊗K DdR(V ∨) ∼= DdR(V ⊗Qp V
∨) −! DdR(Qp) ∼= K.

Proof. Proposition 1.2.7 shows that V ∨ is de Rham and yields the desired pairing as a
K-linear perfect pairing. This pairing is filtered by Proposition 2.4.11 and thus gives rise to
a filtered K-linear bijection

DdR(V )∨ −! DdR(V ∨). (2.14)

Moreover, we apply Proposition 2.3.9 and Proposition 2.4.3 to identify the induced map

gr(DdR(V )∨) −! gr(DdR(V ∨))

with the natural isomorphism
DHT(V )∨ ∼= DHT(V ∨)

given by Proposition 1.2.7. Now we deduce from Proposition 2.3.10 that the map (2.14) is a
K-linear filtered isomorphism, thereby completing the proof. □

Remark. Proposition 2.3.8 and Proposition 2.4.14 together show that the canonical isomor-
phism V ∼= (V ∨)∨ induces a natural K-linear filtered isomorphism DdR(V ) ∼= (DdR(V )∨)∨.



2. DE RHAM REPRESENTATIONS 107

Definition 2.4.15. Given an extension L of K with an action of a group Γ, a semilinear
Γ-module over L is an L-vector space M which carries a continuous Γ-action with

γ(cm) = γ(c)γ(m) for each γ ∈ Γ, c ∈ L, and m ∈M.

Lemma 2.4.16. Let L be a finite extension of K.

(1) L is naturally a p-adic field.

(2) If L is Galois over K, every semilinear Gal(L/K)-module M over L admits a canon-
ical isomorphism

M ∼= MGal(L/K) ⊗K L.

Proof. Statement (1) is straightforward to verify. For statement (2), let us now assume
that L is Galois over K. Denote by GalModL/K the category of semilinear Gal(L/K)-modules,
where morphisms are Gal(L/K)-equivariant L-linear maps. A general fact stated in the Stacks
Project [Sta, Tag 0CDR] yields an equivalence

GalModL/K ∼= VectK

which sends each M ∈ GalModL/K to MGal(L/K) with the inverse sending each V ∈ VectK
to V ⊗K L. Hence we establish the desired assertion. □

Remark. Lemma 2.4.16 admits an analogue for p-adic completion K̂un of the maximal un-

ramified extension Kun of K; indeed, K̂un is a p-adic field with a natural Γk-action such that

every semilinear Γk-module M over K̂un admits a canonical isomorphism M ∼= MΓk ⊗K K̂un.

Proposition 2.4.17. Let V be a p-adic ΓK-representation and L be a finite extension of K.

(1) There exists a natural L-linear filtered isomorphism

DdR,K(V ) ⊗K L ∼= DdR,L(V )

where we set DdR,K(V ) := (V ⊗Qp BdR)ΓK and DdR,L(V ) := (V ⊗Qp BdR)ΓL .

(2) V is de Rham if and only if it is de Rham as a p-adic ΓL-representation.

Proof. Lemma 2.4.16 shows that L and its Galois closure L′ in K are p-adic fields. If
we set DdR,L′(V ) := (V ⊗Qp BdR)ΓL′ , we have

DdR,K(V ) ⊗K L = (DdR,K(V ) ⊗K L′)Gal(L′/L) and DdR,L(V ) = DdR,L′(V )Gal(L′/L).

Hence we may replace L by L′ to assume that L is Galois over K. Now we find

Filn(DdR,K(V )) = Filn(DdR,L(V ))Gal(L/K) for every n ∈ Z
and in turn obtain statement (1) by Lemma 2.4.16. Statement (2) is an immediate consequence
of statement (1). □

Remark. We can extend Proposition 2.4.17 to every p-adic field L with K ⊆ L ⊆ CK by the
remark following Lemma 2.4.16. Hence every CK-admissible ΓK-representation is de Rham
by a result of Sen [Sen80] stated after Theorem 1.1.7.

Example 2.4.18. Given a continuous character η : ΓK ! Q×
p with finite image, the corre-

sponding ΓK-representation Qp(η) is de Rham with a K-linear filtered isomorphism

DdR(Qp(η)) ∼= K ∼= DdR(Qp). (2.15)

In fact, if we take a finite extension L of K with ΓL ⊆ ker(η), Proposition 2.4.17 yields an
L-linear filtered isomorphism DdR(Qp(η))⊗KL ∼= L which induces to the isomorphism (2.15).

Remark. Example 2.4.18 shows that DdR : RepdR
Qp

(ΓK)! FilK is not fully faithful.

https://stacks.math.columbia.edu/tag/0CDR
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We close this section by introducing the Fontaine-Mazur conjecture, which proposes a
classification of global p-adic representations arising from algebraic geometry.

Conjecture 2.4.19 (Fontaine-Mazur [FM95]). Let E be a number field and denote by OE its
ring of integers. An irreducible p-adic ΓE-representation V is a subquotient of Hn

ét(XQ,Qp(m))
for some proper smooth E-variety X if and only if it satisfies the following properties:

(i) V is unramified at all but finitely many prime ideals of OE in the sense that the
inertia group at each of these prime ideals acts trivially on V .

(ii) V is de Rham at each prime ideal p of OE lying over p in the sense that the restriction
of V to ΓEp is de Rham.

Remark. Let us explain the necessity of properties (i) and (ii). We take E = Q for notatoinal
simplicity. It is a standard fact that every proper smooth variety X over Q has good reduction
at all but finitely many primes. If X has good reduction at a prime ℓ ̸= p, we deduce from a
general fact about the étale cohomology that there exists a ΓQℓ

-equivariant isomorphism

Hn
ét(XQℓ

,Qp) ∼= Hn
ét(XFℓ

,Qp),

where X denotes the mod ℓ reduction of X, and thus find that the inertia group at ℓ acts
trivially on the Tate twists of Hn

ét(XQℓ
,Qp) and their subquotients. Moreover, Theorem 1.2.3

in Chapter I shows that Hn
ét(XQp

,Qp) is de Rham, which in turn implies that the Tate twists

of Hn
ét(XQp

,Qp) and their subquotients are de Rham by Lemma 2.4.6 and Proposition 2.4.10.

Conjecture 2.4.19 has a very surprising implication that the behavior of a p-adic
ΓE-representation V at prime ideals lying over p affects the behavior of V at other prime
ideals. We continue to take E = Q for notational simplicity. If the p-adic étale cohomology of
a proper smooth variety X over Q is unramified at a prime ℓ, the eigenvalues of the Frobenius
element in ΓQℓ

turn out to be algebraic numbers. Hence for a p-adic ΓQ-representation V
which are unramified at almost all primes, being de Rham at p should force the eigenvalues
of the Frobenius at all unramified primes to be algebraic.

If V is one-dimensional, Conjecture 2.4.19 holds essentially by results of Weil [Wei56] and
Serre [Ser68]. For E = Q, the key fact is that every one-dimensional p-adic ΓQ-representation
with properties (i) and (ii) corresponds to a Tate twist of a continuous character η : ΓQ ! Q×

p

with finite order. We may regard the values of such a character η as elements of a number
field which contains sufficiently many roots of unity and thus deduce that η arises from the
etale cohomology of a zero-dimensional smooth variety over Q. For a general number field E,
a similar argument applies after some modifications.

If V is two-dimensional, the results of Kisin [Kis09], Emerton [Eme11], and Pan [Pan22]
verify Conjecture 2.4.19 under some additional assumptions. These results exploit a tidy
connection between two-dimensional Galois representations and certain holomorphic complex
functions called modular forms. A key ingredient for these results is a refinement of the method
developed by Taylor-Wiles [TW95], commonly referred to as the Taylor-Wiles patching, which
has numerous applications including the proof of Fermat’s Last Theorem by Wiles [Wil95].

The natural local analogue of Conjecture 2.4.19 is false. In other words, if K is a finite
extension of Qp there exists a de Rham ΓK-representation which is not a subquotient of
Hn

ét(XK ,Qp(m)) for a proper smooth variety X over K. The main issue is that the p-adic
étale cohomology of a proper smooth variety X over K satisfies certain arithmetic property;
for example, if X has good reduction the eigenvalues for the Frobenius elements in ΓK must
be algebraic.



3. CRYSTALLINE REPRESENTATIONS 109

3. Crystalline representations

In this section, we define and study the crystalline period ring and crystalline representa-
tions. Our primary references for this section are the notes of Brinon-Conrad [BC, §9] and
the notes of Fontaine-Ouyang [FO, §7].

3.1. The crystalline period ring Bcris

Throughout this section, we denote by K0 the fraction field of W (k). Let us recall that we
have fixed a cyclotomic uniformizer t = log(ε) of B+

dR for some ε ∈ Zp(1) and a distinguished

element ξ = [p♭] − p ∈ Ainf for some p♭ ∈ OF with (p♭)
♯

= p.

Definition 3.1.1. The integral crystalline period ring, denoted by Acris, is the p-adic com-
pletion of the Ainf -subalgebra A0

cris in Ainf [1/p] generated by the elements ξn/n! with n ≥ 0.

Lemma 3.1.2. The elements ξn/n! ∈ A0
cris with n ≥ 0 generate A0

cris as an Ainf -module.

Proof. Since we have

ξm

m!
· ξ

n

n!
=

(
m+ n

n

)
ξm+n

(m+ n)!
for m,n ≥ 0,

the assertion is straightforward to verify. □

Proposition 3.1.3. The ring Ainf [[ξ/p]] is a p-adically complete subring of B+
dR.

Proof. Proposition 2.2.17 shows that Ainf [[ξ/p]] is a subring of B+
dR. Let us consider the

natural ring homomorphism

η : Ainf [[ξ/p]] −! lim −
n

Ainf [[ξ/p]]/p
nAinf [[ξ/p]].

We wish to show that η is an isomorphism.

Take an arbitrary element b ∈ ker(η). For every n ≥ 1, we may write

b = pn
∞∑
i=0

an,i
ξi

pi
with an,i ∈ Ainf .

We have θ+dR(b) = pnθ+dR(an,0) ∈ pnOCK
for each n ≥ 1 and thus find θ+dR(b) = 0. We see that

each an,0 satisfies the equality θ+dR(an,0) = 0, which means by Proposition 2.2.12 that each
an,0 is divisible by ξ in Ainf . Moreover, we obtain the relation

b

ξ
= pn−1

(
(
pan,0
ξ

+ an,1) +
∞∑
i=2

an,i
ξi−1

pi−1

)
∈ pn−1Ainf [[ξ/p]] for every n ≥ 1

and in turn find b/ξ ∈ ker(η). Now a simple induction shows that b is infinitely divisible by ξ
in Ainf [[ξ/p]] and thus is zero. We deduce that η is injective.

It remains to show that η is surjective. Choose an arbitrary sequence (b′n) in Ainf [[ξ/p]]
with b′n+1 − b′n ∈ pnAinf [[ξ/p]] for every n ≥ 0. For each n ≥ 0, we may write

b′n+1 − b′n = pn
∞∑
i=0

a′n,i
ξi

pi
with a′n,i ∈ Ainf .

We take a′i :=

∞∑
n=0

a′n,ip
n ∈ Ainf and see that b′ := b′0 +

∞∑
i=0

a′i
ξi

pi
∈ Ainf [[ξ/p]] satisfies the

relation b′ − b′n ∈ pnAinf [[ξ/p]] for every n ≥ 0. Hence η is surjective as desired. □
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Proposition 3.1.4. The ring Acris is naturally a subring of B+
dR with an identification

Acris =

{ ∞∑
n=0

an
ξn

n!
∈ B+

dR : an ∈ Ainf with lim
n!∞

an = 0

}
.

Proof. Since A0
cris is naturally a subring of Ainf [[ξ/p]] by construction, Proposition 3.1.3

yields canonical injective maps

A0
cris ↪−! Acris ↪−! Ainf [[ξ/p]] ↪−! B+

dR.

In addition, it is not difficult to see that every element b =

∞∑
n=0

an
ξn

n!
∈ B+

dR with an ∈ Ainf

and lim
n!∞

an = 0 lies in Acris; indeed, we take the maximum integer nm with anm /∈ pmAinf

for each m ≥ 1 and set bm :=

nm∑
n=0

an
ξn

n!
∈ A0

cris to find b − bm ∈ pmAinf [[ξ/p]]. Let us now

consider an arbitrary sequence (b′n) in A0
cris with b′n+1− b′n ∈ pnA0

cris for every n ≥ 0. We note
that each b′n+1 − b′n admits an expression

b′n+1 − b′n = pn
∞∑
i=0

a′n,i
ξi

i!
with a′n,i ∈ Ainf

where the sum has finitely many nonzero terms. Take a′i :=

∞∑
n=0

a′n,ip
n ∈ Ainf for each i ≥ 0

and set b′ := b′0 +
∞∑
i=0

a′i
ξi

i!
∈ B+

dR. We find b′ − b′n ∈ pnAinf [[ξ/p]] for every n ≥ 0 and in

turn see that (b′n) converges to b′. Moreover, we have lim
i!∞

a′i = 0 as there exists an increasing

sequence (ln) in Z with a′n,i = 0 for each i > ln. Hence we establish the desired assertion. □

Proposition 3.1.5. The element t ∈ B+
dR lies in Acris.

Proof. Since we have [ε] − 1 = ξc for some c ∈ Ainf by Lemma 2.2.22, we find

t =
∞∑
n=1

(−1)n+1 ([ε] − 1)n

n
=

∞∑
n=1

(−1)n+1(n− 1)!cn · ξ
n

n!
.

Now we observe the identity lim
n!∞

(n−1)!cn = 0 and consequently deduce the desired assertion

from Proposition 3.1.4. □

Definition 3.1.6. The crystalline period ring is Bcris := B+
cris[1/t] with B+

cris := Acris[1/p].

Remark. Let us explain Fontaine’s insight behind the construction of Bcris. As briefly dis-
cussed in Chapter I, Fontaine introduced Bcris to formulate the crystalline comparison iso-
morphism. Given a proper smooth K-variety X with a smooth reduction X over k, the
crystalline cohomology Hn

cris(X,W (k)) admits a natural Frobenius-semilinear endomorphism

and a canonical K-linear isomorphism Hn
cris(X,W (k))[1/p] ⊗K0 K

∼= Hn
dR(X/K). Fontaine

sought the ring Bcris as a (Qp,ΓK)-regular subring of BdR with a natural extension of the
Frobenius automorphism φinf on Ainf [1/p] = W (OF )[1/p]. The ring BdR does not admit a
natural extension of φinf since ker(θ[1/p]) is not stable under φinf . Fontaine discovered that
A0

cris is stable under φinf and consequently showed that φinf canonically extends to an endo-
morphism of Acris. The only issue with Acris is that it is not (Qp,ΓK)-regular, which Fontaine
resolved by taking the ring Bcris = Acris[1/p, 1/t].
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Proposition 3.1.7. The ring Bcris admits an identification Bcris = Acris[1/t].

Proof. Since we have Bcris = Acris[1/p, 1/t], we wish to show that p is a unit in Acris[1/t].
It suffices to prove the relation tp−1 ∈ pAcris. Let us set

ť :=

p∑
n=1

(−1)n+1 ([ε] − 1)n

n
∈ B+

dR

We may write [ε] − 1 = ξa for some a ∈ Ainf by Lemma 2.2.22 and in turn find

t− ť =

∞∑
n=p+1

(−1)n+1 ([ε] − 1)n

n
=

∞∑
n=p+1

(−1)n+1(n− 1)!an · ξ
n

n!
.

Since (n − 1)! is divisible by p for every n > p, we have t − ť ∈ pAcris by Proposition 3.1.4.
We wish to prove the relation ťp−1 ∈ pAcris. In the definition of ť, the terms with n < p are
all divisible by [ε] − 1 in Acris; in other words, we may write

ť = ([ε] − 1)

(
b+ (−1)p+1 ([ε] − 1)p−1

p

)
for some b ∈ Acris. Hence it suffices to establish the relation ([ε] − 1)p−1 ∈ pAcris. Since we
have ([ε]−1)− [ε− 1] ∈ pAinf ⊆ pAcris, it is enough to prove the relation [(ε− 1)p−1] ∈ pAcris.
We apply Lemma 2.2.22 to find

ν♭
(
(ε− 1)p−1

)
= p = ν♭

(
(p♭)p

)
and in turn deduce that [(ε− 1)p−1] is divisible by [p♭]p = (ξ+p)p. Now we obtain the desired
relation by observing that ξp = p · (p− 1)! · (ξp/p!) is divisible by p in Acris. □

Proposition 3.1.8. The ring Bcris is naturally a filtered K0-subalgebra of BdR which is stable
under the action of ΓK .

Proof. Proposition 3.1.4 yields the relation

Ainf [1/p] ⊆ Acris[1/p] = B+
cris ⊆ Bcris ⊆ BdR.

In addition, Proposition 2.2.19 shows that the natural homomorphism K ! BdR extends the
canonical homomorphism K0 ! Ainf [1/p]. Hence Bcris is naturally a filtered K0-subalgebra
of BdR with Filn(Bcris) = Bcris ∩ tnB+

dR for each n ∈ Z.

It remains to show that Bcris is stable under the action of ΓK . Let us work with the
identification Bcris = Acris[1/t] given by Proposition 3.1.7. Since ΓK acts on t via χ as noted
in Theorem 2.2.26, we only need to prove that Acris is stable under the action of ΓK . Take an
arbitrary element γ ∈ ΓK and an arbitrary sequence (an) in Ainf with lim

n!∞
an = 0. We observe

that ker(θ) is stable under the ΓK-action by Theorem 2.2.26 and in turn find γ(ξ) = bγξ for
some bγ ∈ Ainf by Proposition 2.2.12. In addition, we note that the ΓK-action is continuous
on B+

dR with respect to the discrete valuation topology and on Ainf with respect to the p-adic
topology. Now we apply Proposition 3.1.4 to obtain the relation

γ

( ∞∑
n=0

an
ξn

n!

)
=

∞∑
n=0

γ(an)bnγ
ξn

n!
∈ Acris

and consequently deduce the desired assertion. □

Remark. It is worthwhile to mention that Fil0(Bcris) = Bcris ∩B+
dR is not equal to B+

cris. In

fact, we can show that
[ε1/p

2
] − 1

[ε1/p] − 1
lies in Bcris ∩B+

dR but not in B+
cris.
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In order to study the ΓK-action and the filtration on Bcris, we invoke the following crucial
result without a proof.

Proposition 3.1.9. The natural ΓK-equivariant map Bcris ⊗K0 K ! BdR is injective.

Remark. The assertion is evident if we have K = K0. However, the proof for the general case
is surprisingly difficult. Moreover, the original proof by Fontaine [Fon94a] is incomplete. We
refer curious readers to the article of Colmez [Col02, Proposition 8.12] for a complete proof,
which involves an enlargement Bmax of Bcris. The key point is that we can construct BdR with
Ainf [1/p]K := Ainf [1/p] ⊗K0 K in place of Ainf [1/p]; indeed, the K-algebra homomorphism
θ[1/p]K : Ainf [1/p]K ! CK induced by θ[1/p] turns out to yield a natural isomorphism

B+
dR

∼= lim −
i

Ainf [1/p]K/ ker(θ[1/p]K)i.

Proposition 3.1.10. There exists a natural ΓK-equivariant graded K-algebra isomorphism

gr(Bcris ⊗K0 K) ∼= BHT.

Proof. Theorem 2.2.26 and Proposition 3.1.9 show that the natural filtered K-algebra
homomorphism Bcris ⊗K0 K ! BdR yields an injective graded K-algebra homomorphism

gr(Bcris ⊗K0 K) ↪−! gr(BdR) ∼= BHT. (3.1)

Since each Filn(Bcris) = Bcris ∩ tnB+
dR is stable under the ΓK-action by Theorem 2.2.26, we

obtain a natural action of ΓK on gr(Bcris ⊗K0 K) and in turn deduce that the map (3.1) is
ΓK-equivariant. Meanwhile, the map (3.1) gives rise to an injective K-algebra homomorphism

gr0(Bcris ⊗K0 K) ↪−! gr0(BdR) ∼= CK ,
which is indeed an isomorphism as the image of Bcris ⊗K0 K in BdR contains Ainf [1/p] and
consequently maps onto CK ∼= B+

dR/ ker(θ+dR) by Proposition 2.2.6. Hence the map (3.1) is
a graded CK-algebra homomorphism. Moreover, each grn(Bcris ⊗K0 K) contains a nonzero
element tn ⊗ 1 while each grn(BdR) has dimension 1 over CK . We deduce that the injective
map (3.1) is an isomorphism, thereby completing the proof. □

Lemma 3.1.11. Let L be an algebraic extension of K and L̂ be its p-adic completion.

(1) The residue fields of L and L̂ are naturally isomorphic.

(2) The absolute Galois groups of L and L̂ are naturally isomorphic.

Proof. Statement (1) follows immediately from a standard fact about completions stated
in the Stacks project [Sta, Tag 05GG]. Hence we only need to establish statement (2). The

p-adic completion CK of K = L evidnetly contains L̂. Since CK is algebraically closed by

Proposition 3.1.10 in Chapter II, it also contains L̂ and its p-adic completion C
L̂

. Meanwhile,

we observe that every element of CK is an element of C
L̂

as K lies in L̂. Therefore we find
CK = C

L̂
and in turn obtain a natural identification

Γ
L̂

= Aut
L̂

(L̂) ∼= Aut
L̂

(C
L̂

) = Aut
L̂

(CK) ∼= AutL(CK) ∼= AutL(K) = ΓL

where we take all automorphisms to be continuous. □

Example 3.1.12. The completed unramified closure of K, denoted by K̂un, is the p-adic

completion of the maximal unramified extension Kun of K. Lemma 3.1.11 shows that K̂un is
a p-adic field with residue field k and absolute Galois group IK .

Remark. We can naturally identify K̂un with K ⊗K0 W (k)[1/p].

https://stacks.math.columbia.edu/tag/05GG
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Proposition 3.1.13. An element b ∈ (B+
dR)× is algebraic over the fraction field K̂un

0 of W (k)
if ΓK acts on b via a character η : ΓK ! Q×

p .

Proof. Theorem 2.2.26 implies that ΓK acts on b̂ := θ+dR(b) ∈ CK via the character η.
We see that η is continuous as the ΓK-action on CK is continuous. In addition, we may regard
b̂ = θ+dR(b) as an element of CK(η−1)ΓK which is nonzero for being the image of a unit in B+

dR.
Therefore Theorem 1.1.7 shows that η(IK) is finite.

Since K̂un is a p-adic field with residue field k and absolute Galois group IK as noted in
Example 3.1.12, it has a finite extension L such that η is trivial on ΓL. Lemma 2.4.16 implies
that L is a p-adic field with residue field k. Now we apply Proposition 2.2.19 to deduce that

L is finite over the fraction field K̂un
0 of W (k) and fits into a natural commutative diagram

K̂un
0 Ainf [1/p]

L B+
dR

CK

θ+dR

(3.2)

with all maps being ΓK-equivariant. We identify L as a subfield of BdR via the diagram (3.2).

It suffices to show that b lies in L. Suppose for contradiction that b does not belong to L.

Since ΓK acts on b̂ via η, we have b̂ ∈ CΓL
K = CΓL

L = L by Theorem 3.1.11 in Chapter II and

thus find b ̸= b̂. Moreover, the diagram (3.2) yields the identity θ+dR(b̂) = b̂ = θ+dR(b), which

implies that there exists a unique integer m > 0 with b − b̂ ∈ tmB+
dR and b − b̂ /∈ tm+1B+

dR.

We see that ΓK acts via η on the nonzero image of b− b̂ in CK(m) ∼= tmB+
dR/t

m+1B+
dR given

by Theorem 2.2.26. Hence we deduce from Theorem 1.1.7 that IK has a finite image under
χm = η · (η−1χm), thereby obtaining a desired contradiction by Lemma 1.1.8. □

Theorem 3.1.14 (Fontaine [Fon94a]). The ring Bcris is (Qp,ΓK)-regular with BΓK
cris

∼= K0.

Proof. The ring Bcris is a subring of the field BdR and thus is an integral domain.
Proposition 3.1.8 implies that the fraction field Ccris of Bcris is a K0-subalgebra of BdR which
is stable under the action of ΓK . In addition, Proposition 3.1.9 and Theorem 2.2.26 together
yield natural injective K-algebra homomorphisms

BΓK
cris ⊗K0 K ↪−! BΓK

dR
∼= K and CΓK

cris ⊗K0 K ↪−! BΓK
dR

∼= K.

Therefore we have K0
∼= BΓK

cris
∼= CΓK

cris.

It remains to prove that every nonzero b ∈ Bcris with Qpb being stable under the ΓK-action
is a unit. We apply Proposition 2.2.23 to write b = tnb′ for some b′ ∈ (B+

dR)× and n ∈ Z.

We observe that t is a unit in Bcris = B+
cris[1/t] and in turn find b′ = bt−n ∈ Bcris. Moreover,

Theorem 2.2.26 implies that Qpb
′ is stable under the ΓK-action. Hence we may replace b by b′

to assume that b is a unit in B+
dR. Proposition 3.1.13 yields a polynomial equation

bd + c1b
d−1 + · · · + cd−1b+ cd = 0 with cd ̸= 0

where each ci is an element in the fraction field K̂un
0 of W (k). Now we find

b−1 = −c−1
d (bd−1 + c1b

d−2 + · · · + cd−1) ∈ Bcris

by noting that K̂un
0 naturally embeds into Bcris, thereby completing the proof. □
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Our final objective in this subsection is to construct the Frobenius endomorphism on the
crystalline period ring Bcris.

Lemma 3.1.15. The Frobenius automorphism of Ainf uniquely extends to a ΓK-equivariant
endomorphism φ+ on B+

cris which is continuous with respect to the p-adic topology.

Proof. The Frobenius automorphism of Ainf = W (OF ) uniquely extends to an automor-
phism on Ainf [1/p], which we denote by φinf . Since we have an equality

φinf(ξ) = [(p♭)p] − p = [p♭]p − p = (ξ + p)p − p, (3.3)

we may write φinf(ξ) = ξp + pa for some a ∈ Ainf . We find

φinf(ξ) = p · (a+ (p− 1)! · (ξp/p!))

and in turn obtain the relation

φinf(ξ
n/n!) = (pn/n!) · (a+ (p− 1)! · (ξp/p!))n ∈ A0

cris for each n ≥ 1

by observing that pn/n! is an element of Zp. Hence A0
cris is stable under φinf . Moreover,

the automorphism φinf on Ainf [1/p] is by construction ΓK-equivariant and continuous with
respect to the p-adic topology. Now we note that the ΓK-action on Acris is continuous with
respect to the p-adic topology and in turn establish the desired assertion by the identity
B+

cris = Acris[1/p]. □

Remark. The equality (3.3) shows that φinf(ξ) is not divisible by ξ, which implies that
ker(θ) is not stable under φinf . Hence the endomorphism φ+ on B+

cris (or the Frobenius
endomorphism on Bcris that we are about to construct) is not filtered.

Proposition 3.1.16. The Frobenius automorphism of Ainf canonically extends to a ΓK-
equivariant endomorphism φ on Bcris with φ(t) = pt.

Proof. By Lemma 3.1.15, the Frobenius automorphism of Ainf uniquely extends to a
ΓK-equivariant continuous endomorphism φ+ on B+

cris. Hence we apply Proposition 2.2.23 to
obtain the equality

φ+(t) =
∞∑
n=1

(−1)n+1 (φ([ε]) − 1)n

n
=

∞∑
n=1

(−1)n+1 ([εp] − 1)n

n
= log(εp) = p log(ε) = pt.

Since ΓK acts on t via χ as noted in Theorem 2.2.26, we deduce that φ+ uniquely extends to
a ΓK-equivariant endomorphism φ on Bcris = B+

cris[1/t]. □

Remark. The endomorphism φ is not continuous on Bcris, even though it is a unique ex-
tension of the continuous endomorphism φ+ on B+

cris. The issue is that, as pointed out by

Colmez [Col98], the natural topology on B+
cris induced by the p-adic topology on Acris does

not agree with the subspace topology inherited from Bcris. In fact, it is not hard to show that

the sequence

(
ξp

n−1

(pn − 1)!

)
converges to 0 in Bcris but does not converge to 0 in B+

cris.

Definition 3.1.17. We refer to the map φ in Proposition 3.1.16 as the Frobenius endomor-
phism of Bcris and write Be := Bφ=1

cris .
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3.2. Properties of crystalline representations

For the rest of this section, we denote by σ the Frobenius automorphism of K0 and by
VectK0 the category of K0-vector spaces. Let us invoke the following result without a proof.

Proposition 3.2.1. The Frobenius endomorphism of Bcris is injective.

Remark. We will present a proof of Proposition 3.2.1 in Chapter IV. We refer curious readers
to the article of Brinon [Bri22, Theorem 1] for another proof which does not involve materials
covered in Chapter IV.

Definition 3.2.2. For a K0-vector space V , we write VK = V ⊗K0 K.

(1) A filtered isocrystal over K is an isocrystal D over K0 such that DK is a filtered
K-vector space.

(2) Given filtered isocrystals D and D′ over K, a morphism f : D ! D′ of isocrystals
over K0 is K-filtered if the induced K-linear map fK : DK ! D′

K is filtered.

Remark. AK-filtered isomorphism of isocrystals is a bijectiveK-filtered morphism of isocrys-
tals with a K-filtered inverse.

Example 3.2.3. Every proper smooth K-variety X with a smooth reduction X over k yields
a filtered isocrystal Hn

cris(X/K0) over K with Hn
cris(X/K0)K ∼= Hn

dR(X/K).

Proposition 3.2.4. Let D be a filtered isocrystal over K.

(1) Given a filtered isocrystal D′ over K, the tensor product D ⊗K0 D
′ is naturally a

filtered isocrystal over K.

(2) The dual D∨ = HomK0(D,K0) is naturally a filtered isocrystal over K.

Proof. The assertions follow from Lemma 2.3.17 in Chapter II and Proposition 2.3.6. □

Lemma 3.2.5. Given a finite dimensional vector space D over K0, every injective σ-semilinear
map f : D ! D is bijective.

Proof. The additivity of f implies that f(D) is closed under addition. In fact, f(D) is
a subspace of D over K0, as for arbitrary c ∈ K0 and v ∈ D we have

cf(v) = σ(σ−1(c))f(v) = f(σ−1(c)v) ∈ f(D).

Let us choose a K0-basis (ei) for D. Since f is σ-semilinear and injective, every relation∑
cif(ei) = 0 with ci ∈ K0 yields a relation

∑
σ(ci)ei = 0. We deduce that the vectors f(ei)

form a K0-basis for D and consequently find f(D) = D. □

Proposition 3.2.6. Every p-adic ΓK-representation V naturally yields a filtered isocrystal
Dcris(V ) := (V ⊗Qp Bcris)

ΓK over K with Frobenius automorphism 1 ⊗ φ and

Filn(Dcris(V )K) = (V ⊗Qp Filn(Bcris ⊗K0 K))ΓK for each n ∈ Z. (3.4)

Proof. Theorem 1.2.1 and Theorem 3.1.14 together imply that Dcris(V ) is a finite di-
mensional K0-vector space. In addition, we find

Dcris(V )K = (V ⊗Qp Bcris)
ΓK ⊗K0 K = (V ⊗Qp (Bcris ⊗K0 K))ΓK

and in turn deduce from Proposition 3.1.9 that Dcris(V )K is a filtered K-vector space with
the identification (3.4). Meanwhile, since 1 ⊗ φ is σ-semilinear by the fact that φ extends σ,
it is bijective on Dcris(V ) by Proposition 3.2.1 and Lemma 3.2.5. Therefore we establish the
desired assertion. □
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Definition 3.2.7. Let V be a p-adic ΓK-representation.

(1) We refer to Dcris(V ) in Proposition 3.2.6 as the filtered isocrystal associated to V .

(2) We say that V is crystalline if it is Bcris-admissible.

Example 3.2.8. Let us present two essential examples of crystalline ΓK-representations.

(1) For every proper smooth K-variety X with a smooth reduction X over k, the étale
cohomology Hn

ét(XK ,Qp) is crystalline with a natural isomorphism

Dcris(H
n
ét(XK ,Qp)) ∼= Hn

cris(X/K0)

as briefly discussed in Chapter I.

(2) For every p-divisible group G over OK with special fiber G = G×OK
k, the rational

Tate module Vp(G) is crystalline with a natural isomorphism

Dcris(Vp(G)) ∼= D(G)[1/p]

as proved by Fontaine [Fon82, §6].

Proposition 3.2.9. If a p-adic ΓK-representation V is crystalline, it is de Rham with a
natural K-linear filtered isomorphism

Dcris(V )K ∼= DdR(V ).

Proof. Proposition 3.1.8 and Proposition 3.1.9 together show that Bcris ⊗K0 K is natu-
rally a filtered K-subalgebra of BdR with

Filn(Bcris ⊗K0 K) = (Bcris ⊗K0 K) ∩ Filn(BdR) for every n ∈ Z.
Therefore Proposition 3.2.6 yields a natural injective K-linear filtered map

Dcris(V )K = (V ⊗Qp (Bcris ⊗K0 K))ΓK ↪−! (V ⊗Qp BdR)ΓK = DdR(V )

with an identification

Filn(Dcris(V )K) = Dcris(V )K ∩ Filn(DdR(V )) for every n ∈ Z.
In addition, we find

dimK0 Dcris(V ) = dimK Dcris(V )K ≤ dimK DdR(V ) ≤ dimQp V

where the last inequality follows from Theorem 1.2.1. Since V is crystalline, we see that both
inequalities should be equalities and in turn establish the desired assertion. □

Example 3.2.10. Every Tate twist Qp(n) of Qp is crystalline; indeed, the inequality

dimK Dcris(Qp(n)) ≤ dimQp Qp(n) = 1

given by Theorem 1.2.1 is an equality, as Dcris(Qp(n)) = (Qp(n) ⊗Qp Bcris)
ΓK contains a

nonzero element 1 ⊗ t−n by Theorem 2.2.26. Moreover, Dcris(Qp(n)) is naturally isomorphic
to the simple isocrystal of slope −n with identifications

Film(Dcris(Qp(n))K) ∼=

{
K for m ≤ −n,
0 for m > −n

given by Example 2.4.5 and Proposition 3.2.9.

Lemma 3.2.11. Given an integer n, a p-adic ΓK-representation V is crystalline if and only if
its Tate twist V (n) is crystalline.

Proof. Since we have V (n) ∼= V ⊗Qp Qp(n) and V ∼= V (n) ⊗Qp Qp(−n), the assertion
follows from Proposition 1.2.4 and Example 3.2.10. □
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For the rest of this section, we denote by Repcris
Qp

(ΓK) the category of crystalline

ΓK-representations and by MFφK the category of filtered isocrystals over K.

Proposition 3.2.12. Every V ∈ Repcris
Qp

(ΓK) admits a natural ΓK-equivariant isomorphism

Dcris(V ) ⊗K0 Bcris
∼= V ⊗Qp Bcris

which is compatible with the Frobenius endomorphisms and induces a filtered isomorphism

Dcris(V )K ⊗K (Bcris ⊗K0 K) ∼= V ⊗Qp (Bcris ⊗K0 K).

Proof. Since V is crystalline, Theorem 1.2.1 implies that the natural Bcris-linear map

Dcris(V ) ⊗K0 Bcris −! (V ⊗Qp Bcris) ⊗K0 Bcris
∼= V ⊗Qp (Bcris ⊗K0 Bcris) −! V ⊗Qp Bcris

is ΓK-equivariant and bijective. Moreover, this map is compatible with the natural Frobenius
endomorphisms on Dcris(V )⊗K0 Bcris and V ⊗Qp Bcris induced by φ. Let us now consider the
induced K-linear bijective map

Dcris(V )K ⊗K (Bcris ⊗K0 K) −! V ⊗Qp (Bcris ⊗K0 K).

It is straightforward to verify that this map is filtered. Hence by Proposition 2.3.10, it suffices
to prove the bijectivity of the graded map

gr (Dcris(V )K ⊗K (Bcris ⊗K0 K)) −! gr
(
V ⊗Qp (Bcris ⊗K0 K)

)
. (3.5)

Proposition 2.4.3 and Proposition 3.2.9 show that V is Hodge-Tate with a natural isomorphism

gr(Dcris(V )K) ∼= gr(DdR(V )) ∼= DHT(V )

We apply Proposition 2.3.9 and Proposition 3.1.10 to obtain canonical isomorphisms

gr (Dcris(V )K ⊗K (Bcris ⊗K0 K)) ∼= gr(Dcris(V )K) ⊗K gr(Bcris ⊗K0 K) ∼= DHT(V ) ⊗K BHT,

gr
(
V ⊗Qp (Bcris ⊗K0 K)

) ∼= V ⊗Qp gr(Bcris ⊗K0 K) ∼= V ⊗Qp BHT.

Now we identify the map (3.5) with the natural map

DHT(V ) ⊗K BHT −! V ⊗Qp BHT

given by Theorem 1.2.1 and in turn establish the desired assertion as V is Hodge-Tate. □

Remark. In our proof of Proposition 3.2.12, the finiteness of dimQp(V ) and dimK(Dcris(V ))
are crucial for applying Proposition 2.3.9.

Proposition 3.2.13. The functorDcris with values in MFφK is faithful and exact on Repcris
Qp

(ΓK).

Proof. Since the forgetful functor MFφK ! VectK0 is faithful, Proposition 1.2.2 im-

plies that Dcris is faithful on Repcris
Qp

(ΓK). Hence it remains to verify that Dcris is exact

on Repcris
Qp

(ΓK). Consider an exact sequence of crystalline ΓK-representations

0 −! U −! V −!W −! 0.

By Proposition 1.2.2, this sequence gives rise to an exact sequence of isocrystals

0 −! Dcris(U) −! Dcris(V ) −! Dcris(W ) −! 0. (3.6)

Moreover, we apply Proposition 3.2.9 to identify the induced sequence of filtered vector spaces

0 −! Dcris(U)K −! Dcris(V )K −! Dcris(W )K −! 0

with the exact sequence of filtered vector spaces

0 −! DdR(U) −! DdR(V ) −! DdR(W ) −! 0

given by Proposition 2.4.9. Therefore we deduce that the sequence (3.6) is exact in MFφK . □
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Proposition 3.2.14. Given a crystalline ΓK-representation V , every subquotient W of V is
crystalline with Dcris(W ) naturally identified as a subquotient of Dcris(V ) in MFφK .

Proof. The assertion is evident by Proposition 1.2.3 and Proposition 3.2.13. □

Proposition 3.2.15. Given two crystalline ΓK-representations V andW , their tensor product
V ⊗Qp W is crystalline with a natural K-filtered isomorphism of isocrystals

Dcris(V ) ⊗K0 Dcris(W ) ∼= Dcris(V ⊗Qp W ). (3.7)

Proof. Proposition 1.2.4 shows that V ⊗Qp W is crystalline and yields the desired iso-
morphism (3.7) as a K0-linear bijection. Since the construction of the map (3.7) rests on
the multiplication of Bcris, it is straightforward to verify that the map (3.7) is a K-filtered
morphism of isocrystals. Moreover, we apply Proposition 3.2.9 to identify the induced map

Dcris(V )K ⊗K Dcris(W )K −! Dcris(V ⊗Qp W )K .

with the natural K-linear filtered isomorphism

DdR(V ) ⊗K DdR(W )K ∼= DdR(V ⊗Qp W )

given by Proposition 2.4.11. Now we deduce that the map (3.7) is a K-filtered isomorphism
of isocrystals, thereby completing the proof. □

Proposition 3.2.16. Given a crystalline ΓK-representation V and a positive integer n, both
∧n(V ) and Symn(V ) are crystalline with natural K-filtered isomorphisms of isocrystals

∧n(Dcris(V )) ∼= Dcris(∧n(V )) and Symn(Dcris(V )) ∼= Dcris(Symn(V )).

Proof. Proposition 1.2.5 shows that ∧n(V ) and Symn(V ) are crystalline. Moreover,
Proposition 1.2.5 yields the desired isomorphisms as K0-linear bijections. Proposition 3.2.14
and Proposition 3.2.15 imply that these maps are K-filtered isomorphisms of isocrystals. □

Example 3.2.17. Given a crystalline ΓK-representation V , we have

µ(Dcris(V (n))) = µ(Dcris(V )) − n for each n ∈ Z
by Example 3.2.10, Proposition 3.2.15, and Proposition 3.2.16.

Proposition 3.2.18. For every crystalline ΓK-representation V , the dual representation V ∨

is crystalline with a natural K-filtered perfect pairing of isocrystals

Dcris(V ) ⊗K0 Dcris(V
∨) ∼= Dcris(V ⊗Qp V

∨) −! Dcris(Qp).

Proof. Proposition 1.2.7 shows that V ∨ is crystalline and yields the desired pairing as
a K0-linear perfect pairing. This pairing is a K-filtered morphism of isocrystals over K0 by
Proposition 3.2.15 and thus gives rise to a K-filtered bijective morphism of isocrystals

Dcris(V )∨ −! Dcris(V
∨). (3.8)

Moreover, we apply Proposition 3.2.9 to identify the induced K-linear filtered map

Dcris(V )∨K −! Dcris(V
∨)K

with the natural K-linear filtered isomorphism

DdR(V ) ∼= DdR(V ∨)

given by Proposition 2.4.14. Now we deduce that the map (3.8) is a K-filtered isomorphism
of isocrystals, thereby completing the proof. □

Remark. Proposition 2.3.8 and Proposition 3.2.18 together show that the canonical isomor-
phism V ∼= (V ∨)∨ induces a natural K-filtered isomorphism Dcris(V ) ∼= (Dcris(V )∨)∨.
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For the rest of this chapter, we generally write φ for a map naturally induced by the
Frobenius endomorphism on Bcris. In order to discuss some additional properties of crystalline
representations and the functor Dcris, we state the following remarkable result without a proof.

Theorem 3.2.19 (Fontaine [Fon94a]). The ring Be = Bφ=1
cris fits into a natural exact sequence

0 −! Qp −! Be −! BdR/B
+
dR −! 0.

Remark. We will present a proof of Theorem 3.2.19 in Chapter IV.

Lemma 3.2.20. The ring Be = Bφ=1
cris yields an identification

Be ∩ Fil0(Bcris ⊗K0 K) = Be ∩B+
dR = Qp.

Proof. By Proposition 3.1.9 and Theorem 3.2.19, we find

Be ∩ Fil0(Bcris ⊗K0 K) ⊆ Be ∩ Fil0(BdR) = Be ∩B+
dR = Qp.

Hence we obtain the desired identification as both Be and Fil0(Bcris ⊗K0 K) contain Qp. □

Proposition 3.2.21. Every crystalline ΓK-representation V admits canonical isomorphisms

V ∼= (Dcris(V ) ⊗K0 Bcris)
φ=1 ∩ Fil0 (Dcris(V )K ⊗K (Bcris ⊗K0 K))

∼= (Dcris(V ) ⊗K0 Bcris)
φ=1 ∩ Fil0 (Dcris(V )K ⊗K BdR) .

Proof. Proposition 3.2.12 yields a natural ΓK-equivariant isomorphism

Dcris(V ) ⊗K0 Bcris
∼= V ⊗Qp Bcris

which is compatible with the Frobenius endomorphisms. Moreover, this isomorphism induces
a canonical filtered isomorphism

Dcris(V )K ⊗K (Bcris ⊗K0 K) ∼= V ⊗Qp (Bcris ⊗K0 K),

which in turn gives rise to a natural filtered isomorphism

Dcris(V )K ⊗K BdR
∼= V ⊗Qp BdR.

Therefore we obtain canonical isomorphisms

(Dcris(V ) ⊗K0 Bcris)
φ=1 ∼= V ⊗Qp Be,

Fil0 (Dcris(V )K ⊗K (Bcris ⊗K0 K)) ∼= V ⊗Qp Fil0(Bcris ⊗K0 K),

Fil0 (Dcris(V )K ⊗K BdR) ∼= V ⊗Qp B
+
dR.

Now the desired assertion follows from Lemma 3.2.20. □

Theorem 3.2.22 (Fontaine [Fon94b]). The functor Dcris with values in MFφK is exact and

fully faithful on Repcris
Qp

(ΓK).

Proof. By Proposition 3.2.13, we only need to prove that Dcris is full on Repcris
Qp

(ΓK).

Let V and W be arbitrary crystalline ΓK-representations. Consider an arbitrary morphism
f : Dcris(V )! Dcris(W ) in MFφK . Proposition 3.2.12 yields a ΓK-equivariant Bcris-linear map

V ⊗Qp Bcris
∼= Dcris(V ) ⊗K0 Bcris Dcris(W ) ⊗K0 Bcris

∼= W ⊗Qp Bcris.
f⊗1

Moreover, Proposition 3.2.21 implies that this map restricts to a Qp-linear map ϕ : V ! W .
Now we identify f with the restriction of ϕ⊗ 1 on (V ⊗Qp Bcris)

ΓK under the identification

(V ⊗Qp Bcris)
ΓK ∼= (Dcris(V ) ⊗K0 Bcris)

ΓK ∼= Dcris(V )

and in turn deduce that f corresponds to ϕ under the functor Dcris. □
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Proposition 3.2.23. Let V be a p-adic ΓK-representation and L be a finite unramified
extension of K with residue field l. Denote by L0 the fraction field of W (l).

(1) There exists an L-filtered isomorphism of isocrystals

Dcris,K(V ) ⊗K0 L0
∼= Dcris,L(V )

where we set Dcris,K(V ) := (V ⊗Qp Bcris)
ΓK and Dcris,L(V ) := (V ⊗Qp Bcris)

ΓL .

(2) V is crystalline if and only if it is crystalline as a ΓL-representation.

Proof. Lemma 2.4.16 shows that L is a p-adic field. Moreover, L and L0 are respectively
Galois over K and K0 with natural isomorphisms

Gal(L/K) ∼= Gal(L0/K0) ∼= Gal(l/k).

Hence we find
Dcris,K(V ) = Dcris,L(V )Gal(L/K) = Dcris,L(V )Gal(L0/K0)

and in turn apply Lemma 2.4.16 to obtain a natural bijective L0-linear map

Dcris,K(V ) ⊗K0 L0 −! Dcris,L(V ). (3.9)

This map is evidently a morphism of isocrystals. In addition, by Proposition 2.4.17 and
Proposition 3.2.9, the map (3.9) induces an L-linear filtered isomorphism

(Dcris,K(V ) ⊗K0 K) ⊗K L ∼= Dcris,L(V ) ⊗L0 L.

We deduce that the map (3.9) is an L-filtered isomorphism of isocrystals and consequently
establish statement (1). Statement (2) is an immediate consequence of statement (1). □

Remark. We can show that Proposition 3.2.23 remains valid for L = K̂un by the remark
following Lemma 2.4.16. Hence every p-adic ΓK-representation with a trivial IK-action is
crystalline.

Example 3.2.24. Given a continuous character η : ΓK ! Q×
p such that η(IK) is nontrivially

finite, we assert that Qp(η) is not crystalline. Since we have

Dcris(Qp(η)) = (Qp(η) ⊗Qp Bcris)
ΓK ⊆ (Qp(η) ⊗Qp Bcris)

IK ,

it suffices to show that (Qp(η) ⊗Qp Bcris)
IK vanishes. Let us take a finite Galois extension L

of K with η(IL) being trivial. By Proposition 3.2.23, we may replace K with an unramified
extension to assume that L is totally ramified over K. Theorem 3.1.14 shows that the fraction

field K̂un
0 of W (k) admits a natural isomorphism BIL

cris
∼= K̂un

0
∼= BIK

cris, which in particular

implies that Gal(L/K) ∼= IK/IL acts trivially on K̂un
0 . Meanwhile, we obtain the identities

Qp(η)IL = Qp(η) and Qp(η)Gal(L/K) = 0 respectively from the triviality of η(IL) and the
nontriviality of η(IK). Hence we find

(Qp(η) ⊗Qp Bcris)
IK =

(
(Qp(η) ⊗Qp Bcris)

IL
)Gal(L/K)

=
(
Qp(η) ⊗Qp B

IL
cris

)Gal(L/K)

∼=
(
Qp(η) ⊗Qp K̂

un
0

)Gal(L/K)
= Qp(η)Gal(L/K) ⊗Qp K̂

un
0 = 0

as desired.

Remark. Example 3.2.24 shows that Proposition 3.2.23 fails for a ramified extension L of K.
Fontaine interpreted this fact as an indication for a tidy connection between crystalline rep-
resentations and abelian varieties with good reduction. In fact, an abelian variety A over K
has good reduction if and only if the rational Tate module Vp(A[p∞]) is crystalline, as proved
by Coleman-Iovita [CI99] and Breuil [Bre00]. Hence, in light of Theorem 1.1.2 in Chapter I,
we may regard crystalline representations as p-adic counterparts of unramified representations.
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For the rest of this section, we assume for simplicity that K is a finite extension of Qp.

Lemma 3.2.25. Given a unit u ∈ W (k) and an integer r > 0, there exists a unit v ∈ W (k)
with φr(v) = uv.

Proof. For each α ∈ W (k), we denote by α its image in k ∼= W (k)/pW (k). Since φr is
an isometry by construction, it suffices to present a sequence (vn) ∈W (k)× with

φr(vn) ∈ uvn + pn+1W (k) and vn+1 − vn ∈ pn+1W (k).

We take v0 ∈ W (k)× with v0
pr = uv0 and inductively construct vn for each n ≥ 1. In

fact, as we have φr(vn−1) = uvn−1 + pnαn for some αn ∈ W (k), we choose βn ∈ W (k) with

βn
pr

= uβn − αn and set vn := vn−1 + pnβn to find φr(vn) ∈ uvn + pn+1W (k) as desired. □

Proposition 3.2.26. Let η : ΓK ! Q×
p be a continuous character with η(IK) being trivial.

(1) The p-adic ΓK-representation Qp(η) is crystalline with a Hodge-Tate weight 0.

(2) The isocrystal Dcris(Qp(η)) over K0 has rank 1 and degree 0.

Proof. Let us write r for the degree of k over Fp and take an element σ̃ ∈ ΓK whose

image in Γk ∼= ΓK/IK is the pr-th power map on k. We note that η takes values in Z×
p by

continuity and apply Lemma 3.2.25 to obtain an element u ∈ W (k)× with φr(u) = η(σ̃)−1u.
The element 1 ⊗ u ∈ Qp(η) ⊗Qp Bcris is IK-invariant by construction and is σ̃-invariant as

σ̃ acts on W (k) via φr. Since the group generated by σ̃ has a dense image in Γk ∼= ΓK/IK ,
we see that Dcris(Qp(η)) = (Qp(η) ⊗Qp Bcris)

ΓK contains 1 ⊗ u. Hence Theorem 1.2.1 shows
that Qp(η) is crystalline, which in particular implies that Dcris(Qp(η)) has rank 1. Moreover,

Dcris(Qp(η)) has degree 0 as both u and φ(u) are units in W (k). Now we use Theorem 1.1.7,
Proposition 2.4.3, and Proposition 3.2.9 to find that Qp(η) has a Hodge-Tate weight 0, thereby
completing the proof. □

Remark. While our proof of Proposition 3.2.26 relies on the assumption that K is a finite
extension of Qp, Proposition 3.2.26 holds without the assumption as explained in the notes
of Brinon-Conrad [BC, Lemma 8.3.3].

Proposition 3.2.27. Let η : ΓK ! Q×
p be a continuous character.

(1) Qp(η) is de Rham if and only if (ηχn)(IK) is finite for some n ∈ Z.

(2) Qp(η) is crystalline if and only if (ηχn)(IK) is trivial for some n ∈ Z.

Proof. Let us begin with statement (1). If Qp(η) is de Rham, (ηχn)(IK) is finite for
some n ∈ Z by Proposition 1.1.13 and Proposition 2.4.3. For the converse, we now assume
that (ηχn)(IK) is finite for some n ∈ Z. Take a finite extension L of K such that (ηχn)(IL) is
trivial. Proposition 3.2.9 and Proposition 3.2.26 together show that Qp(ηχ

n) is de Rham as
a ΓL-representation. Hence we deduce from Lemma 2.4.6 and Proposition 2.4.17 that Qp(η)
is de Rham as desired.

It remains to establish statement (2). If (ηχn)(IK) is trivial for some n ∈ Z, we see by
Proposition 3.2.26 that Qp(ηχ

n) is crystalline and in turn deduce from Lemma 1.2.10 that
Qp(η) is also crystalline. For the converse, we henceforth assume that Qp(η) is crystalline.
Proposition 3.2.9 and statement (1) together imply that (ηχn)(IK) is finite for some n ∈ Z.
Meanwhile, Lemma 1.2.10 shows that Qp(ηχ

n) is crystalline. Hence we find by Example 3.2.24
that (ηχn)(IK) is trivial, thereby completing the proof. □

Remark. By Proposition 1.1.13 and Proposition 3.2.27, being Hodge-Tate and being de
Rham are equivalent for Qp(η).
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3.3. Admissible filtered isocrystals

In this subsection, we study filtered isocrystals over K which arise from crystalline
ΓK-representations.

Definition 3.3.1. Let D be a filtered isocrystal over K.

(1) If D is nonzero, we define its filtration degree to be the unique integer deg•(D) with

grdeg
•(D)(det(DK)) ̸= 0.

(2) We say that D is weakly admissible if every nonzero filtered subisocrystal D′ of D
satisfies the inequality deg•(D′) ≤ deg(D′) with equality for D′ = D.

(3) We say that D is admissible if it admits an isomorphism D ≃ Dcris(V ) for some
crystalline ΓK-reprsentation V .

Remark. Theorem 1.2.22 implies that the category of ΓK-representation is equivalent to the
category of admissible filtered isocrystals over K.

Lemma 3.3.2. The ring Be = Bφ=1
cris has a trivial intersection with Filn(BdR) for every n > 0.

Proof. We have Qp ∩ Filn(BdR) = 0 as all nonzero elements of Qp are units in B+
dR.

Hence the desired assertion follows from Lemma 3.2.20. □

Proposition 3.3.3. Every admissible filtered isocrystal D over K is weakly admissible.

Proof. Since the assertion is evident for D = 0, we may assume that D is nonzero. Let
us take a crystalline ΓK-representation V with a K-filtered isomorphism of isocrystals

D ≃ Dcris(V ) = (V ⊗Qp Bcris)
ΓK . (3.10)

Proposition 3.2.16 shows that det(V ) is crystalline with Dcris(det(V )) ≃ det(D). We see that
the IK-action is trivial on det(V )(n) for some n ∈ Z by Proposition 3.2.27 and in turn find

deg(Dcris(det(V )(n))) = deg•(Dcris(det(V (n)))) = 0

by Proposition 3.2.26. Since we have deg(D) = deg(det(D)) and deg•(D) = deg•(det(D)),
we use Example 2.4.12 and Example 3.2.17 to obtain the equality

deg(D) = deg(Dcris(det(V ))) = deg•(Dcris(det(V ))) = deg•(D).

Let us now consider an arbitrary nonzero filtered subisocrystal D′ of D. For notational
simplicity, we write d := deg(D′) and d• := deg•(D′). We wish to prove the inequality d• ≤ d.

Proposition 3.2.16 shows that ∧rk(D′)D is admissible. Since det(D′) = ∧rk(D′)D′ is naturally

a filtered subisocrystal of ∧rk(D′)D with deg(det(D′)) = d and deg•(det(D′)) = d•, we may

replace D′ and D respectively by det(D′) and ∧rk(D′)D to assume that D′ has rank 1. Let
us take a K0-basis element e of D′ and a Qp-basis (vi) of V . The isomorphism (3.10) yields

a relation e =
∑
vi ⊗ bi with bi ∈ Bcris. We take u ∈ W (k)× with φ(e) = pdue and use

the identity φ(e) =
∑
vi ⊗ φ(bi) to find φ(bi) = pdubi for each bi. Meanwhile, as we have

Fild
•
(D′

K) ̸= 0 and Fild
•+1(D′

K) = 0, we see that e =
∑
vi ⊗ bi lies in V ⊗Qp Fild

•
(BdR) and

in turn deduce that each bi lies in Fild
•
(BdR). Now we choose v ∈ W (k)× with φ(v) = u−1v

by Lemma 3.2.25 and observe that each bit
−dv belongs to Be ∩ Fild

•−d(BdR). The desired
inequality d• ≤ d follows from Lemma 3.3.2 and the fact that e is nonzero. □

Remark. As we will see in Chapter IV, the converse of Proposition 3.3.3 holds; in other
words, a filtered isocrystal over K is admissible if and only if it is weakly admissible. Hence
the category of crystalline p-adic ΓK-representations is equivalent to the category of weakly
admissible filtered isocrystals over K.
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Definition 3.3.4. Let D be a filtered isocrystal over K.

(1) Given an integer n, the n-fold Tate twist of D is D(n) := D ⊗K0 Dcris(Qp(n)).

(2) A Hodge-Tate weight of D is an integer m with grm(DK) ̸= 0.

Example 3.3.5. Let V be a crystalline ΓK-representation. Proposition 3.2.15 yields a natural
K-filtered isomorphism of isocrystals

Dcris(V )(n) ∼= Dcris(V (n)) for each n ∈ Z.
Moreover, Proposition 2.4.4 and Proposition 3.2.9 together show that the Hodge-Tate weights
of Dcris(V ) coincides with the Hodge-Tate weights of V . For each Hodge-Tate weight m of V ,
its multiplicity is equal to grm(Dcris(V )K).

Remark. If V is not crystalline, we can still show that there exists a natural K-filtered
isomorphism of isocrystals Dcris(V )(n) ∼= Dcris(V (n)) for each n ∈ Z. On the other hand,
if V is not crystalline, the Hodge-Tate weights of Dcris(V ) are in general not equal to the
Hodge-Tate weights of V ; indeed, it is possible that Dcris(V ) vanishes and has no Hodge-Tate
weights at all.

Proposition 3.3.6. Let D be a nonzero filtered isocrystal over K and n be an integer.

(1) D(n) is a filtered isocrystal over K with the Frobenius automorphism p−nφD and

Film(D(n)K) = Film+n(DK) for each m ∈ Z.
(2) D(n) satisfies the equalities

deg(D(n)) = deg(D) − n rk(D) and deg•(D(n)) = deg•(D) − n rk(D).

Proof. Statement (1) is straightforward to verify using Example 3.2.10. Statement (2)
is an immediate consequence of statement (1). □

Lemma 3.3.7. Let D be a filtered isocrystal over K and n be an integer.

(1) D is weakly admissible if and only if its Tate twist D(n) is weakly admissible.

(2) D is admissible if and only if its Tate twist D(n) is admissible.

Proof. Every filtered subisocrystal D′ of D yields a filtered subisocrystal D′(n) of D(n).
Similarly, every filtered subisocrystal D′′ of D(n) yields a filtered subisocrystal D′′(−n) of D.
Hence we deduce statement (1) from Proposition 3.3.6. In addition, we obtain statement (2)
by Lemma 1.2.10 and Example 3.3.5. □

Proposition 3.3.8. If a filtered isocrystal D over K has a Hodge-Tate weight n, its Tate
twist D(m) has a Hodge-Tate weight n−m.

Proof. The assertion is evident by Proposition 3.3.6. □

Proposition 3.3.9. A filtered isocrystal D over K with Hodge-Tate weights m1, · · · ,mr

satisfies the equality

deg•(D) =

r∑
i=1

mi dimK grmi(DK).

Proof. Since DK is finite dimensional over K, we can construct a K-basis (ei,j) of DK

such that each Filn(DK) has a K-basis (ei,j)i≥n; indeed, we take m ∈ Z with Film(DK) = 0

and inductively extend a K-basis for each Filn(DK) to a K-basis for Filn−1(DK). Hence the
desired assertion is straightforward to verify by Proposition 2.3.6. □
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Proposition 3.3.10. Given a filtered isocrystal D over K, every nonzero filtered

subisocrystal D′ of D yields a filtered subisocrystal D̃′ of D with the following properties:

(i) D̃′ contains D′ as a filtered subisocrystal and satisfies the relations

rk(D′) = rk(D̃′), deg(D′) = deg(D̃′), deg•(D′) ≤ deg•(D̃′).

(ii) D̃′ gives rise to a short exact sequence of filtered isocrystals

0 −! D̃′ −! D −! D/D̃′ −! 0.

Proof. Take D̃′ to be the isocrystal D′ with the filtration on D̃′
K given by

Filn(D̃′
K) := Filn(DK) ∩D′

K for each n ∈ Z.
We obtain property (i) by observing that the identity map on D′ induces a K-filtered injective

morphism of isocrystals D′ ↪! D̃′. In addition, we find

Filn
(
(D/D̃′)K

)
= Filn(DK)/

(
Filn(DK) ∩ D̃′

K

)
= Filn(DK)/Filn(D̃′) for each n ∈ Z

and in turn verify property (ii). □

Remark. In general, a quotient of D by D′ does not necessarily exist in the category of
filtered isocrystals since the category of filtered K-vector spaces is not abelian.

Definition 3.3.11. For a filtered isocrystal D over K with a nonzero filtered subisocrystal D′,

we refer to the filtered isocrystal D̃′ given by Proposition 3.3.10 as the saturation of D′ in D.

Proposition 3.3.12. Given a short exact sequence of nonzero filtered isocrystals over K

0 −! D′ −! D −! D′′ −! 0,

we have the equalities

deg(D) = deg(D′) + deg(D′′) and deg•(D) = deg•(D′) + deg•(D′′).

Proof. The assertion is evident as we have a naturalK-filtered isomorphism of isocrystals

det(D) ∼= det(D′) ⊗K0 det(D′′)

by a standard fact stated in the Stacks project [Sta, Tag 0B38]. □

Proposition 3.3.13. Let D be a nonzero filtered isocrystal over K.

(1) D∨ satisfies the equalities deg(D∨) = −deg(D) and deg•(D∨) = − deg•(D).

(2) D is weakly admissible if and only if D∨ is weakly admissible.

Proof. For statement (1), the first equality is evident by Lemma 2.3.17 in Chapter II
while the second equality follows from Proposition 2.3.9 and Proposition 3.3.9. Let us now
consider statement (2). Since we have a K-filtered isomorphism of isocrystals D ∼= (D∨)∨

by Propositoin 2.3.8, it suffices to prove that D∨ is weakly admissible when D is weakly

admissible. Take an arbitrary filtered subisocrystal D′ of D∨. Its saturation D̃′ in D∨ gives
rise to a short exact sequence of filtered isocrystals

0 −! (D∨/D̃′)∨ −! D −! D̃′∨ −! 0.

Hence we use Proposition 3.3.12 and statement (1) to find

deg•(D′) ≤ deg•(D̃′) = −deg•(D̃′∨) = −deg•(D) + deg•
(
(D∨/D̃′)∨

)
≤ −deg(D) + deg

(
(D∨/D̃′)∨

)
= −deg(D̃′∨) = deg(D̃′) = deg(D′).

We see that D∨ is weakly admissible as we have deg•(D∨) = deg(D∨) by statement (1). □

https://stacks.math.columbia.edu/tag/0B38
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Proposition 3.3.14. Consider a short exact sequence of filtered isocrystals over K

0 −! D′ −! D −! D′′ −! 0.

(1) If D and D′ are weakly admissible, D′′ is also weakly admmissible.

(2) If D and D′′ are weakly admissible, D′ is also weakly admmissible.

(3) If D′ and D′′ are weakly admissible, D is also weakly admmissible.

Proof. Statement (1) and statement (2) are equivalent by Proposition 3.3.13; indeed, we
can deduce one from the other by replacing the given exact sequence with its dual sequence.
For statement (2), let us assume that D and D′′ are weakly admissible. Every nonzero
filtered subisocrystal E′ of D′ satisfies the inequality deg•(E′) ≤ deg(E′) for being a filtered
subisocrystal of D. Moreover, by Propsotion 3.3.12 we have

deg•(D′) = deg•(D) − deg•(D′′) = deg(D) − deg(D′′) = deg(D′).

Therefore D′ is weakly admissible as asserted in statement (2).

We now assume for statement (3) that D′ and D′′ are weakly admissible. Let E be a
nonzero filtered subisocrystal of D. Take the filtered subisocrystal E′ := D′ ∩ E of D′ with

Filn(E′
K) = Filn(D′

K) ∩ EK for each n ∈ Z.

We note that E′ gives rise to a filtered subisocrystal E′′ := E/E′ of D′′ = D/D′ and in turn
apply Proposition 3.3.12 to find

deg•(E) = deg•(E′) + deg•(E′′) ≤ deg(E′) + deg(E′′) = deg(E).

Moreover, for E = D the inequality becomes an equality as we have E′ = D′ and E′′ = D′′.
Therefore D is weakly admissible as asserted in statement (3). □

Remark. Let WMFφK denote the category of weakly admissible filtered isocrystals over K.

Although Repcris
Qp

(ΓK) and WMFφK are equivalent via an exact functor, their behaviors within

the ambient categories RepQp
(ΓK) and MFφK exhibit some differences as follows:

(1) WMFφK is closed under taking extensions in MFφK as noted in Proposition 3.3.14,

whereas Repcris
Qp

(ΓK) is not closed under taking extensions in RepQp
(ΓK) by the

remark after Example 1.1.12.

(2) WMFφK turns out to be not closed under taking subquotients in MFφK , whereas

Repcris
Qp

(ΓK) is closed under taking subquotients in RepQp
(ΓK) by Proposition 3.2.14.

Proposition 3.3.15. Given filtered isocrystals D and D′ over K, their direct sum D⊕D′ is
weakly admissible if and only if both D and D′ are weakly admissible.

Proof. If both D and D′ are weakly admissible, their direct sum D ⊕ D′ is weakly
admissible by Proposition 3.3.14. For the converse, we now assume that D ⊕ D′ is weakly
admissible. Let E and E′ respectively be nonzero filtered subisocrystals of D and D′. Since
D and D′ are filtered subisocrystals of D ⊕D′, we find

deg•(E) ≤ deg(E) and deg•(E′) ≤ deg(E′).

Moreover, for E = D and E′ = D′, these inequalities become equalities as we have

deg•(D) + deg•(D′) = deg•(D ⊕D′) = deg(D ⊕D′) = deg(D) + deg(D′)

by Proposition 3.3.12. We deduce that both D and D′ are weakly admissible as desired,
thereby completing the proof. □
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Proposition 3.3.16. A filtered isocrystal D over K of rank 1 is admissible if and only if it
is weakly admissible.

Proof. If D is admissible, it is weakly admissible by Proposition 3.3.3. For the converse,
we henceforth assume that D is weakly admissible. By Proposition 3.3.6 and Lemma 3.3.7,
we may replace D with D(deg(D)) to also assume that D has degree 0. Let us take a K0-basis
element e of D and write φ(e) = ue with u ∈W (k)×. In addition, we denote by r the degree
of k over Fp and choose an element σ̃ ∈ ΓK whose image in Γk ∼= ΓK/IK is the pr-th power

map on k. We apply Lemma 3.2.25 to obtain an element v ∈W (k)× with φ(v) = uv and find

φr(v) = φr−1(u) · · ·φ(u)uv.

We observe that v ∈W (k)× is φr-invariant and thus deduce see that φr(v)v−1 lies in Z×
p for

being φ-invariant. Since the group generated by σ̃ has a dense image in Γk ∼= ΓK/IK , there
exists a continuous character η : ΓK ! Z×

p with η(IK) being trivial and η(σ̃) = φr(v)−1v. The
element 1 ⊗ v ∈ Qp(η) ⊗Qp Bcris is IK-invariant by construction and is σ̃-invariant as σ̃ acts

on W (k) via φr. Hence Proposition 3.2.26 shows that Dcris(Qp(η)) = (Qp(η) ⊗Qp Bcris)
ΓK is

admissible of rank 1 with a basis element 1 ⊗ v. Now we obtain a K-filtered isomorphism of
isocrystals D ≃ Dcris(Qp(η)) which maps e to 1 ⊗ v and in turn deduce that D is admissible
as desired. □

Remark. While our proof of Proposition 3.3.16 relies on the assumption that K is a finite
extension of Qp, Proposition 3.3.16 holds without the assumption as explained in the notes
of Brinon-Conrad [BC, Lemma 8.3.3].

Proposition 3.3.17. A filtered isocrystal D over K of rank 1 with a Hodge-Tate weight m
is weakly admissible if and only if it satisfies the following properties:

(i) Its Frobenius automorphism is the multiplication by pmu for some u ∈W (k)×.

(ii) The filtration on DK admits an identification

Filn(DK) =

{
DK for n ≤ m,

0 for n > m.

Proof. Since D has rank 1, we obtain the equality deg•(D) = m and consequently
establish the desired assertion. □

Proposition 3.3.18. Let WMFφ,rk=1
K denote the set of isomorphism classes of weakly admis-

sible filtered isocrystals over K of rank 1.

(1) WMFφ,rk=1
K is naturally an abelian group under tensor products.

(2) WMFφ,rk=1
K gives rise to a canonical surjective group homomorphism

Z×W (k)× ↠ WMFφ,rk=1
K

whose kernel consists of the elements (0, σ(u)u−1)) with u ∈W (k)×.

Proof. Both statements are straightforward to verify by Proposition 3.3.17. □

Remark. Proposition 3.3.16 and Proposition 3.3.18 together provide an explicit classification
of one-dimensional crystalline ΓK-representations. This classification is particularly simple
for K = Qp as we have a natural isomorphism

WMFφ,rk=1
Qp

∼= Z× Z×
p
∼= Q×

p

by the fact that the Frobenius automorphism on Qp is the identity map.
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Lemma 3.3.19. Let D be an isocrystal over Qp.

(1) The Frobenius automorphism φD is Qp-linear with ν(det(φD)) = deg(D).

(2) An element v ∈ D spans a nonzero subisocrystal of D if and only if it is an eigenvector
of φD.

Proof. Both statements are straightforward to verify. □

Definition 3.3.20. Let D be a filtered isocrystal over Qp of rank 2.

(1) D is normally weighted if its Hodge-Tate weights are 0 and deg(D) with 0 ≤ deg(D).

(2) If D is normally weighted, its Hodge subspace refers to H(D) := Fil1(D).

(3) D is indecomposable if it does not admit a direct sum decomposition into filtered
isocrystals over Qp of rank 1.

Lemma 3.3.21. Every weakly admissible filtered isocrystal over Qp of rank 2 admits a normally
weighted Tate twist.

Proof. The assertion follows from Proposition 3.3.6 and Proposition 3.3.9. □

Proposition 3.3.22. A normally weighted filtered isocrystal D over Qp of rank 2 is indecom-
posible if and only if φD does not admit an eigenbasis containing an element of H(D).

Proof. If φD admits linearly independent eigenvectors v1 and v2 with v2 ∈ H(D), we
obtain an isomorphism D ≃ D1 ⊕ D2 where D1 and D2 are the filtered subisocrystals of D
respectively spanned by v1 and v2 with deg•(D1) = 0 and deg•(D2) = deg(D). Conversely, if
D admits an isomorphism D ≃ D1 ⊕D2 for some filtered subisocrystals D1 and D2 of rank 1
with deg(D1) ≤ deg(D2), we apply Lemma 3.3.19 to see that φD admits an eigenbasis given
by nonzero elements v1 ∈ D1 and v2 ∈ D2 with v2 ∈ H(D). □

Example 3.3.23. Let us consider the basis vectors e1 := (1, 0) and e2 := (0, 1) of Q⊕2
p .

(1) For a, b ∈ Zp with (a2− 4b)1/2 /∈ Zp, there exists a unique normally weighted filtered
isocrystal Dirr

a,b over Qp of rank 2 with

φDirr
a,b

=

(
0 −b
1 −a

)
and H(Dirr

a,b) = Qpν(b)e1,

which is indecomposable by Proposition 3.3.22.

(2) For nonzero λ1, λ2 ∈ Zp with λ1λ2 ∈ pZp, there exists a unique a normally weighted

filtered isocrystal Ddiag
λ1,λ2

over Qp of rank 2 with

φ
Ddiag

λ1,λ2

=

(
λ1 0
0 λ2

)
and H(Ddiag

λ1,λ2
) = Qp(e1 + e2),

which is indecomposable by Proposition 3.3.22.

(3) For nonzero λ ∈ Zp, there exists a unique normally weighted filtered isocrystal Ddef
λ

over Qp of rank 2 with

φDdef
λ

=

(
λ 1
0 λ

)
and H(Ddef

λ ) = Qpν(λ)e1,

which is indecomposable by Proposition 3.3.22.

Remark. H(Dirr
a,b) vanishes for b ∈ Z×

p and has a basis vector e1 for b ∈ pZp. Similarly,

H(Ddef
λ ) vanishes for λ ∈ Z×

p and has a basis vector e1 for λ ∈ pZp.
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Proposition 3.3.24. Let D be an indecomposable filtered isocrystal over Qp of rank 2 with
two distinct Hodge-Tate weights.

(1) When φD has no Qp-eigenvalues, D is weakly admissible if and only if it is isomorphic

to a Tate twist of Dirr
a,b for some a ∈ Zp and b ∈ pZp with (a2 − 4b)1/2 /∈ Zp.

(2) When φD has two distinct Qp-eigenvalues, D is weakly admissible if and only if it is

isomorphic to a Tate twist of Ddiag
λ1,λ2

for some nonzero λ1, λ2 ∈ Zp with λ1λ2 ∈ pZp.
(3) When φD has a unique Qp-eigenvalue, D is weakly admissible if and only if it is

isomorphic to a Tate twist of Ddef
λ for some nonzero λ ∈ pZp.

Proof. By Lemma 3.3.7 and Lemma 3.3.21, we may assume without loss of generality
that D is normally weighted. Since we have deg•(D) = deg(D) by Proposition 3.3.9, the
filtered isocrystal D is weakly admissible if and only if every nonzero filtered subisocrystal D′

satisfies the inequality deg•(D′) ≤ deg(D′). Meanwhile, the eigenvalues of φD are nonzero as
φD is an automorphism.

Let us first consider the case where φD admits no Qp-eigenvalues. Lemma 3.3.19 shows
that D is irreducible and thus is weakly admissible. Take a nonzero element e1 ∈ H(D) and
set e2 := φD(e1). We see that e1 and e2 form a Qp-basis for D, under which we may write

φD =

(
0 −b
1 −a

)
for some a, b ∈ Qp.

The characteristic polynomial of φD is f(z) = z2 − az+ b. Since f is irreducible over Qp, the
element a2 − 4b ∈ Qp is a nonsquare. Moreover, we find ν(b) = deg(D) > 0 by Lemma 3.3.19
and in turn obtain the inequality ν(a) ≥ 0 by observing that the roots of the irreducible
polynomial f over Qp have the same valuation. Therefore we establish statement (1).

We now consider the case where φD has distinct nonzero Qp-eigenvalues λ1 and λ2. Choose
Qp-basis vectors e1 and e2 for D with φD(e1) = λ1e1 and φD(e2) = λ2e2. Since H(D) contains
neither e1 nor e2 by Proposition 3.3.22, we may replace e1 and e2 with their Qp-multiples to
assume that H(D) contains e1 + e2. We have

φD =

(
λ1 0
0 λ2

)
under our basis and find ν(λ1λ2) = deg(D) > 0 by Lemma 3.3.19. Let us write D′

i for the
filtered isocrystal over Qp spanned by ei with

Filn(D′
i) = Filn(D) ∩D′

i for each n ∈ Z.

For each D′
i, we find deg•(D′

i) = 0 and deg(D′
i) = ν(λi). Meanwhile, for every filtered

subisocrystal of D with rank 1, its saturation in D is D′
1 or D′

2 by Lemma 3.3.19. Hence D is
weakly admissible if and only if we have ν(λi) ≥ 0 for each λi. Statement (2) is now evident.

It remains to consider the case where φD has a unique nonzero Qp-eigenvalue λ. Since
φD is not a scalar multiplication by Proposition 3.3.22, we may write

φD =

(
λ 1
0 λ

)
with respect to some Qp-basis vectors e1 and e2 for D. Let D′ be an arbitrary filtered
subisocrystal of D with rk(D′) = 1. Since we have e1 ∈ D′ and deg(D′) = ν(λ) = deg(D)/2

by Lemma 3.3.19, the saturation D̃′ of D′ in D satisfies the inequality deg•(D̃′) ≤ deg(D̃′) if
and only if e1 lies in H(D). Hence D is weakly admissible if and only if e1 lies in H(D). Now
we establish statement (3) and in turn complete the proof. □
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Proposition 3.3.25. Let D be an indecomposable filtered isocrystal over Qp of rank 2 with
a unique Hodge-Tate weight.

(1) When φD has no Qp-eigenvalues, D is weakly admissible if and only if it is isomorphic

to a Tate twist of Dirr
a,b for some a ∈ Zp and b ∈ Z×

p with (a2 − 4b)1/2 /∈ Zp.
(2) When φD has a Qp-eigenvalue, D is weakly admissible if and only if it is isomorphic

to a Tate twist of Ddef
λ for some nonzero λ ∈ Z×

p .

Proof. By Lemma 3.3.7 and Lemma 3.3.21, we may assume without loss of generality
that D is normally weighted. Since we have deg•(D) = deg(D) by Proposition 3.3.9, the
filtered isocrystal D is weakly admissible if and only if every nonzero filtered subisocrystal D′

satisfies the inequality deg•(D′) ≤ deg(D′). Meanwhile, the eigenvalues of φD are nonzero as
φD is an automorphism.

Let us first consider the case where φD admits no Qp-eigenvalues. Lemma 3.3.19 shows
that D is irreducible and thus is weakly admissible. Choose a nonzero element e1 ∈ D and
set e2 := φD(e1). We see that e1 and e2 form a Qp-basis for D, under which we may write

φD =

(
0 −b
1 −a

)
for some a, b ∈ Qp.

The characteristic polynomial of φD is f(z) = z2 − az+ b. Since f is irreducible over Qp, the
element a2 − 4b ∈ Qp is a nonsquare. Moreover, we find ν(b) = deg(D) = 0 by Lemma 3.3.19
and in turn obtain the inequality ν(a) ≥ 0 by observing that the roots of the irreducible
polynomial f over Qp have the same valuation. Therefore we establish statement (1).

We now consider the case where φD has a nonzero Qp-eigenvalue. Since D has a unique
Hodge-Tate weight 0, its Hodge subspace H(D) must vanish. Proposition 3.3.22 implies that
φD does not admit an eigenbasis, which means that φD has a unique nonzero eigenvalue λ
and is not a scalar multiplication. Hence we may write

φD =

(
λ 1
0 λ

)
with respect to some Qp-basis vectors e1 and e2 for D. Let D′ be an arbitrary filtered

subisocrystal of D with rk(D′) = 1. For its saturation D̃′ in D, we find deg•(D̃′) = 0 as
D has a unique Hodge-Tate weight 0. Moreover, Lemma 3.3.19 shows that D′ contains e1
and satisfies the equality

deg(D′) = ν(λ) = deg(D)/2 = 0.

We deduce that D is weakly admissible and in turn establish statement (2). □

Remark. We have a complete classification for weakly admissible filtered isocrystals over Qp

of rank 2 by Proposition 3.3.15, Proposition 3.3.17, Proposition 3.3.24 and Proposition 3.3.25.
In fact, up to Tate twists, the weakly admissible filtered isocrystals over Qp of rank 2 are
precisely the ones listed in Example 3.3.23 and the direct sums of weakly admissible fil-
tered isocrystals over Qp of rank 1 classified by Proposition 3.3.17. Since the category of
weakly admissible filtered isocrystals over Qp is equivalent to the category of crystalline p-adic
ΓQp-representations as noted after Proposition 3.3.3, we obtain a complete classification for
two-dimensional crystalline p-adic ΓQp-representations by Proposition 3.2.21.

If K is totally ramified over Qp, we can establish a similar classification for weakly ad-
missible filtered isocrystals over K of rank 2, or equivalently for two-dimensional crystalline
p-adic ΓK-representations. In the general case, however, such a classification is very difficult
to obtain. The main issue is that the Frobenius automorphism of an isocrystal over K0 is not
K0-linear unless K is totally ramified over Qp.
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Exercises

1. Let B be a (Qp,ΓK)-regular ring and V be a p-adic ΓK-representation of dimension d.

(1) Show that V ⊗Qp B naturally gives rise to an element [V ]B ∈ H1(ΓK ,GLd(B)).

(2) Show that V is B-admissible if and only if [V ]B ∈ H1(ΓK ,GLd(B)) is the distin-
guished element.

2. Let V be a p-adic ΓK-representation.

(1) Show that V is CK-admissibile if and only if it is Hodge-Tate with a unique Hodge-
Tate weight 0.

(2) Show that V is K-admissible if and only if the ΓK-action on V factors through a
finite quotient.

Hint. Use Theorem 1.2.1 and Lemma 2.4.16 along with the fact that the ΓK-action
on K is discrete.

3. Let A be an abelian variety over K of dimension g with good reduction.

(1) Find the multiplicity for each Hodge-Tate weight of the étale cohomologyHn
ét(AK ,Qp).

(2) Prove that the IK-action on Hn
ét(AK ,Qp) does not factor through a finite quotient.

Remark. The second part shows that the Neron-Ogg-Shafarevich criterion (Theorem 1.1.2
in Chapter I) fails for ℓ = p.

4. Let L be a complete nonarchimedean field with valuation νL.

(1) Prove that L♭ := lim −
x 7!xp

L is naturally a perfect field of characteristic p which is

complete with respect to a valuation induced by νL.

(2) If the p-th power map on OL/pOL is surjective, prove that the residue fields of

L and L♭ are naturally isomorphic.

(3) If L is a p-adic field, prove that L♭ is naturally isomorphic to the residue field of L.

Remark. The last part shows that the value groups of L and L♭ are not necessarily equal if
L is not perfectoid.

5. Let ζp∞ and p1/p
∞

respectively denote the sets of p-power roots of 1 and p in Qp.

(1) Show that the p-adic completions of Qp(ζp∞) and Qp(p
1/p∞) are perfectoid fields.

(2) Show that the p-adic completions of Qp(ζp∞) and Qp(p
1/p∞) are not isomorphic.

(3) Show that the p-adic completions of Qp(ζp∞) and Qp(p
1/p∞) have isomorphic tilts.

Hint. For the p-adic completion of of Qp(ζp∞), establish an isomorphism

Zp[ζp∞ ] ∼= Zp[u1/p
∞

]/(1 + u+ · · · + up−1)

where u1/p
∞

denotes the set of p-power roots of the variable u.
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6. In this exercise, we study sections of the map θ+dR : B+
dR ↠ CK .

(1) Show that θ+dR admits a section s+dR : CK ! B+
dR.

Hint. Take a maximal subfield C of B+
dR. Show that CK is algebraic over θ+dR(C)

and use Hensel’s lemma to find CK = θ+dR(C).

(2) Show that every section of θ+dR is neither continuous nor ΓK-equivariant.

7. Let V and W be filtered vector spaces over a field L.

(1) Show that HomL(V,W ) is a filtered L-vector space where each Filn(HomL(V,W ))
consists of the L-linear maps f : V !W sending each Film(V ) into Film+n(W ).

(2) If V and W are finite dimensional, establish a natural filtered isomorphism

HomL(V,W ) ∼= V ∨ ⊗LW.

8. Let L be an arbitrary field.

(1) Find an L-linear filtered map f : V !W with the following properties:

(i) The induced map gr(f) : gr(V )! gr(W ) is bijective.

(ii) f is not a filtered isomorphism.

(2) Find a bijective L-linear filtered map which is not a filtered isomorphism.

9. Consider a short exact sequence of p-adic ΓK-representations

0 −! U −! V −!W −! 0.

(1) If U and W are Hodge-Tate with no common Hodge-Tate weights, prove that V is
Hodge-Tate.

(2) If U and W are de Rham with the Hodge-Tate weights of U being greater than all
Hodge-Tate weights of W , prove that V is de Rham.

10. Let V and W be p-adic ΓK-representations.

(1) When V and W are Hodge-Tate, show that DHT(V ) and DHT(W ) are isomorphic if
and only if V and W have the same Hodge-Tate weights with the same multiplicities.

(2) When V and W are de Rham, show that DdR(V ) and DdR(W ) are isomorphic if and
only if V and W have the same Hodge-Tate weights with the same multiplicities.

11. Let V be a p-adic ΓK-representation and L be a finite extension of K.

(1) Show that there exists a natural L-linear graded isomorphism

DHT,K(V ) ⊗K L ∼= DHT,L(V )

where we set DHT,K(V ) := (V ⊗Qp BHT)ΓK and DHT,L(V ) := (V ⊗Qp BHT)ΓL .

(2) Show that V is Hodge-Tate if and only if it is Hodge-Tate as a p-adic ΓL-representation.

12. Prove that Ainf , Acris, B
+
cris, and B+

dR are not (Qp,ΓK)-regular.
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13. Consider the element b :=
[ε1/p

2
] − 1

[ε1/p] − 1
∈ BdR.

(1) Show that b lies in Fil0(Bcris) = Bcris ∩B+
dR.

Hint. Observe that b−1 lies in Ainf and show that b/φ(b−1) lies in Bcris.

(2) Show that b does not lie in B+
cris.

14. Establish a natural isomorphism K̂un ∼= K ⊗K0 W (k)[1/p].

15. Consider the element bn :=
ξp

n−1

(pn − 1)!
∈ B+

cris for each n ≥ 1.

(1) Show that the sequence (bn) does not converge to 0 in B+
cris.

(2) Show that the sequence (bn) converges to 0 in Bcris.

Hint. Observe that the sequence (ξbn) converges to 0 in Bcris.

16. Prove that every p-adic ΓK-representation V yields a natural K-filtered isomorphism

Dcris(V )(n) ∼= Dcris(V (n)) for each n ∈ Z.

17. Let f : D ! D′ be a bijective K-filtered morphism of isocrystals.

(1) Prove the relations deg(D) = deg(D′) and deg•(D) ≤ deg•(D′).

(2) Prove that f is a K-filtered isomorphism if and only if we have deg•(D) = deg•(D′).

18. Let WMFφK denote the category of weakly admissible filtered isocrystals over K.

(1) Show that WMFφK is not closed under taking subquotients in MFφK .

(2) Show that WMFφK is abelian.

19. Assume that K is a finite extension of Qp.

(1) Show that there exists a nonsplit extension of Qp(1) by Qp.

Hint. Use the local Tate duality to obtain the identification H1(ΓK ,Qp(−1)) ∼= K.

(2) Show that every nonsplit extension of Qp(1) by Qp is not crystalline.

20. Assume that K is a finite extension of Qp.

(1) Given a, b ∈ Zp and an integer r > 0, prove that there exists an element λ ∈ W (k)
with φ2r(λ) + aφr(λ) + bλ = 0.

Hint. Write the desired relation in the form φr(φr(λ) − α) = β(φr(λ) − α).

(2) Prove that a p-adic ΓK-representation V of dimension 2 is crystalline with a unique
Hodge-Tate weight 0 if and only if the IK-action on V is trivial.

Hint. Adapt the arguments in Proposition 3.2.26 and Proposition 3.3.16, possibly
by applying Proposition 3.2.21 and Proposition 3.3.25.



CHAPTER IV

The Fargues-Fontaine curve

1. Construction and geometric structures

In this section, we construct the algebraic Fargues-Fontaine curve and establish its funda-
mental properties. Our discussion involves extensions of many notions from Chapter III. The
primary references for this section are the survey article of Fargues-Fontaine [FF12] and the
lecture notes of Lurie [Lur].

Throughout this chapter, we let F be an algebraically closed perfectoid field of character-
istic p with valuation νF . In addition, we denote by mF the maximal ideal of OF .

1.1. Untilts of a perfectoid field

In this subsection, we introduce and study untilts of the perfectoid field F . These objects
serve as our main tools for defining and investigating the key objects in this section.

Definition 1.1.1. An untilt of F is a perfectoid field C together with a topological isomor-
phism ιC : F ≃ C♭ called the tilting isomorphism of C.

Example 1.1.2. The trivial untilt of F is the field F with the natural isomorphism F ∼= F ♭

given by Proposition 2.1.14 in Chapter III.

Remark. For a p-adic field K, the perfectoid field C♭K turns out to be algebraically closed

as we will prove in §3.1. Hence we may regard CK as a distinguished untilt of F = C♭K .

Proposition 1.1.3. Every untilt C of F admits a unique valuation νC with νF (c) = νC(c♯)
for each c ∈ F .

Proof. Choose a valuation ν on C. By Proposition 2.1.7 in Chapter III, there exists a
valuation ν♭ on F with ν♭(c) = ν(c♯) for every c ∈ F . Since νF and ν♭ are equivalent, we

have a group isomorphism δ : R! R with δ(ν♭(c)) = νF (c) for every nonzero c ∈ F . Now we
obtain a desired valuation νC by setting νC(x) = δ(ν(x)) for each nonzero x ∈ C.

It remains to verify that such a valuation is unique. Let ν ′C be another valuation on C

with νF (c) = ν ′C(c♯) for each c ∈ F . Take an arbitrary element x ∈ C. By Proposition 2.1.11
in Chapter III, we obtain an element c ∈ F with

νC(x) = νF (c) = νC(c♯).

Now we write x = uc♯ for some u ∈ O×
C and find

ν ′C(x) = ν ′C(c♯) = νF (c) = νC(c♯) = νC(x).

We deduce that νC and ν ′C coincide, thereby completing the proof. □

Definition 1.1.4. Given an untilt C of F , we refer to the valuation νC on C given by
Proposition 1.1.3 as the normalized valuation on C.

133
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Proposition 1.1.5. Let C be an untilt of F and f(z) be an irreducible monic polynomial of
degree d over C. For every x ∈ C, there exists an element y ∈ C with

νC(x− y) ≥ νC(f(x))/d and νC(f(y)) ≥ νC(p) + νC(f(x)).

Proof. We may replace f(z) with f(z + x) to assume that x is zero. The irreducibility
of f implies that f(0) is nonzero. We wish to find an element y ∈ C with

νC(y) ≥ νC(f(0))/d and νC(f(y)) ≥ νC(p) + νC(f(0)).

Since F is algebraically closed, the multiplication by d is surjective on the value group of F .
Hence Proposition 2.1.11 in Chapter III implies that the multiplication by d is also surjective
on the value group of C. In particular, there exists an element a ∈ C with dνC(a) = νC(f(0)).
Now we aim to find an element y ∈ C with

νC(y/a) ≥ 0 and νC

(
f(a(y/a))/ad

)
≥ νC(p).

Let us take the monic irreducible polynomial g(z) := f(az)/ad over C. It suffices to present
an element w ∈ OC with g(w) ∈ pOC .

We assert that g(z) is a polynomial over OC . Choose a finite Galois extension C ′ of C
which contains all roots of g(z). The valuation νC on C extends to a Gal(C ′/C)-equivariant
valuation νC′ on C ′. Moreover, the roots of g(z) have the same valuation for being in the same
Gal(C ′/C)-orbit. Since we have νC(g(0)) = 0, we see that each root of g(z) has valuation 0
and consequently deduce that all coefficients of g(z) lie in OC as desired.

For each b ∈ OC , let us denote its image in OC/pOC by b. In addition, we write

g(z) = zd + b1z
d−1 + · · · + bd with bi ∈ OC .

Lemma 2.1.9 in Chapter III shows that each bi ∈ OC yields an element ci ∈ OF with bi = c♯i.
Since F is algebraically closed, there exists an element α ∈ OF with

αd + c1α
d−1 + · · · + cd = 0.

Now we apply Proposition 2.1.10 in Chapter III to find

g(α♯) = α♯
d

+ b1α♯
d−1

+ · · · + bd = α♯
d

+ c♯1α
♯
d−1

+ · · · + c♯d = (αd + c1αd−1 + · · · + cd)
♯

= 0

and in turn complete the proof by taking w = α♯. □

Proposition 1.1.6. Every untilt C of F is algebraically closed.

Proof. If C has characteristic p, the assertion is evident as C is isomorphic to F by
Proposition 2.1.14 in Chapter III. Let us henceforth assume that C has characteristic 0. Take
an arbitrary monic irreducible polynomial f(z) of degree d over C. We wish to show that
f(z) has a root in C. We may replace f(z) by pmdf(z/pm) for some sufficiently large m ∈ Z
to assume that f(z) is a polynomial over OC . Since we have νC(f(0)) ≥ 0, we set x0 := 0 and
apply Proposition 1.1.5 to inductively construct a sequence (xn) in C with

νC(xn−1 − xn) ≥ (n− 1)νC(p)/d and νC(f(xn)) ≥ nνC(p) for each n ≥ 1.

The sequence (xn) is Cauchy by construction and thus converges to an element x ∈ C. Now
we obtain the identity

f(x) = f
(

lim
n!∞

xn

)
= lim

n!∞
f(xn) = 0,

thereby completing the proof. □

Remark. Proposition 1.1.6 is a special case of the tilting equivalence for perfectoid fields.
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Definition 1.1.7. The infinitesimal period ring associated to F is Ainf = Ainf(F ) := W (OF ).

Lemma 1.1.8. The ring Ainf is an integral domain.

Proof. The assertion follows from Lemma 2.3.9 in Chapter II. □

Definition 1.1.9. Let ξ be an element in Ainf .

(1) We say that ξ is primitive if it has the form ξ = [ϖ]−up with ϖ ∈ mF and u ∈ A×
inf .

(2) We say that ξ is strongly primitive if it is primitive and not divisible by p.

Proposition 1.1.10. An element ξ ∈ Ainf with a Teichmüller expansion ξ =
∑

[cn]pn is
primitive if and only if we have νF (c0) > 0 and νF (c1) = 0.

Proof. The assertion follows from Proposition 2.3.6 in Chapter II. □

Proposition 1.1.11. Given a strongly primitive element ξ in Ainf , the ring Ainf/ξAinf is
p-torsion free and p-adically complete.

Proof. Lemma 1.1.8 implies that Ainf/ξAinf is p-torsion free as ξ has a nonzero image
in Ainf/pAinf

∼= OF . Hence we only need to prove that Ainf/ξAinf is p-adically complete. We

write ̂Ainf/ξAinf for the p-adic completion of Ainf/ξAinf and obtain a surjective homomorphism

Ainf ↠ lim −
n

Ainf/(p
nAinf + ξAinf) ∼= lim −

n

(Ainf/ξAinf)/((p
nAinf + ξAinf)/ξAinf) = ̂Ainf/ξAinf

as Ainf is p-adically complete. The kernel of this map is
∞⋂
n=1

(pnAinf + ξAinf), which clearly

contains ξAinf . Therefore it suffices to show that every c ∈
∞⋂
n=1

(pnAinf + ξAinf) lies in ξAinf .

Take sequences (an) and (bn) in Ainf with c = pnan + ξbn for each n ≥ 1. We have

pn(an − pan+1) = ξ(bn+1 − bn) for each n ≥ 1.

Since ξ has a nonzero image in Ainf/pAinf
∼= OF , each bn+1 − bn is divisible by pn in Ainf .

Now we see that the sequence (bn) converges to an element b ∈ Ainf and in turn find

c = lim
n!∞

(pnan + ξbn) = lim
n!∞

pnan + ξ lim
n!∞

bn = ξb,

thereby completing the proof. □

Definition 1.1.12. Given a primitive element ξ ∈ Ainf , we refer to the natural projection
θξ : Ainf ↠ Ainf/ξAinf as the untilt map associated to ξ.

Lemma 1.1.13. Let ξ be a strongly primitive element in Ainf .

(1) For every nonzero c ∈ OF , some power of p is divisible by θξ([c]) in Ainf/ξAinf .

(2) For every m ∈ mF , some power of θξ([m]) is divisible by p in Ainf/ξAinf .

Proof. Let us write ξ = [ϖ]− pu for some ϖ ∈ mF and u ∈ A×
inf . Every nonzero c ∈ OF

gives rise to an expression ϖi = cc′ for some i > 0 and c′ ∈ OF , thereby yielding an equality

pi =
(
θξ(u

−1)θξ(up)
)i

= θξ(u
−1)iθξ([ϖ])i = θξ(u

−1)iθξ([c])
iθξ([c

′])i.

Similarly, every m ∈ mF admits an expression mj = ϖb for some j > 0 and b ∈ OF , thereby
yielding an equality

θξ([m])j = θξ([ϖ])θξ([b]) = θξ(pu)θξ([b]) = pθξ(u)θξ([b]).

Hence we establish the desired assertions. □
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Proposition 1.1.14. Let ξ be a strongly primitive element in Ainf . An element c ∈ OF

divides another element c′ ∈ OF if and only if θξ([c]) divides θξ([c
′]) in Ainf/ξAinf .

Proof. If c divides c′ in OF , we see that θξ([c]) divides θξ([c
′]) in Ainf/ξAinf as the

Teichmüller lifts are multiplicative. Let us now assume that c does not divide c′ in OF . We
wish to show that θξ([c]) does not divide θξ([c

′]) in Ainf/ξAinf . Suppose for contradiction that
there exists an element a ∈ Ainf/ξAinf with θξ([c

′]) = θξ([c])a. Since we have νF (c) > νF (c′),
there exists some m ∈ mF with c = mc′. Hence we find

θξ([c
′]) = θξ([c])a = θξ([c

′])θξ([m])a.

Meanwhile, Proposition 1.1.11 and Lemma 1.1.13 together imply that θξ([c
′]) is not a zero

divisor in Ainf/ξAinf . Now we obtain the equality θξ([m])a = 1, which yields a desired
contradiction as the image of θξ([m]) under the natural map Ainf/ξAinf ↠ Ainf/(ξAinf +pAinf)
is nilpotent by Lemma 1.1.13. □

Proposition 1.1.15. Let ξ be a strongly primitive element in Ainf . Every a ∈ Ainf/ξAinf is
a unit multiple of θξ([c]) for some c ∈ OF which is unique up to unit multiple.

Proof. If a is a unit multiple of θξ([c1]) and θξ([c2]) for some c1, c2 ∈ OF , we see that
θξ([c1]) and θξ([c2]) are unit multiples of each other, which means by Proposition 1.1.14 that
c1 and c2 are unit multiples of each other. Hence it remains to prove that a is a unit multiple
of θξ([c]) for some c ∈ OF . Since the assertion is evident for a = 0, we henceforth assume that
a is nonzero. By Proposition 1.1.11, we may write a = pna′ for some n ≥ 0 and a′ ∈ Ainf/ξAinf

such that a′ is not divisible by p. Let us take ϖ ∈ mF and u ∈ A×
inf with ξ = [ϖ] − up. We

find that a admits the identity

a = pna′ =
(
θξ(u

−1)θξ(up)
)n
a′ = θξ(u)−1θξ([ϖ])na′.

Hence we may replace a by a′ to assume that a is not divisible by p.

We observe that there exists a natural isomorphism

Ainf/(ξAinf + pAinf) = Ainf/([ϖ]Ainf + pAinf) ∼= OF /ϖOF

and in turn obtain a commutative diagram

Ainf Ainf/ξAinf

OF
∼= Ainf/pAinf Ainf/(ξAinf + pAinf) OF /ϖOF

θξ

∼=

(1.1)

where all arrows are evidently surjective. Choose an element c ∈ OF whose image under
the bottom horizontal arrow coincides with the image of a under the second vertical arrow.
We see that c is not divisible by ϖ as a is not divisible by p. Hence we write ϖ = cm for
some m ∈ mF and find

p = θξ(u
−1)θξ(up) = θξ(u)−1θξ([ϖ]) = θξ(u)−1θξ([c])θξ([m]).

Moreover, the diagram (1.1) yields an element b ∈ Ainf/ξAinf with

a = θξ([c]) + pb = θξ([c]) + bθξ(u)−1θξ([c])θξ([m]) = θξ([c])
(
1 + bθξ(u)−1θξ([m])

)
.

Now we complete the proof by noting that 1 + bθξ(u)−1θξ([m]) is a unit in Ainf/ξAinf with(
1 + bθξ(u)−1θξ([m])

)−1
=

∞∑
i=0

(−1)i
(
bθξ(u)−1θξ([m])

)i
where the convergence of the sum follows from Proposition 1.1.11 and Lemma 1.1.13. □
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Proposition 1.1.16. Let ξ be a primitive element in Ainf .

(1) The ring Ainf/ξAinf is an integral domain, whose fraction field Cξ is naturally an
untilt of F with OCξ

= Ainf/ξAinf .

(2) Each element c ∈ OF maps to θξ([c]) under the sharp map associated to Cξ.

Proof. Let us write ξ = [ϖ] − up with ϖ ∈ mF and u ∈ A×
inf . In addition, we let O

denote the ring Ainf/ξAinf . If ϖ is zero, we have O = Ainf/pAinf
∼= OF and thus establish the

desired assertions by Example 1.1.20. We henceforth assume that ϖ is nonzero.

For every nonzero c ∈ OF , Proposition 1.1.11 and Lemma 1.1.13 and together show that
θξ([c]) is not a zero divisor. Hence Proposition 1.1.15 implies that O is an integral domain.
In addition, Proposition 1.1.15 yields a function ν+ : O ! [0,∞] with

ν+(wθξ([c])) = νF (c) for every c ∈ OF and w ∈ O×.

It is evident that ν+ is a monoid homomorphism with respect to the multiplication on O and
the addition on [0,∞]. The image of ν+ is nondiscrete as the valuation νF is nondiscrete.
Moreover, for arbitrary nonzero a, b ∈ O with ν+(a) ≥ ν+(b), we see by Proposition 1.1.14
that a is divisible b in O and in turn find

ν+(a+ b) = ν+((a/b+ 1)b) = ν+(a/b+ 1) + ν+(b) ≥ ν+(b) = min(ν+(a), ν+(b)).

Therefore ν+ naturally extends to a nondiscrete valuation ν on the fraction field Cξ of O.
Proposition 1.1.14 implies that the valuation ring of Cξ is O; indeed, for every x = a/b ∈ Cξ
with a, b ∈ O, its valuation ν(a) − ν(b) is nonnegative if and only if a is divisible by b in O.
In addition, since we have

ν(p) = ν
(
θξ(u

−1)θξ(up)
)

= ν
(
θξ(u)−1θξ([ϖ])

)
= νF (ϖ) > 0,

we see that Cξ has residue characteristic p and also find by Proposition 1.1.11 that Cξ is
complete with respect to the valuation ν. Meanwhile, the surjectivity of the p-th power map
on OF /ϖOF yields the surjectivity of the p-th power map on OCξ

/pOCξ
via the natural

isomorphism

OF /ϖOF
∼= Ainf/([ϖ]Ainf + pAinf) = Ainf/(ξAinf + pAinf) ∼= OCξ

/pCξ. (1.2)

Therefore Cξ is a perfectoid field with OCξ
= Ainf/ξAinf .

By Proposition 2.1.7 in Chapter III, the isomorphism (1.2) gives rise to a topological
isomorphism

OF
∼= lim −

x7!xp
OF

∼= lim −
x 7!xp

OF /ϖOF
∼= lim −

x 7!xp
OCξ

/pOCξ
∼= lim −

x 7!xp
OCξ

∼= OC♭
ξ

which uniquely extends to a topological isomorphism ι : F ≃ C♭ξ. It is not hard to see that

each c ∈ OF maps to (θξ([c
1/pn ]) ∈ OC♭

ξ
under ι and in turn maps to θξ([c]) under the sharp

map associated to Cξ. Therefore we have established the desired assertions. □

Remark. It is evident by our proof that the valuation ν on Cξ coincides with the normalized
valuation on Cξ.

Definition 1.1.17. For every primitive element ξ ∈ Ainf , we refer to the untilt Cξ of F
constructed in Proposition 1.1.16 as the untilt of F associated to ξ.

Proposition 1.1.18. For a primitive element ξ ∈ Ainf , the untilt Cξ of F has characteristic 0
if and only if ξ is strongly primitive.

Proof. The assertion is straightforward to verify by Proposition 1.1.11. □
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Definition 1.1.19. Two untilts C1 and C2 of F are equivalent if there exists a topological
isomorphism f : C1 ≃ C2 with a commutative diagram

C♭1 C♭2

F

∼
f♭

∼
ιC1

∼
ιC2

where f ♭ is the isomorphism induced by f .

Example 1.1.20. Proposition 2.1.14 in Chapter III implies that every untilt of F in charac-
teristic p is equivalent to the trivial untilt of F .

Proposition 1.1.21. Given a perfectoid field C, every topological isomorphism ι : F ≃ C♭

naturally induces an isomorphism ι : OF /ϖOF ≃ OC/pOC for some ϖ ∈ OF .

Proof. Let us regard C as an untilt of F via the topological isomorphism ι : F ≃ C♭

and write ν for the normalized valuation on C. We apply Proposition 2.1.11 in Chapter III
to find an element ϖ ∈ OF with νF (ϖ) = ν(p). In addition, we note that ι restricts to an
isomorphism OF ≃ OC♭ and in turn induces a map

OF OC OC/pOC .
c 7!c♯

This map is a surjective ring homomorphism by Proposition 2.1.10 in Chapter III. Its kernel
consists of the elements c ∈ OF with ν(c♯) ≥ ν(p) or equivalently νF (c) ≥ νF (ϖ). Therefore
we obtain an isomorphism ι : OF /ϖOF ≃ OC/pOC induced by ι as desired. □

Remark. It is evident from our proof that the ring OF /ϖOF and the isomorphism ι do not
depend on the choice of the element ϖ ∈ mF with νF (ϖ) = ν(p). Moreover, we can show
that OF /ϖOF depends only on the perfectoid field C.

Definition 1.1.22. Given a perfectoid field C and a topological isomorphism ι : F ≃ C♭, we
refer to the map ι in Proposition 1.1.21 as the sharp map reduction of ι.

Example 1.1.23. Let ξ be a primitive element in Ainf . If we write ϖ for the image of ξ
in Ainf/pAinf

∼= OF , we apply Proposition 1.1.16 to identify ιCξ
with the natural isomorphism

OF /ϖOF
∼= Ainf/([ϖ]Ainf + pAinf) = Ainf/(ξAinf + pAinf) ∼= OCξ

/pCξ.

Hence for each c ∈ OF , the isomorphism ιCξ
maps the image of c in OF /ϖOF to the image

of θξ([c]) in OCξ
/pCξ.

Proposition 1.1.24. Given a perfectoid field C, two topological isomorphisms ι1 : F ≃ C♭

and ι2 : F ≃ C♭ coincide if and only if their sharp map reductions coincide.

Proof. If ι1 and ι2 coincide, their sharp map reductions evidently coincide. Let us now
assume for the converse that ι1 and ι2 are equal. Choose an element ϖ ∈ OF such that
OF /ϖOF is the source for ι1 = ι2. By Proposition 2.1.7 in Chapter III, the map ι1 = ι2
induces a topological isomorphism

OF
∼= lim −

x 7!xp
OF

∼= lim −
x 7!xp

OF /ϖOF
∼= lim −

x 7!xp
OC/pOC

∼= lim −
x 7!xp

OC
∼= OC♭

and in turn yields a topological isomorphism ι : F ≃ C♭. Hence we see that ι coincides with
both ι1 and ι2 by construction, thereby completing the proof. □

Remark. Proposition 1.1.24 shows that we can recover a topological isomorphism ι : F ≃ C♭

from its sharp map reduction ι, even though ι is purely algebraic.
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Proposition 1.1.25. Let C be an untilt of F .

(1) There exists a surjective ring homomorphism θC : Ainf ↠ OC with

θC

(∑
[cn]pn

)
=
∑

c♯np
n for every cn ∈ OF . (1.3)

(2) The ideal ker(θC) of Ainf contains a primitive element.

(3) Every primitive element in ker(θC) generates ker(θC).

Proof. Given a p-adic field K, all results from the first part of §2.2 in Chapter III rely
only on the fact that CK is an algebraically closed perfectoid field. Since C is algebraically
closed as noted in Proposition 1.1.6, these results remain valid with C in place of CK . In
particular, we obtain a surjective ring homomorphism θC : Ainf ↠ OC with the equality (1.3)
by Proposition 2.2.4 in Chapter III and find a primitive element ξC ∈ Ainf generating ker(θC)
by Proposition 2.2.12 in Chapter III.

It remains to prove that every primitive element ξ ∈ ker(θC) generates ker(θC). Let us
choose a valuation ν on OCξ

and write ξC for the image of ξC in Ainf/ξAinf = OCξ
. The

surjective ring homomorphism θC gives rise to an isomorphism

OCξ
/ξCOCξ

∼= Ainf/ξCAinf = Ainf/ ker(θC) ≃ OC .

If ξC is nonzero, we see that every a ∈ OCξ
with 0 < ν(a) < ν(ξC) yields a nilpotent element

in OCξ
/ξCOCξ

≃ OC , which is impossible. Therefore we find ξC = 0 and in turn deduce that
ξ generates ker(θC) = ξCAinf as asserted in statement (3). □

Remark. It is not hard to show that every generator of ker(θC) is a primitive element.

Definition 1.1.26. Given an untilt C of F , we refer to the map θC in Proposition 1.1.25 as the
Fontaine map of C and let θC [1/p] : Ainf [1/p]! C denote the induced ring homomorphism.

Theorem 1.1.27 (Kedlaya-Liu [KL15], Fontaine [Fon13]). There is a natural bijection

{ equivalence classes of untilts of F } ∼
−! { ideals of Ainf generated by a primitive element }

which maps each untilt C of F to ker(θC).

Proof. Take an arbitrary primitive element ξ ∈ Ainf . By Proposition 1.1.16, each c ∈ OF

maps to θξ([c]) under the sharp map associated to Cξ. We see that θξ coincides with θCξ
and

consequently find ξAinf = ker(θξ) = ker(θCξ
).

It remains to prove that every untilt C of F with ker(θC) = ξAinf is equivalent to Cξ.

Proposition 1.1.25 shows that θC yields a topological isomorphism f̃ : OCξ
= Ainf/ξAinf ≃ OC

with f̃(θξ([c])) = c♯ for each c ∈ OF . Moreover, the map f̃ uniquely extends to a topological

isomorphism f : Cξ ≃ C and gives rise to an isomorphism f : OCξ
/pOCξ

≃ OC/pOC . Let us

take the topological isomorphism f ♭ : C♭ξ ≃ C♭ induced by f and denote by ϖ the image of ξ

in Ainf/pAinf
∼= OF . For each c ∈ OF , we apply Example 1.1.23 to see that f ◦ ιCξ

maps the

image of c in OF /ϖOF to the image of f̃(θξ([c])) = c♯. Hence we find

ιC = f ◦ ιCξ
= f ♭ ◦ ιCξ

and in turn obtain the equality ιC = f ♭ ◦ ιCξ
by Proposition 1.1.24, thereby establishing the

desired assertion. □
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1.2. The algebraic Fargues-Fontaine curve

The main objective for this subsection is to construct the Fargues-Fontaine curve as a
scheme. For the rest of this chapter, we fix a nonzero element ϖ ∈ mF and denote by Y = YF
the set of equivalence classes of untilts of F in characteristic 0.

Definition 1.2.1. Let C be an untilt of F and x be an element of C.

(1) We define the normalized absolute value of x to be |x|C := p−νC(x).

(2) For C = F , we often refer to |x| := |x|F simply as the absolute value of x.

Remark. For the rest of this chapter, we will often use absolute values instead of valuations
for notational convenience, especially in arguments which involve analytic methods.

Example 1.2.2. Given an untilt C of F , Theorem 1.1.27 yields a primitive element ξ ∈ Ainf

which generates ker(θC). If we write ξ = [m] − up for some m ∈ mF and u ∈ A×
inf , we have

|p|C =
∣∣θC(u)−1θC([m])

∣∣
C

= |θC([m])|C =
∣∣∣m♯
∣∣∣
C

= |m| .

Proposition 1.2.3. The ring Ainf [1/p, 1/[ϖ]] admits an identification

Ainf [1/p, 1/[ϖ]] =
{∑

[cn]pn ∈W (F )[1/p] : |cn| bounded
}
.

Proof. Given an element f =
∑

[cn]pn ∈ W (F )[1/p], we have f ∈ Ainf [1/p, 1/[ϖ]] if
and only if there exists an integer i ≥ 0 with [ϖi]f =

∑
[cnϖ

i]pn ∈ Ainf [1/p] or equivalently
|cn| ≤

∣∣ϖ−i∣∣ for each n ∈ Z. □

Remark. Proposition 1.2.3 shows that the ring Ainf [1/p, 1/[ϖ]] does not depend on our choice
of the nonzero element ϖ ∈ mF .

Lemma 1.2.4. Given two equivalent untilts C and C ′ of F , we have |p|C = |p|C′ .

Proof. Since ker(θC) and ker(θC′) coincide by Theorem 1.1.27, the desired assertion
follows from Example 1.2.2. □

Definition 1.2.5. Let y be an element of Y and C be a representative of y.

(1) The absolute value of y is |y| := |p|C .

(2) The extended Fontaine map of C is the ring homomorphism θ̃C : Ainf [1/p, 1/[ϖ]]! C
which extends the Fontaine map θC : Ainf ↠ OC .

(3) Given an element f ∈ Ainf [1/p, 1/[ϖ]], its C-value at y is f(y)C := θ̃C(f), often
denoted by f(y) if the context clearly specifies C.

Remark. In order to understand the structures of the Fargues-Fontaine curve, it is often
useful to regard Y as an analogue of the punctured unit disk D∗ := { z ∈ C : 0 < |z| < 1 } in
the complex plane. Here we present a couple of similarities between Y and D∗.

(1) For each y ∈ Y represented by an untilt C of F , its absolute value |y| = |p|C is a real
number between 0 and 1. Similarly, for every z ∈ D∗ its absolute value |z| is a real
number between 0 and 1.

(2) Every element in Ainf [1/p, 1/[ϖ]] is a “Laurent series in the variable p” with bounded
coefficients and gives rise to a function on Y as described in Definition 1.2.5. Sim-
ilarly, every Laurent series

∑
anz

n over C with bounded coefficients defines a holo-
morphic function on D∗.
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Lemma 1.2.6. Let ρ be a real number with 0 < ρ < 1 and f be an element in Ainf [1/p, 1/[ϖ]]
with a Teichmüller expansion f =

∑
[cn]pn.

(1) The sequence (|cn| ρn) is bounded.

(2) There exist finitely many integers m with sup
n∈Z

(|cn| ρn) = |cm| ρm

Proof. Let us take an integer n0 with cn0 ̸= 0. Proposition 1.2.3 yields an integer l > 0
with |cn| ρn < |cn0 | ρn0 for each n > l. Moreover, there exists an integer m < 0 with cn = 0 for
each n < m. Hence the sequence (|cn| ρn) is bounded with sup

n∈Z
(|cn| ρn) = sup

m<n<l
(|cn| ρn). □

Definition 1.2.7. Let ρ be a real number with 0 < ρ < 1 and f be an element inAinf [1/p, 1/[ϖ]]
with a Teichmüller expansion f =

∑
[cn]pn.

(1) We define the Gauss ρ-norm of f to be |f |ρ := sup
n∈Z

(|cn| ρn).

(2) We say that ρ is generic for f if there exists a unique integer n with |f |ρ = |cn| ρn.

Lemma 1.2.8. Given an element f ∈ Ainf [1/p, 1/[ϖ]], the set

Sf := { ρ ∈ (0, 1) : ρ is generic for f }
is dense in the interval (0, 1).

Proof. Let us write f =
∑

[cn]pn with cn ∈ F . If ρ ∈ (0, 1) is not generic for f , we
find |f |ρ = |cm| ρm = |cn| ρn for some distinct m,n ∈ Z by Lemma 1.2.6 and in turn obtain

the equality ρ = (|cm| / |cn|)1/(n−m). Hence we deduce that the complement of Sf in (0, 1) is
countable, thereby establishing the desired assertion. □

Lemma 1.2.9. Let y be an element of Y and C be a representative of y. Given an
element f ∈ Ainf [1/p, 1/[ϖ]], we have |f(y)|C ≤ |f ||y| with equality if |y| is generic for f .

Proof. We write f =
∑

[cn]pn with cn ∈ F and find

|f(y)|C =
∣∣∣∑ c♯np

n
∣∣∣
C
≤ sup

n∈Z

(∣∣∣c♯n∣∣∣
C
|p|nC

)
= sup

n∈Z
(|cn| |y|n) = |f ||y| .

It is evident that the inequality becomes an equality if |y| is generic for f . □

Proposition 1.2.10. For every ρ ∈ (0, 1), the Gauss ρ-norm on Ainf [1/p, 1/[ϖ]] is a multi-
plicative nonarchimedean norm.

Proof. Let f and g be arbitrary elements in Ainf [1/p, 1/[ϖ]]. We note that the value
group |F | of F is dense in [0,∞) and in turn apply Lemma 1.2.8 to see that the set

S := { τ ∈ (0, 1) ∩ |F | : τ is generic for f, g, f + g, and fg }
is dense in (0, 1). Let us write ρ = lim

n!∞
τn with τn ∈ S and choose a sequence (mn) in mF

with |mn| = τn. Since each ξn := [mn] − p ∈ Ainf is strongly primitive, Theorem 1.1.27 and
Example 1.2.2 together yield a sequence (yn) in Y with |yn| = τn. For each n ≥ 0, we take a
representative Cn of yn and use Lemma 1.2.9 to find

|f + g|τn = |f(yn) + g(yn)|Cn
≤ max(|f(yn)|Cn

, |g(yn)|Cn
) = max(|f |τn , |g|τn),

|fg|τn = |f(yn)g(yn)|Cn
= |f(yn)|Cn

|g(yn)|Cn
= |f |τn |g|τn .

Hence we take limits to obtain the relations

|f + g|ρ ≤ max(|f |ρ , |g|ρ) and |fg|ρ = |f |ρ |g|ρ .
thereby completing the proof. □
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Definition 1.2.11. Let [a, b] be a closed subinterval of (0, 1).

(1) The [a, b]-annulus of untilts is

Y[a,b] := { y ∈ Y : a ≤ |y| ≤ b } .
(2) The ring of holomorphic functions on Y[a,b], denoted by B[a,b], is the completion

of Ainf [1/p, 1/[ϖ]] with respect to the Gauss a-norm and the Gauss b-norm.

Lemma 1.2.12. Given a closed subinterval [a, b] of (0, 1), every f ∈ Ainf [1/p, 1/[ϖ]] satisfies
the inequality |f |ρ ≤ sup(|f |a , |f |b) for each ρ ∈ [a, b].

Proof. If we write f =
∑

[cn]pn with cn ∈ F , we find

|cn| ρn ≤ |cn| bn ≤ |f |b for each n ≥ 0,

|cn| ρn ≤ |cn| an ≤ |f |a for each n < 0.

Hence we obtain the desired assertion. □

Remark. Since the value group |F | of F is dense in (0,∞), we find

sup
|y|=ρ

(|f(y)|C) = |f |ρ for each ρ ∈ |F | ∩ (0, 1)

by Lemma 1.2.8 and Lemma 1.2.9. Hence we may regard Lemma 1.2.12 as an analogue of the
maximum modulus principle for holomorphic functions on D∗.

Proposition 1.2.13. Let [a, b] be a closed subinterval of (0, 1).

(1) The ring B[a,b] is the completion of Ainf [1/p, 1/[ϖ]] with respect to all Gauss ρ-norms
with ρ ∈ [a, b].

(2) For every closed interval [a′, b′] with [a, b] ⊆ [a′, b′] ⊆ (0, 1), there exists a natural
ring homomorphism B[a′,b′] ! B[a,b].

Proof. Statement (1) is evident by Lemma 1.2.12. Statement (2) is an immediate con-
sequence of statement (1). □

Definition 1.2.14. We define the ring of holomorphic functions on Y = YF to be

B = BF := lim −B[a,b]

where the transition maps are the natural homomorphisms given by Proposition 1.2.13.

Remark. A sum
∑

[cn]pn with cn ∈ F converges in B if and only if it satisfies the relations

lim sup
n>0

|cn|1/n ≤ 1 and lim
n!∞

|c−n|1/n = 0.

Similarly, a Laurent series
∑
anz

n over C converges on D∗ if and only if it satisfies the relations

lim sup
n>0

|an|1/n ≤ 1 and lim
n!∞

|a−n|1/n = 0.

However, an arbitrary element in B does not necessarily admit a “Laurent series expansion”,
whereas every holomorphic function on D∗ admits a unique Laurent series expansion.

Lemma 1.2.15. Let η : R1 ! R2 be a continuous homomorphism of normed rings.

(1) The map η uniquely extends to a continuous ring homomorphism η̂ : R̂1 ! R̂2 where

R̂1 and R̂2 respectively denote the completions of R1 and R2.

(2) If η is a homeomorphism, η̂ is also a homeomorphism.

Proof. The assertions are straightforward to verify. □



1. CONSTRUCTION AND GEOMETRIC STRUCTURES 143

Proposition 1.2.16. Let C be an untilt of F in characteristic 0. The map θC uniquely

extends to a surjective continuous open ring homomorphism θ̂C : B ↠ C.

Proof. Lemma 1.2.9 and Lemma 1.2.15 show that θ̃C uniquely extends to a continuous

ring homomorphism
̂̂
θC : B[ρ,ρ] ! C with ρ := |p|C . Take θ̂C to be the composition of

̂̂
θC with

the natural map B ! B[ρ,ρ]. It is evident that θ̂C is surjective and continuous. Moreover, the

open mapping theorem implies that θ̂C is open. Hence we establish the desired assertion. □

Definition 1.2.17. Let y be an element in Y and C be a representative of y.

(1) The completed Fontaine map of C is the ring homomorphism θ̂C : B ↠ C constructed
in Proposition 1.2.16.

(2) For every f ∈ B, its C-value at y is f(y)C := θ̂C(f), often denoted by f(y) if the
context clearly specifies C.

Proposition 1.2.18. The Frobenius automorphism of Ainf uniquely extends to topological
isomorphisms φ : B ≃ B and φ[a,b] : B[a,b] ≃ B[ap,bp] for every closed interval [a, b] ⊆ (0, 1).

Proof. The Frobenius automorphism on Ainf = W (OF ) extends to the Frobenius auto-
morphism on W (F ). Since we have

φW (F )

(∑
[cn]pn

)
=
∑

[cpn]pn for each cn ∈ F, (1.4)

Proposition 1.2.3 implies that φW (F ) restricts to an automorphism on Ainf [1/p, 1/[ϖ]], which
we denote by φinf . By the identity (1.4), we find

|φinf(f)|ρp = |f |pρ for every f ∈ Ainf [1/p, 1/[ϖ]] and ρ ∈ (0, 1). (1.5)

Consider an arbitrary closed interval [a, b] ⊆ (0, 1) and choose a real number r ∈ [a, b].
Lemma 1.2.15 and the identity (1.5) show that the automorphism φinf on Ainf [1/p, 1/[ϖ]]
uniquely extends to a topological isomorphism φ[r,r] : B[r,r] ≃ B[rp,rp]. Moreover, by the
identity (1.5) a sequence (fn) in Ainf [1/p, 1/[ϖ]] is Cauchy with respect to the Gauss a-norm
and the Gauss b-norm if and only if the sequence (φinf(fn)) in Ainf [1/p, 1/[ϖ]] is Cauchy with
respect to the Gauss ap-norm and the Gauss bp-norm. Hence we deduce that φ[r,r] restricts
to a topological isomorphism φ[a,b] : B[a,b] ≃ B[ap,bp] with an inverse given by the restriction

of φ−1
[r,r] on B[ap,bp]. It is evident by construction that φ[a,b] is an extension of φinf .

By our discussion in the preceding paragraph, the automorphism φinf on Ainf [1/p, 1/[ϖ]]
extends to a topological isomorphism

φ : B = lim −B[a,b] ≃ lim −B[ap,bp] = B.

In fact, by continuity φ is a unique topological isomorphism on B which extends φinf . Hence
we establish the desired assertion. □

Definition 1.2.19. We refer to the map φ constructed in Proposition 1.2.18 as the Frobenius
automorphism of B and define the algebraic Fargues-Fontaine curve to be the scheme

X = XF := Proj (P ) with P :=
⊕
n≥0

Bφ=pn .

Remark. In Chapter V, we will present another incarnation of the Fargues-Fontaine curve
using the theory of adic spaces developed by Huber [Hub93, Hub94].

Proposition 1.2.20. The Fargues-Fontaine curve X is a Qp-scheme.

Proof. The assertion is evident as Qp naturally embeds into Bφ=1. □
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1.3. Legendre-Newton polygons

In this subsection, we study the structures of the ring B via invariant polygons which
encode the Gauss norms. For a continuous real-valued function h defined on an interval in R,
we denote its left derivative and right derivative respectively by ∂−h and ∂+h.

Definition 1.3.1. Let logp denote the real logarithm for base p.

(1) Given an element f ∈ B, we define the Legendre-Newton polygon of f to be the
function Lf : (0,∞)! R ∪ {∞ } with

Lf (s) := − logp

(
|f |p−s

)
for each s ∈ (0,∞).

(2) Given an element f ∈ B[a,b] for some [a, b] ⊆ (0, 1), we define the Legendre-Newton

polygon of f to be the function L[a,b]
f : [− logp(b),− logp(a)]! R ∪ {∞ } with

L[a,b]
f (s) := − logp

(
|f |p−s

)
for each s ∈ [− logp(b),− logp(a)].

Remark. Let us provide some motivation for studying the Legendre-Newton polygons. For
a polynomial g(z) =

∑
anz

n over a field L with valuation νL, a useful invariant is the Newton
polygon Ng given by the lower convex hull of the points (n, νL(an)) ∈ R× (R∪{∞ }); indeed,
Nf contains much information about the roots of g. For an element f ∈ Ainf [1/p, 1/[ϖ]] with
a Teichmüller expansion f =

∑
[cn]pn, we can similarly define the Newton polygon to be the

largest decreasing convex function Nf : R! R ∪ {∞ } with Nf (n) ≤ νF (cn) for each n ∈ Z.
It turns out that Lf coincides with the (concave) Legendre transform of Nf ; in other words,
Lf admits the identity

Lf (s) = inf
r∈R

(Nf (r) + rs) for each s ∈ (0,∞).

Hence the Legendre-Newton polygons serve as analogues of the Newton polygons for elements
in B which do not necessarily admit Teichmüller expansions. In fact, as we will see in this
section, the Legendre-Newton polygons turn out to be very useful for studying the elements
in B via their zeros and their behavior under the Gauss norms.

Lemma 1.3.2. For an element f ∈ Ainf [1/p, 1/[ϖ]] with a Teichmüller expansion f =
∑

[cn]pn,
its Legendre-Newton polygon Lf satisfies the equality

Lf (s) = inf
n∈Z

(νF (cn) + ns) for every s ∈ (0,∞).

Proof. The assertion is evident by definition. □

Example 1.3.3. For a primitive element ξ ∈ Ainf with a Teichmüller expansion ξ =
∑

[cn]pn,
Proposition 1.1.10 and Lemma 1.3.2 together yield the identity

Lξ(s) = min(νF (c0), s) for each s ∈ (0,∞).

Remark. In fact, an element f ∈ Ainf is primitive if and only if there exists r ∈ (0,∞] with

Lf (s) = min(r, s) for each s ∈ (0,∞).

Lemma 1.3.4. Given elements f, g ∈ B, we have

Lfg(s) = Lf (s) + Lg(s) and Lf+g(s) ≥ min(Lf (s),Lg(s)) for each s ∈ (0,∞).

Proof. The assertion is straightforward to verify by Proposition 1.2.10. □

Remark. Given a closed interval [a, b] ⊆ (0, 1), we can prove a similar statement for elements
of B[a,b] with the Legendre-Newton [a, b]-polygons.



1. CONSTRUCTION AND GEOMETRIC STRUCTURES 145

Proposition 1.3.5. Let f be a nonzero element in Ainf [1/p, 1/[ϖ]] with a Teichmüller ex-
pansion f =

∑
[cn]pn.

(1) The function Lf is concave and piecewise linear with integer slopes.

(2) For each s ∈ (0,∞), the one-sided derivatives ∂−Lf (s) and ∂+Lf (s) of Lf are re-
spectively equal to the maximum and minimum elements of the set

Ts := { n ∈ Z : Lf (s) = νF (cn) + ns } .

Proof. Let us fix a real number s > 0. Lemma 1.2.6 and Lemma 1.3.2 together imply
that Ts is a nonempty finite set. Let l and r respectively denote the minimum and maximum
elements of Ts. For each n ∈ Z, we obtain the relation

νF (cl) + ls = νF (cr) + rs ≤ νF (cn) + ns (1.6)

with equality precisely when n belongs to Ts. It suffices to show that for every sufficiently
small ϵ > 0 we have the equalities

Lf (s+ ϵ) = Lf (s) + lϵ and Lf (s− ϵ) = Lf (s) − rϵ.

Take an integer m < 0 with cn = 0 for each n ≤ m and set

δ1 := inf
n<l

(
(νF (cn) + ns) − (νF (cl) + ls)

l − n

)
= inf

m<n<l

(
(νF (cn) + ns) − (νF (cl) + ls)

l − n

)
.

We see that δ1 is positive as the inequality in the relation (1.6) is strict for each n < l.
Consider an arbitrary real number ϵ with 0 < ϵ < δ1. For each n < l, we find

ϵ(l − n) < δ1(l − n) ≤ (νF (cn) + ns) − (νF (cl) + ls)

and in turn obtain the inequality

νF (cl) + l(s+ ϵ) < νF (cn) + n(s+ ϵ). (1.7)

For each n > l, we use the relation (1.6) to also deduce the inequality (1.7). Therefore the
Legendre-Newton polygon Lf satisfies the identity

Lf (s+ ϵ) = inf
n∈Z

(νF (cn) + n(s+ ϵ)) = νF (cl) + l(s+ ϵ) = Lf (s) + lϵ.

Let us now apply Proposition 1.2.3 to choose λ ∈ R with νF (cn) > λ for each n ∈ Z. In
addition, we set

u :=
νF (cr) − λ

s/2
+ r and δ2 := inf

r<n<u

(
(νF (cn) + ns) − (νF (cr) + rs)

n− r

)
.

We see that δ2 is positive as the inequality in the relation (1.6) is strict for each n > r.
Consider an arbitrary real number ϵ with 0 < ϵ < min(s/2, δ2). For each n > u we have

νF (cr) − νF (cn) < νF (cr) − λ = (u− r)s/2 < (n− r)(s− ϵ)

and thus establish the inequality

νF (cr) + r(s− ϵ) < νF (cn) + n(s− ϵ). (1.8)

For each n ∈ Z with r < n < u, we find

ϵ(n− r) < δ2(n− r) ≤ (νF (cn) + ns) − (νF (cr) + rs)

and in turn obtain the inequality (1.8). For each n < r, we use the relation (1.6) to also
deduce the inequality (1.8). Therefore the Legendre-Newton polygon Lf satisfies the identity

Lf (s− ϵ) = inf
n∈Z

(νF (cn) + n(s− ϵ)) = νF (cr) + r(s− ϵ) = Lf (s) − rϵ.

The desired assertion is now evident. □
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Proposition 1.3.6. Let f be a nonzero element of B[a,b] for some [a, b] ⊆ (0, 1).

(1) For a sequence (fn) in Ainf [1/p, 1/[ϖ]] which converges to f under the Gauss a-norm
and the Gauss b-norm, there exists an integer m > 0 with

L[a,b]
fn

= L[a,b]
f for each n > m.

(2) The function L[a,b]
f is concave and piecewise linear with integer slopes.

Proof. We write l := − logp(b) and r := − logp(a). For a sequence (fn) in Ainf [1/p, 1/[ϖ]]
which converges to f under the Gauss a-norm and the Gauss b-norm, Lemma 1.2.12 yields
the equality

L[a,b]
f (s) = lim

n!∞
Lfn(s) for each s ∈ [l, r]. (1.9)

In addition, either L[a,b]
f (l) or L[a,b]

f (r) is finite as f is nonzero. Let us only consider the case

where L[a,b]
f (l) is finite, as the same argument works for the case where L[a,b]

f (r) is finite. Take

an integer u > 0 with

Lfn−fu(l) > L[a,b]
f (l) + 1 > Lfn(l) for each n ≥ u.

For every integer n ≥ u, we apply Proposition 1.3.5 to choose a real number δn > 0 with

Lfn−fu(l + ϵ) > L[a,b]
f (l) + 1 > Lfn(l + ϵ) for each ϵ ∈ (−δn, δn)

and in turn use Lemma 1.3.4 to find

Lfn(l + ϵ) = Lfu(l + ϵ) for each ϵ ∈ (−δn, δn).

Hence we obtain the equalities

Lfn(l) = Lfu(l) and ∂+Lfn(l) = ∂+Lfu(l) for every n > u.

Let us now set
ω := max(Lfu(l),Lfu(l) + ∂+Lfu(l)(r − l)).

Proposition 1.3.5 implies that each Lfn with n > u satisfies the inequality

Lfn(s) ≤ ω for every s ∈ [l, r].

Moreover, if we take an integer m > u with

Lfn−fm(l) > ω and Lfn−fm(r) > ω for each n > m,

we see by Lemma 1.2.12 that each Lfn−fm with n > m satisfies the inequality

Lfn−fm(s) > ω for every s ∈ [l, r]

and in turn deduce from Lemma 1.3.4 that each Lfn with n > u admits the identity

Lfn(s) = Lfm(s) for every s ∈ [l, r].

Hence we establish statement (1) by the equality (1.9). Statement (2) immediately follows
from statement (1) and Proposition 1.3.5. □

Proposition 1.3.7. For every nonzero f ∈ B, the function Lf is concave and piecewise linear
with integer slopes.

Proof. It suffices to show that Lf is concave and piecewise linear with integer slopes on
every closed interval [a, b] ⊆ (0, 1). If we write fa,b for the image of f under the natural ho-

momorphism B ! B[a,b], we identify L[a,b]
fa,b

with the restriction of Lf on [− logp(b),− logp(a)].

Therefore we deduce the desired assertion from Proposition 1.3.6. □
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Proposition 1.3.8. The natural map OF ! B sending each c ∈ OF to [c] ∈ B is continuous.

Proof. Let us choose an untilt C of F in characteristic 0. The natural map OF ! B

composed with θ̂C coincides with the sharp map associated to C on OF , which is continuous
by Proposition 2.1.8 in Chapter III. Hence we deduce the desired assertion from the fact that

θ̂C is continuous and open by construction. □

Remark. We can extend Proposition 1.3.8 to get a continuous map
∞∏
n=0

OF ! B which sends

each (cn) ∈
∞∏
n=0

OF to

∞∑
n=0

[cn]pn ∈ B.

Proposition 1.3.9. Given an element f ∈ B and an integer n ≥ 0 with |f |ρ ≤ ρn for

every ρ ∈ (0, 1), there exists an element c ∈ OF with |f − [c]pn|ρ ≤ ρn+1 for every ρ ∈ (0, 1).

Proof. We may replace f by f/pn to assume the equality n = 0. Since the asser-

tion is evident for f = 0, we may also assume that f is nonzero. Choose a sequence (f̃m)
in Ainf [1/p, 1/[ϖ]] which converges to f under all Gauss norms. For each m ≥ 1, we write

f̃m = fm +
∑
i<0

[cm,i]p
i with cm,i ∈ F and fm ∈ Ainf [1/[ϖ]].

We see that the sequence (fm) converges to f under all Gauss norms; indeed, if we consider

arbitrary real numbers ρ, ϵ ∈ (0, 1), for each m ≫ 0 we obtain the equality
∣∣∣f̃m∣∣∣

ϵρ
= |f |ϵρ

by Proposition 1.3.6 and in turn find∣∣∣f̃m − fm

∣∣∣
ρ

= sup
i<0

(
|cm,i| ρi

)
≤ sup

i<0

(
ϵ−i
)

sup
i<0

(
|cm,i| ϵiρi

)
≤ ϵ

∣∣∣f̃m∣∣∣
ϵρ

= ϵ |f |ϵρ ≤ ϵ.

For each m ≥ 1, let us denote by cm the image of fm under the natural map W (F ) ↠ F .
Each fm+1 − fm has the first term in the Teichmüller expansion given by [cm+1 − cm] and
thus satisfies the inequality

|cm+1 − cm| ≤ |fm+1 − fm|ρ for every ρ ∈ (0, 1).

We see that the sequence (cm) converges to an element c ∈ F for being Cauchy. Moreover,
since each fm has the first term in the Teichmüller expansion given by [cm], for every ρ ∈ (0, 1)
we apply Proposition 1.3.6 to find

|cm| ≤ |fm|ρ = |f |ρ ≤ 1 for every m≫ 0.

Hence we deduce that c lies in OF .

Let us now set gm := fm − [cm] ∈ Ainf [1/[ϖ]] for each m ≥ 1 and take g := f − [c] ∈ B.
We wish to establish the inequality |g|ρ ≤ ρ for every ρ ∈ (0, 1). If g is zero, the inequality
evidently holds. We henceforth assume that g is nonzero. Proposition 1.3.8 implies that the
sequence (gm) converges to g under all Gauss norms. Hence we may remove finitely many
terms from the sequence (gm) to assume that each gm is nonzero. Since the Teichmüller
expansion of each gm only involves positive powers of p, each Lgm is piecewise linear with
positive integer slopes by Proposition 1.3.5. Now Proposition 1.3.5 and Proposition 1.3.7
together show that Lg is piecewise linear with positive integer slopes. Meanwhile, we apply
Lemma 1.3.4 to find

Lg(s) ≥ min
(
Lf (s),L[c](s)

)
= min

(
− logp

(
|f |p−s

)
,− logp (|c|)

)
≥ 0 for each s ∈ (0,∞).

Hence we have Lg(s) ≥ s for every s ∈ (0,∞), or equivalently |g|ρ ≤ ρ for every ρ ∈ (0, 1). □
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Proposition 1.3.10. Let f be a nonzero element in B.

(1) The element f lies in Ainf if and only if we have |f |ρ ≤ 1 for every ρ ∈ (0, 1).

(2) The element f lies in Ainf [1/p] if and only if there exists an integer n with |f |ρ ≤ ρn

for every ρ ∈ (0, 1).

(3) The element f lies in Ainf [1/[ϖ]] if and only if there exists a real number λ > 0 with
|f |ρ ≤ λ for every ρ ∈ (0, 1).

(4) The element f lies in Ainf [1/p, 1/[ϖ]] if and only if there exist a real number λ > 0
and an integer n with |f |ρ ≤ λρn for every ρ ∈ (0, 1).

Proof. If f lies in Ainf , it evidently satisfies the inequality |f |ρ ≤ 1 for every ρ ∈ (0, 1).

Conversely, if we have |f |ρ ≤ 1 for every ρ ∈ (0, 1), we apply Proposition 1.3.9 to inductively

construct a sequence (ci) in OF with∣∣∣∣∣f −
n−1∑
i=0

[ci]p
i

∣∣∣∣∣
ρ

≤ ρn for every n ≥ 0 and ρ ∈ (0, 1)

and in turn find f ∈ Ainf . Therefore we establish statement (1). In addition, f lies in Ainf [1/p]
if and only if there exists an integer n with pnf ∈ Ainf , or equivalently |f |ρ ≤ |p|−nρ = ρ−n

for every ρ ∈ (0, 1) as asserted in statement (2). Similarly, f lies in Ainf [1/[ϖ]] if and only if
there exists an integer n with [ϖn]f ∈ Ainf , or equivalently |f |ρ ≤ |[ϖ]|−nρ = |ϖ|−n for every

ρ ∈ (0, 1) as asserted in statement (3). Likewise, f lies in Ainf [1/p, 1/[ϖ]] if and only if there
exist integers m and n with pn[ϖ]mf ∈ Ainf , or equivalently |f |ρ ≤ |[ϖ]−mp−n|ρ = |ϖ|−m ρ−n
for every ρ ∈ (0, 1) as asserted in statement (4). □

Lemma 1.3.11. Every f ∈ B satisfies the equalities

|φ(f)|ρp = |f |pρ and |pf |ρ = ρ |f |ρ for each ρ ∈ (0, 1).

Proof. If f lies in Ainf [1/p, 1/[ϖ]], the assertion is evident by construction. For the
general case, we obtain the assertion by continuity. □

Proposition 1.3.12. The Qp-vector space Bφ=pn is trivial for every n < 0.

Proof. Take an arbitrary element f ∈ Bφ=pn . Lemma 1.3.11 yields the equality

pLf (s) = Lφ(f)(ps) = Lpnf (ps) = nps+ Lf (ps) for each s ∈ (0,∞).

If f is nonzero, we apply Proposition 1.3.7 to obtain the relation

p∂+Lf (s) = np+ p∂+Lf (ps) ≤ np+ p∂+Lf (s) for each s ∈ (0,∞),

which is impossible as n is negative. Hence we deduce that Bφ=pn is trivial as desired. □

Proposition 1.3.13. The ring Bφ=1 is canonically isomorphic to Qp.

Proof. The field Qp embeds into Bφ=1 via an identification Qp
∼= Ainf [1/p, 1/[ϖ]]φ=1 as

easily seen by Teichmüller expansions. Hence it suffices to show that every nonzero f ∈ Bφ=1

lies in Qp. We apply Lemma 1.3.11 to find

pLf (s) = Lφ(f)(ps) = Lf (ps) for each s ∈ (0,∞)

and in turn obtain the equality p∂+Lf (s) = p∂+Lf (ps) for each s ∈ (0,∞). Now we see
by Proposition 1.3.7 that Lf is linear with an integer slope, which means that there exist
some n ∈ Z and r ∈ R with Lf (s) = ns+r for each s ∈ (0,∞), or equivalently |f |ρ = p−rρn for

each ρ ∈ (0, 1). Hence Proposition 1.3.10 implies that f lies in Ainf [1/p, 1/[ϖ]]φ=1 ∼= Qp. □
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Proposition 1.3.14. Let [a, b] be a closed subinterval of (0, 1).

(1) The ring B[a,b] is an integral domain.

(2) The natural ring homomorphism B ! B[a,b] is injective.

Proof. Consider arbitrary nonzero elements f, g ∈ B[a,b]. Proposition 1.3.6 implies that

both L[a,b]
f and L[a,b]

g take finite values, which means that both |f |ρ and |g|ρ are nonzero for

each ρ ∈ [a, b]. Hence we deduce from Proposition 1.2.10 that fg is nonzero and in turn
establish statement (1).

It remains to prove statement (2). Take an arbitrary nonzero element h ∈ B and denote

by ha,b its image under the natural map B ! B[a,b]. We may identify L[a,b]
ha,b

with the restriction

of Lh on [− logp(b),− logp(a)]. Since Lh takes finite values by Proposition 1.3.7, we see that
ha,b is nonzero and thus obtain statement (2). □

Remark. For every closed interval [a′, b′] with [a, b] ⊆ [a′, b′] ⊆ (0, 1), we can similarly show
that the natural ring homomorphism B[a′,b′] ! B[a,b] is injective.

Lemma 1.3.15. Let f and g be elements in B. If f is divisible by g in B[a,b] for every closed
interval [a, b] ⊆ (0, 1), then f is divisible by g in B.

Proof. For every closed interval [a, b] ⊆ (0, 1), we deduce from Proposition 1.3.14 that
there exists a unique element ha,b ∈ B[a,b] with f = gha,b. Hence we obtain an element h ∈ B
with f = gh as desired. □

Proposition 1.3.16. Let y be an element in Y and C be a representative of y. Every f ∈ B
with f(y) = 0 is divisible by every primitive element ξ ∈ ker(θC).

Proof. Take an arbitrary closed interval [a, b] ⊆ (0, 1). By Lemma 1.3.15, it suffices
to prove that f is divisible by ξ in B[a,b]. Choose a sequence (fn) in Ainf [1/p, 1/[ϖ]] which
converges to f with respect to the Gauss a-norm and the Gauss b-norm. Proposition 1.1.6

shows that each fn admits an expression fn(y) = c♯n for some cn ∈ F . Since we have

lim
n!∞

|cn| = lim
n!∞

∣∣∣c♯n∣∣∣
C

= lim
n!∞

|fn(y)|C = |f(y)|C = 0,

the sequence ([cn]) converges to 0 with respect to the Gauss a-norm and the Gauss b-norm.
Hence we may replace each fn by fn − [cn] to assume the equality fn(y) = 0.

Proposition 1.1.25 yields an element gn ∈ Ainf [1/p, 1/[ϖ]] with fn = ξgn for each n ≥ 1.
Moreover, for every ρ ∈ [a, b] we apply Proposition 1.2.10 to obtain the relation

lim
n!∞

|gn+1 − gn|ρ =
1

|ξ|ρ
· lim
n!∞

|ξ(gn+1 − gn)|ρ =
1

|ξ|ρ
· lim
n!∞

|fn+1 − fn|ρ = 0,

which means that the sequence (gn) is Cauchy with respect to the Gauss ρ-norm. Now the
sequence (gn) gives rise to an element g ∈ B[a,b] with f = ξg as desired. □

Proposition 1.3.17. Given an untilt C of F in characteristic 0, every primitive ξ ∈ ker(θC)

generates ker(θ̂C).

Proof. The assertion immediately follows from Proposition 1.3.16. □

Remark. Theorem 1.1.27 and Proposition 1.3.17 together show that Y admits a natural
embedding into the set of closed maximal ideals in B. It turns out that this embedding is a
bijection.
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Proposition 1.3.18. Given an untilt C of F in characteristic 0, we have

Ainf [1/p] ∩ ker(θ̂C)i = ker(θC [1/p])i for each i ≥ 1.

Proof. The assertion for i = 1 is evident by the fact that θ̂C restricts to θC [1/p]. Let us
now proceed by induction on i. Since we have

Ainf [1/p] ∩ ker(θ̂C)i ⊇ ker(θC [1/p])i,

we only need to prove that every a ∈ Ainf [1/p] ∩ ker(θ̂C)i belongs to ker(θC [1/p])i. By
Proposition 1.1.25 and Proposition 1.3.17, there exists a primitive element ξ ∈ Ainf which

generates ker(θ̂C) and ker(θC [1/p]). We write a = ξib for some b ∈ B and use the relation

Ainf [1/p] ∩ ker(θ̂C)i ⊆ Ainf [1/p] ∩ ker(θ̂C)i−1 = ker(θC [1/p])i−1

given by the induction hypothesis to find c ∈ Ainf [1/p] with a = ξi−1c. Now we have

0 = a− a = ξib− ξi−1c = ξi−1(ξb− c)

and thus apply Proposition 1.3.14 to obtain the relation

c = ξb ∈ Ainf [1/p] ∩ ker(θ̂C) = ker(θC [1/p]),

which in particular implies that a = ξi−1c lies in ker(θC [1/p])i as desired. □

Definition 1.3.19. Given an element y ∈ Y represented by an untilt C of F , we define the
de Rham local ring at y to be

B+
dR(y) := lim −

i

Ainf [1/p]/ ker(θC [1/p])i.

Remark. Theorem 1.1.27 shows that B+
dR(y) does not depend on the representative C.

Proposition 1.3.20. Let y be an element in Y and C be a representative of y.

(1) The ring B+
dR(y) is a complete discrete valuation ring with residue field C.

(2) Every primitive element in ker(θC) is a uniformizer of B+
dR(y).

(3) There exists a natural isomorphism

B+
dR(y) ∼= lim −

i

B/ ker(θ̂C)i.

Proof. Given a p-adic field K, all results from the first part of §2.2 in Chapter III rely
only on the fact that CK is an algebraically closed perfectoid field. Since C is algebraically
closed as noted in Proposition 1.1.6, these results remain valid with C in place of CK . Hence
we establish statement (1) by Proposition 2.2.17 in Chapter III and deduce statement (2)
from Proposition 1.1.25.

It remains to verify statement (3). By Proposition 1.1.25 and Proposition 1.3.17, there

exists a primitive element ξ ∈ Ainf which generates ker(θ̂C) and ker(θC [1/p]). Hence we obtain
a natural map

B+
dR(y) = lim −

i

Ainf [1/p]/ξ
iAinf [1/p] −! lim −

i

B/ξiB = lim −
i

B/ ker(θ̂C)i. (1.10)

Proposition 1.3.18 shows that the map (1.10) is injective. Moreover, since we have

Ainf [1/p]/ξAinf [1/p] ∼= C ∼= B/ξB,

the map (1.10) is surjective by a general fact stated in the Stacks project [Sta, Tag 0315]. Now
we deduce that the natural map (1.10) is an isomorphism, thereby completing the proof. □

https://stacks.math.columbia.edu/tag/0315
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Definition 1.3.21. Given a nonzero element f ∈ B, we define the vanishing order of f at
an element y ∈ Y to be the valuation of f in B+

dR(y), denoted by ordy(f).

Lemma 1.3.22. Given nonzero elements f, g ∈ B, we have

ordy(fg) = ordy(f) + ordy(g) for each y ∈ Y.

Proof. The assertion is evident by definition. □

Proposition 1.3.23. Let y be an element in Y and C be a representative of y. For every
nonzero f ∈ B, we have f(y) = 0 if and only if ordy(f) is positive.

Proof. The assertion immediately follows from Proposition 1.3.20. □

Remark. By Proposition 1.3.23, we can make sense of whether f vanishes at y without
choosing a representative.

Proposition 1.3.24. Let f be a nonzero element in B and [a, b] be a closed interval in (0, 1).

(1) The vanishing order of f at every y ∈ Y[a,b] is finite.

(2) The set Z[a,b] :=
{
y ∈ Y[a,b] : ordy(f) ̸= 0

}
is finite.

Proof. Let us write l := − logp(b) and r := − logp(a). Proposition 1.3.7 implies that
n := ∂−Lf (l) − ∂+Lf (r) is a nonnegative integer. It suffices to prove the inequality∑

y∈Z[a,b]

ordy(f) ≤ n. (1.11)

Suppose for contradiction that this inequality does not hold. We apply Proposition 1.3.16,
Proposition 1.3.20, and Lemma 1.3.22 to write

f = ξ1ξ2 · · · ξn+1g

for some g ∈ B and primitive elements ξ1, · · · , ξn+1 ∈ Ainf . Since each ξi vanishes at a unique
element in Y[a,b], Example 1.2.2 and Example 1.3.3 together yield the identity

∂−Lξi(l) − ∂+Lξi(r) = 1 − 0 = 1.

In addition, by Proposition 1.3.7 we have

∂−Lg(l) − ∂+Lg(r) ≥ 0.

Now we use Lemma 1.3.4 to find

n = ∂−Lf (l) − ∂+Lf (r) =
n+1∑
i=1

(∂−Lξi(l) − ∂+Lξi(r)) + (∂−Lg(l) − ∂+Lg(r)) ≥ n+ 1,

thereby obtaining a contradiction as desired. □

Remark. It turns out that the inequality (1.11) is an equality.

Proposition 1.3.25. The ring B is naturally a subring of B+
dR(y) for every y ∈ Y .

Proof. Since ordy(f) is finite for each nonzero f ∈ B as noted in Proposition 1.3.24, the
assertion follows from Proposition 1.3.20. □

Definition 1.3.26. Given a nonzero element f ∈ B, its Weil divisor on Y is the formal sum

DivY (f) :=
∑
y∈Y

ordy(f) · y.

Remark. We may regard DivY (f) as a locally finite sum by Proposition 1.3.24.
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1.4. The logarithm and closed points

In this subsection, we study the graded ring P =
⊕
Bφ=pn to establish some fundamental

properties of the Fargues-Fontaine curve. Throughout this section, we write m∗
F := mF \ { 0 }.

Proposition 1.4.1. There exists a group homomorphism log : 1 + mF ! Bφ=p with

log(ε) =

∞∑
n=1

(−1)n+1 ([ε] − 1)n

n
for every ε ∈ 1 + mF . (1.12)

Proof. Given ε ∈ 1 +mF and ρ ∈ (0, 1), we write [ε]−1 =
∑

[cn]pn with cn ∈ OF to find

|[ε] − 1|ρ ≤ max(|c0| , ρ) = max(|ε− 1| , ρ) < 1.

Hence we obtain a map log : 1 + mF ! B with the identity (1.12). Moreover, since we
have log(uv) = log(u) + log(v) as formal power series, we deduce from the multiplicativity of
Teichmüller lifts that log is a group homomorphism. Now for every ε ∈ 1 + mF we find

φ(log(ε)) =

∞∑
n=1

(−1)n+1 (φ([ε]) − 1)n

n
=

∞∑
n=1

(−1)n+1 ([εp] − 1)n

n
= log(εp) = p log(ε),

thereby completing the proof. □

Remark. We will see in Proposition 1.4.17 that log is a Qp-linear isomorphism.

Definition 1.4.2. We refer to the map log : 1 + mF ! Bφ=p given by Proposition 1.4.1 as
the tilted logarithm.

Proposition 1.4.3. Let C be an untilt of F and denote by mC the maximal ideal of OC .

(1) An element c ∈ OF lies in 1 + mF if and only if c♯ lies in 1 + mC .

(2) If C is in characteristic 0, there exists a commutative diagram

1 + mF Bφ=p

1 + mC C

log

ε 7!ε♯ θ̂C
logµp∞

where all maps are group homomorphisms.

Proof. Take an arbitrary element c ∈ OF . Proposition 2.1.10 in Chapter III yields an

element a ∈ OC with c♯ − 1 = (c− 1)♯ + pa. If c belongs to 1 + mF , we have

νC(c♯ − 1) ≥ min
(
νC
(
(c− 1)♯

)
, νC(pa)

)
= min(νF (c− 1), νC(pa)) > 0

and consequently see that c♯ lies in 1 + mC . Conversely, if c♯ belongs to 1 + mC , we find

νF (c− 1) = νC((c− 1)♯) ≥ min
(
νC(c♯ − 1), νC(pa)

)
> 0

and in turn see that c lies in 1 + mF . Hence we establish statement (1).

Now statement (1) and Proposition 1.1.6 together show that 1 + mF maps onto 1 + mC

under the sharp map. If C is in characteristic 0, every ε ∈ 1 + mF yields the identity

θ̂C(log(ε)) =
∞∑
n=1

(−1)n+1 (θ̂C([ε]) − 1)n

n
=

∞∑
n=1

(−1)n+1 (ε♯ − 1)n

n
= logµp∞ (ε♯)

where the last equality follows from Example 3.2.18 in Chapter II. Moreover, since C is
algebraically closed by Proposition 1.1.6, the map logµp∞ is a surjective homomorphism by

Proposition 3.2.20 in Chapter II. Therefore we obtain statement (2). □
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Definition 1.4.4. For every ε ∈ 1 + m∗
F , its associated cyclotomic element in Ainf is

ξε :=
[ε] − 1

[ε1/p] − 1
= 1 + [ε1/p] + · · · + [ε(p−1)/p].

Proposition 1.4.5. Let ε be an element in 1 + m∗
F .

(1) The element ξε ∈ Ainf is strongly primitive.

(2) The element ξε ∈ Ainf divides [ε] − 1 but not [ε1/p] − 1.

(3) The element yε ∈ Y represented by Cξε admits the equality ordyε(log(ε)) = 1.

Proof. Let us write k := OF /mF for the residue field of F . In addition, for every c ∈ OF

we denote by c its image under the natural map OF ↠ k. Theorem 2.3.1 in Chapter II yields
a ring homomorphism η : Ainf !W (k) with

η
(∑

[cn]pn
)

=
∑

[cn]pn for each cn ∈ OF .

We find η(ξε) = p by the identity ε1/p = ε1/p = 1 and thus obtain a Teichmüller expansion

ξε = [m0] + [m1 + 1]p+
∑
n≥2

[mn]pn with mn ∈ mF .

Since we have

m0 = 1 + ε1/p + · · · + ε(p−1)/p =
ε− 1

ε1/p − 1
̸= 0,

we deduce statement (1) from Proposition 1.1.10.

It is evident by construction that ξε divides [ε] − 1. If ξε divides [ε1/p] − 1, we see that

ξε = 1 + [ε1/p] + · · · + [ε(p−1)/p] should divide p, which contradicts Proposition 1.1.11. Hence

we deduce that ξε does not divide [ε1/p] − 1 and in turn obtain statement (2).

Now Proposition 1.3.20 shows that [ε] − 1 = ξε([ε
1/p] − 1) is a uniformizer of B+

dR(yε). In
addition, log(ε) is divisible by [ε]−1 but not by ([ε]−1)2. Therefore we find ordyε(log(ε)) = 1
as asserted in statement (3). □

Remark. The main insight behind Proposition 1.4.5 is that ε should give rise to a system
of p-power primitive roots of unity in some untilt of F , as foreshadowed by our discussion
in Chapter III.

Definition 1.4.6. Given an element ε ∈ 1 + m∗
F , the untilt class of F associated to ε is the

element yε ∈ Y represented by Cξε .

Proposition 1.4.7. There exists a bijection (1 +m∗
F )/Z×

p
∼
−! Y which maps the Z×

p -orbit of
an element ε ∈ 1 + m∗

F to yε ∈ Y .

Proof. Let y be an arbitrary element in Y and C be a representative of y. Since C is
algebraically closed as noted in Proposition 1.1.6, it admits a system of primitive p-power
roots of unity which is unique up to Z×

p -multiple. This system yields a unique Z×
p -orbit of an

element ε ∈ OF with ε♯ = 1 and (ε1/p)
♯ ̸= 1 via the tilting isomorphism F ≃ C♭. We note

that ε lies in 1 + m∗
F by Proposition 1.4.3 and in turn find y = yε by the equality

θC(ξε) =
θC([ε] − 1)

θC([ε1/p] − 1)
=

ε♯ − 1

(ε1/p)
♯ − 1

= 0

In addition, every ζ ∈ 1 + m∗
F with y = yζ should be a Z×

p -multiple of ε as it satisfies the

relations ζ♯ = 1 and (ζ1/p)
♯ ̸= 1 by Proposition 1.4.5. Now the desired assertion is evident. □
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Definition 1.4.8. Let φF denote the Frobenius automorphism of F .

(1) Given an untilt C of F , its Frobenius twist ϕ(C) is the perfectoid field C with the
topological isomorphism ιϕ(C) = ιC ◦ φF .

(2) The Frobenius action on Y is the bijection ϕ : Y ! Y induced by Frobenius twists.

Lemma 1.4.9. For every untilt C of F in characteristic 0, we have θ̂ϕ(C) = θ̂C ◦ φ

Proof. We observe the identity θ̃ϕ(C) = θ̃C ◦ φ by construction and in turn obtain the
desired assertion by continuity. □

Proposition 1.4.10. Every ε ∈ 1 + m∗
F yields the identity ϕ−1(yε) = yεp .

Proof. Let us write Cε := Cξε for notational symplicity. We find

θϕ−1(Cε)(ξεp) = θϕ−1(Cε)(φ(ξε)) = θCε(ξε) = 0

by Lemma 1.4.9 and in turn establish the desired assertion by Theorem 1.1.27. □

Proposition 1.4.11. There exists a natural bijection (1 + m∗
F )/Q×

p
∼
−! Y/ϕZ which maps

the Q×
p -orbit of an element ε ∈ 1 + m∗

F to the ϕ-orbit of yε ∈ Y .

Proof. The assertion is evident by Proposition 1.4.7 and Proposition 1.4.10. □

Proposition 1.4.12. Every nonzero f ∈ Bφ=pn with n ≥ 0 satisfies the equality

ordy(f) = ordϕ(y)(f) for each y ∈ Y.

Proof. Choose a representative C of y. By Proposition 1.1.25 and Proposition 1.3.17,

there exists a primitive element ξ ∈ Ainf which generates ker(θ̂C). Proposition 1.1.10 and

Lemma 1.4.9 together show that φ(ξ) ∈ Ainf is primitive and lies in ker(θ̂ϕ(C)). Let us write
i := ordy(f) and j := ordϕ(y)(f). By Proposition 1.3.20, we may write

f = ξig = φ(ξ)jh with g, h ∈ B.

We obtain the equalities

f = p−nφ(f) = φ(ξ)ip−nφ(g) and f = φ−1(φ(f)) = pnφ−1(f) = ξjpnφ−1(h),

which respectively yield the inequalities i ≤ j and i ≥ j. Hence we find i = j as desired. □

Proposition 1.4.13. Every ε ∈ 1 + m∗
F yields the identity

DivY (log(ε)) =
∑
n∈Z

ϕn(yε).

Proof. Proposition 1.4.5 and Proposition 1.4.12 together yield the equality

ordϕn(yε)(log(ε)) = 1 for each n ∈ Z.
Hence we only need to show that log(ε) does not vanish outside the ϕ-orbit of yε. Let us
take an arbitrary element y ∈ Y at which log(ε) vanishes and choose a representative C of y.
Proposition 3.2.20 in Chapter II shows that ker(logµp∞ ) is the torsion subgroup of 1 + mC ,

where mC denotes the maximal ideal of OC . We apply Proposition 1.4.3 to find an integer n

with (εp
n
)
♯

= 1 and (εp
n−1

)
♯
̸= 1. Now we have

θC(ξεpn ) =
θC([εp

n
] − 1)

θC([εpn−1 ] − 1)
=

(εp
n
)
♯ − 1

(εpn−1)
♯ − 1

= 0

and thus obtain the identity y = ϕn(yε) by Proposition 1.4.10. □
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In order to study closed points on the Fargues-Fontain curve, we invoke the following
technical result without a proof.

Proposition 1.4.14. A nonzero element f ∈ B divides another nonzero element g ∈ B if and
only if we have ordy(f) ≤ ordy(g) for every y ∈ Y .

Remark. Proposition 1.4.14 is one of the most difficult results from the original work of
Fargues-Fontaine [FF18]. Its proof makes heavy use of the Legendre-Newton polygons and

also introduces a complete ultrametric on the set Ŷ := Y ∪ { o }, where o denotes the equiva-
lence class of the trivial untilt of F . Curious readers can find a complete proof in the article
of Fargues-Fontaine [FF18, Chapitre 2] or the notes of Lurie [Lur, Lectures 13-16]. Here we
state two interesting facts about the Legendre-Newton polygons used in the proof.

(1) An element h ∈ B is a unit if and only if Lh is linear.

(2) Every h ∈ B with ∂−Lh(s) ̸= ∂+Lh(s) for some s ∈ (0,∞) must vanish at some
element y ∈ Y[p−s,p−s].

Lemma 1.4.15. Every f ∈ Bφ=pn with n ≥ 1 vanishes at some element in Y .

Proof. If f does not vanish at any element in Y , we deduce from Proposition 1.4.14 that

f admits a multiplicative inverse in Bφ=p−n
, which contradicts Proposition 1.3.12. Hence we

obtain the desired assertion. □

Lemma 1.4.16. Let f be an element in Bφ=pn with n ≥ 1 and ε be an element in 1 + m∗
F . If

both f and log(ε) vanish at some y ∈ Y , there exists some g ∈ Bφ=pn−1
with f = log(ε)g.

Proof. By Proposition 1.4.12, we have

ordϕi(y)(f) = ordy(f) ≥ 1 for each i ∈ Z.

Hence Proposition 1.4.13 and Proposition 1.4.14 yield an element g ∈ B with f = log(ε)g.

Since B is an integral domain by Proposition 1.3.14, we deduce that g lies in Bφ=pn−1
and in

turn establish the desired assertion. □

Proposition 1.4.17. The map log : 1 + mF ! Bφ=p is a continuous Qp-linear isomorphism.

Proof. Choose an untilt C of F in characteristic 0. The sharp map associated to C
is continuous on OF by Proposition 2.1.8 in Chapter III. In addition, the map logµp∞ is

continuous by Proposition 3.2.20 in Chapter II. Since both θ̂C and φ are continuous and open
by construction, we deduce from Proposition 1.4.3 that log is continuous.

Let us now consider an arbitrary element c ∈ Qp. We may write c = m/pd with m ∈ Zp
and d ∈ Z. Choose a sequence (mi) in Z which converges to m under the p-adic norm. For
every ε ∈ 1 + mF , we apply Proposition 1.4.1 to find

log(εc) = log(εm/p
d
) = lim

i!∞
log(εmi/p

d
) = lim

i!∞

mi

pd
log(ε) = c log(ε).

Hence we deduce that log is Qp-linear.

It remains to prove that log is an isomorphism. Proposition 1.4.13 shows that log(ε) is
nonzero for every ε ∈ 1 + m∗

F and in turn implies that log is injective. Now we only need to
establish the surjectivity of log. Take an arbitrary element f ∈ Bφ=p. Proposition 1.4.7 and
Lemma 1.4.15 together imply that f vanishes at yε ∈ Y for some ε ∈ 1 + m∗

F . Since log(ε)
also vanishes at yε ∈ Y by Proposition 1.4.5, we apply Proposition 1.3.13 and Lemma 1.4.16
to obtain an element g ∈ Bφ=1 ∼= Qp with f = log(ε)g = log(εg). Hence we deduce that log
is surjective as desired. □
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Proposition 1.4.18. For every ε ∈ 1 + mF , the element log(ε) ∈ Bφ=p is a prime in P .

Proof. Proposition 1.3.14 shows that B and P are integral domains, which in particular
implies that log(1) = 0 is a prime in P . Let us henceforth assume that ε lies in 1 +m∗

F . Take
arbitrary elements f, g ∈ P with fg divisible by log(ε). We wish to show that log(ε) divides
either f or g in P . Since log(ε) is homogeneous, we may assume without loss of generality
that both f and g are homogeneous. We note by Proposition 1.4.5 that log(ε) vanishes
at yε ∈ Y and in turn find by Lemma 1.3.22 that either f or g vanishes at yε. Hence the
desired assertion follows from Lemma 1.4.16. □

Proposition 1.4.19. Let f be a nonzero element in Bφ=pn for some n ≥ 1.

(1) The map φ uniquely extends to an automorphism φf on B[1/f ].

(2) The element f admits an expression

f = log(ε1) · · · log(εn) with εi ∈ 1 + m∗
F (1.13)

where the factors are unique up to Q×
p -multiple.

Proof. Statement (1) is straightforward to verify. Let us now consider statement (2).
If we have n = 1, the assertion is evident by Proposition 1.4.17. Hence we may assume
the inequality n > 1. Proposition 1.4.7 and Lemma 1.4.15 together show that f vanishes
at yεn ∈ Y for some εn ∈ 1 + m∗

F . Since log(εn) also vanishes at yεn by Proposition 1.4.5,

we apply Lemma 1.4.16 to obtain an element g ∈ Bφ=pn−1
with f = log(εn)g. Now a simple

induction yields the desired expression (1.13) where the factors are unique up to Q×
p -multiple

by Proposition 1.3.13 and Proposition 1.4.18. □

Definition 1.4.20. For every nonzero f ∈ Bφ=pn with n ≥ 1, we refer to the map φf
in Proposition 1.4.19 as the Frobenius automorphism on B[1/f ] and often write φ = φf .

Proposition 1.4.21. Let x be a nongeneric point on X.

(1) The point x is closed and corresponds to a prime log(ε) ∈ P for some ε ∈ 1 + m∗
F .

(2) The residue field of x is naturally isomorphic to the representatives of every y ∈ Y
at which log(ε) vanishes.

Proof. By Proposition 1.4.19, there exists a nonzero element t ∈ Bφ=p such that x lies
in the standard open subscheme Spec (B[1/t]φ=1) of X = Proj (P ). Let us denote by p the

prime ideal of B[1/t]φ=1 which corresponds to x. If we take a nonzero element f ∈ Bφ=pn for
some n ≥ 1 with f/tn ∈ p, we use Proposition 1.4.19 to find

f

tn
=

log(ε1)

t
· log(ε2)

t
· · · log(εn)

t
with εi ∈ 1 + m∗

F .

and thus obtain an element ε ∈ 1 + m∗
F with log(ε)/t ∈ p.

Consider an element y ∈ Y at which log(ε) vanishes and choose a representative C of y.
If t vanishes at y, we see by Proposition 1.3.13 and Lemma 1.4.16 that log(ε)/t is invertible
for being in Bφ=1 ∼= Qp, which is impossible as p is a prime ideal. Hence we deduce that

t does not vanish at y and in turn obtain a map θx : B[1/t]φ=1 ! C induced by θ̂C .

Proposition 1.4.3 shows that θ̂C restricts to a surjective map Bφ=p ↠ C, which in par-
ticular implies that θx is surjective. Moreover, given an element g ∈ Bφ=pn for some n ≥ 1
with g/tn ∈ ker(θx), we note that g vanishes at y and accordingly find by Lemma 1.4.16 that
log(ε)/t divides g/tn. Since log(ε)/t lies in ker(θx), we see that log(ε)/t generates ker(θx) and

thus deduce that p coincides with the maximal ideal ker(θx) in B[1/t]φ=1. Now the desired
assertions are evident. □
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Theorem 1.4.22 (Fargues-Fontaine [FF18]). Let |X| denote the set of closed points on X.

(1) There exists a natural bijection |X| ∼
−! Y/ϕZ which maps the point on X given by

a prime log(ε) ∈ P for some ε ∈ 1 + m∗
F to the ϕ-orbit of yε ∈ Y .

(2) X is a Dedekind scheme such that the open subscheme X\ { x } for every x ∈ |X| is
the spectrum of a principal ideal domain.

(3) For every x ∈ |X|, its completed local ring ÔX,x admits a natural identification

ÔX,x
∼= B+

dR(y)

where y is an arbitrary element in the image of x under the bijection |X| ∼
−! Y/ϕZ.

Proof. Proposition 1.4.21 yields a surjection 1 + m∗
F ↠ |X| sending each ε ∈ 1 + m∗

F to
the point on X given by the prime log(ε) ∈ P . By Proposition 1.3.13 and Proposition 1.4.17,
two elements ε1 and ε2 in 1 + m∗

F map to the same point on X if and only if ε1 and ε2 lie in
the same Q×

p -orbit. Therefore we deduce statement (1) from Proposition 1.4.11.

Let us now fix a closed point x on X which corresponds to the the prime log(ε) ∈ P

for some ε ∈ 1 + m∗
F . The scheme X\ { x } is naturally isomorphic to Spec (B[1/ log(ε)]φ=1).

In addition, Proposition 1.4.21 shows that every prime ideal of B[1/ log(ε)]φ=1 is principal.
Hence we obtain statement (2) by a general fact stated in the Stacks project [Sta, Tag 05KH].

It remains to establish statement (3). Let us take an element y ∈ Y in the ϕ-orbit of yε
and choose a representative C of y. Proposition 1.4.19 yields a nonzero element t ∈ Bφ=p

such that x lies in the open subscheme Spec (B[1/t]φ=1) of X. We see by Proposition 1.4.21

that x corresponds to the maximal ideal mx of B[1/t]φ=1 generated by log(ε)/t and in turn
get a natural isomorphism

ÔX,x
∼= lim −

i

B[1/t]φ=1/mi
x.

Meanwhile, since t is not a Q×
p -multiple of log(ε), Proposition 1.3.13 and Lemma 1.4.16

together show that t does not vanish at y. Let θ̂C [1/t] : B[1/t] ↠ C denote the surjective

ring homomorphism induced by θ̂C . We apply Proposition 1.3.20 to identify B+
dR(y) with

the completed local ring of the closed point on Spec (B) given by ker(θ̂C) and thus obtain a
canonical isomorphism

B+
dR(y) ∼= lim −

i

B[1/t]/ ker(θ̂C [1/t])i.

If we consider an integer i ≥ 1 and an element f ∈ Bφ=pn for some n ≥ 1 such that f/tn lies

in B[1/t]φ=1 ∩ ker(θ̂C [1/t])i, we find ordy(f) ≥ i and in turn deduce from Lemma 1.4.16 that
log(ε)i/ti divides f/tn. Hence the ideal mx generated by log(ε)/t admits an identification

mi
x = B[1/t]φ=1 ∩ ker(θ̂C [1/t])i for each i ≥ 1.

Now we obtain a natural injective ring homomorphism

ÔX,x
∼= lim −

i

B[1/t]φ=1/mi
x ↪−! lim −

i

B[1/t]/ ker(θ̂C [1/t])i ∼= B+
dR(y).

Moreover, since both B[1/t]φ=1/mx and B[1/t]/ ker(θ̂C [1/t]) are isomorphic to C, this map
is surjective by a general fact stated in the Stacks project [Sta, Tag 0315]. Therefore we
establish the desired assertion. □

Remark. Theorem 1.4.22 shows notable similarities between the Fargues-Fontaine curve X
and the complex projective line P1

C, although X is not of finite type over the base field Qp.
In the subsequent section, we will present many additional similarities between X and P1

C.

https://stacks.math.columbia.edu/tag/05KH
https://stacks.math.columbia.edu/tag/0315
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2. Vector bundles

Our main objective in this section is to discuss several key properties of vector bundles
on the Fargues-Fontaine curve. The primary references for this section are the survey article
of Fargues-Fontaine [FF12] and the lecture notes of Lurie [Lur].

2.1. Line bundles and their cohomology

Throughout this subsection, we denote by |X| the set of closed points on X.

Lemma 2.1.1. The group of Weil divisors on X is the free abelian group generated by |X|.

Proof. The assertion is an immediate consequence of Theorem 1.4.22. □

Definition 2.1.2. The divisor degree map of X is the homomorphism deg : Div(X) ! Z
with deg(x) = 1 for every x ∈ |X|, where Div(X) denotes the group of Weil divisors on X.

Lemma 2.1.3. There exists a natural bijection |X| ∼
−! (Bφ=p\ { 0 })/Q×

p which maps the

point on X given by a prime log(ε) ∈ P for some ε ∈ 1+m∗
F to the Q×

p -orbit of log(ε) ∈ Bφ=p.

Proof. The assertion is evident by Proposition 1.4.17 and Theorem 1.4.22. □

Proposition 2.1.4. A Weil divisor D on X is principal if and only if we have deg(D) = 0.

Proof. If D is a principal divisor of a rational function f on X, we have f = g/h for
some g, h ∈ Bφ=pn with n ≥ 0 and thus apply Proposition 1.4.19 to obtain the identity

f =
t1t2 · · · tn

tn+1tn+2 · · · t2n
with ti ∈ Bφ=p,

which in turn yields the equality deg(D) = 0 by Lemma 2.1.3. Conversely, if D satisfies the
equality deg(D) = 0, we write

D = (x1 + x2 + · · · + xn) − (xn+1 + xn+2 + · · · + x2n) with xi ∈ |X|
and use Lemma 2.1.3 to get a rational function f on X whose principal Weil divisor is D. □

Definition 2.1.5. Given an integer d, the d-fold Serre twist of OX is the quasicoherent

OX -module O(d) = OX(d) associated to P (d) :=
⊕
n≥0

Bφ=pd+n
.

Remark. For P1
C = Proj (C[z1, z2]), we can similarly define the Serre twist OP1

C
(d) of OP1

C
.

Proposition 2.1.6. The divisor degree map of X induces a natural isomorphism Pic(X) ∼= Z
whose inverse maps each d ∈ Z to the isomorphism class of O(d).

Proof. We may identify Pic(X) with the class group of X by Theorem 1.4.22 and a
general fact stated in the Stacks project [Sta, Tag 0BE9]. Hence Proposition 2.1.4 shows
that the divisor degree map of X induces a natural isomorphism Pic(X) ∼= Z. Let us now
consider an arbitrary integer d. Since the elements in Bφ=p generate the Qp-algebra P as noted
in Proposition 1.4.19, the OX -module O(d) is a line bundle on X by a general fact stated
in the Stacks project [Sta, Tag 01MT]. Take a nonzero element t ∈ Bφ=p, which induces a
closed point x on X by Lemma 2.1.3. We observe that td yields a global section of O(d) and
in turn find that O(d) is isomorphic to the line bundle given by the Weil divisor dx on X.
Hence the isomorphism class of O(d) maps to d under the isormorphism Pic(X) ∼= Z. □

Remark. Similarly, Pic(P1
C) admits a natural isomorphism Pic(P1

C) ∼= Z whose inverse maps
each d ∈ Z to the isomorphism class of OP1

C
(d).

https://stacks.math.columbia.edu/tag/0BE9
https://stacks.math.columbia.edu/tag/01MT
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Proposition 2.1.7. Let d be a nonnegative integer and t be a nonzero element in Bφ=p.
Denote by tO(d) the quasicoherent OX -module associated to tP (d).

(1) There exists a natural commutative diagram

0 Bφ=pd Bφ=pd+1
Bφ=pd+1

/tBφ=pd 0

0 H0(X,O(d)) H0(X,O(d+ 1)) H0(X,O(d+ 1)/tO(d)) 0

∼

where both rows are exact.

(2) The OX -module O(d+ 1)/tO(d) is a skyscraper sheaf at x ∈ |X| induced by t.

Proof. Since P is an integral domain by Proposition 1.3.14, the multiplication by t
on P induces an exact sequence

0 −! P (d) −! P (d+ 1) −! P (d+ 1)/tP (d) −! 0 (2.1)

which gives rise to an exact sequence of coherent OX -modules

0 −! O(d) −! O(d+ 1) −! O(d+ 1)/tO(d) −! 0. (2.2)

The top row in the diagram comes from the sequence (2.1) and is exact. The bottom row in
the diagram comes from the sequence (2.2) and is left exact. Moreover, a general fact stated in
the Stacks project [Sta, Tag 01M7] yields the vertical maps in the diagram and subsequently
establishes the commutativity of the diagram.

Meanwhile, Lemma 1.4.15 yields an element y ∈ Y at which t vanishes. Let us choose a

representative C of y. Proposition 1.4.3 shows that θ̂C restricts to a surjective map Bφ=p ↠ C.

We see that θ̂C also restricts to a surjective map Bφ=pd+1
↠ C; indeed, for every a ∈ C, we

take f, g ∈ Bφ=p with θ̂C(f) = 1 and θ̂C(g) = a to find θ̂C(fdg) = a. In addition, we find by

Lemma 1.4.16 that the kernel of the surjective map Bφ=pd+1
↠ C is tBφ=pd . Therefore the

map θ̂C gives rise to an isomorphism

Bφ=pd+1
/tBφ=pd ∼

−! C. (2.3)

Now we apply Lemma 2.1.3 to take x ∈ |X| induced by t and use Proposition 1.4.21 to
identify C with the residue field of x. Proposition 2.1.6 implies that O(d) and O(d + 1) are
respectively isomorphic to the line bundles given by the Weil divisors dx and (d+ 1)x on X.
Hence the injective OX -module morphism O(d) ↪! O(d + 1) in the sequence (2.2) induces
an isomorphism on the stalks at every x′ ∈ |X| with x′ ̸= x. We see that O(d + 1)/tO(d) is
isomorphic to the skyscraper sheaf at x with value t−d−1OX,x/t

−dOX,x ≃ C and in turn use
the isomorphism (2.3) to find that the right vertical map in the diagram is an isomorphism.
Moreover, we obtain the exactness of the bottom row in the diagram by the commutativity
of the right square. Therefore we establish the desired assertion. □

Remark. For d = 0, our proof of Proposition 2.1.7 yields a short exact sequence

0 −! Qp −! Bφ=p −! C −! 0.

In fact, the work of Colmez [Col02] shows that many key objects in p-adic Hodge theory
arise as extensions of a finite dimensional C-vector space by a finite dimensional Qp-vector
space, referred to as Banach-Colmez spaces. Moreover, the result of le Bras [LB18] presents
a classificaiton of Banach-Colmez spaces in terms of coherent OX -modules. We refer curious
readers to the book of Scholze-Weinstein [SW20, §15.2] for details.

https://stacks.math.columbia.edu/tag/01M7
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Theorem 2.1.8 (Fargues-Fontaine [FF18]). For the cohomology of line bundles on X, we
have the following statements:

(1) There exists a canonical isomorphism H0(X,O(d)) ∼= Bφ=pd for every d ∈ Z.

(2) The cohomology group H1(X,O(d)) vanishes for every d ≥ 0.

Proof. Let us take a nonzero element t ∈ Bφ=p. By Lemma 2.1.3, there exists a closed
point x on X induced by t. We note that the scheme U := X\ { x } admits a natural

isomorphism U ∼= Spec (B[1/t]φ=1).

Since P is an integral domain by Proposition 1.3.14, for every d ∈ Z the multiplication by t
on P yields an injective map P (d) ↪! P (d + 1) and in turn induces an injective OX -module
morphism O(d) ↪! O(d+1). Meanwhile, Proposition 2.1.6 shows that each O(d) is isomorphic
to the line bundle given by the Weil divisor dx on X. We see that lim−!O(d) is naturally
isomorphic to the pushforward of OU via the embedding U ↪! X and thus obtain natural
isomorphisms

H0
(
X, lim−!O(d)

) ∼= H0(U,OU ) ∼= B[1/t]φ=1, (2.4)

H1
(
X, lim−!O(d)

) ∼= H1(U,OU ) = 0. (2.5)

Let us now prove statement (1). For every d ∈ Z, Proposition 2.1.7 yields a natural

homomorphism αd : Bφ=pd ! H0(X,O(d)). We wish to show that each αd is an isomorphism.
The sequence (αd) gives rise to a homomorphism

B[1/t]φ=1 ∼= lim−!Bφ=pd −! lim−!H0(X,O(d)) ∼= H0
(
X, lim−!O(d)

)
.

It is straightforward to verify that this map coincides with the isomorphism (2.4). Moreover,
Proposition 2.1.7 and the snake lemma together yield isomorphisms

ker(αd) ≃ ker(αd+1) and coker(αd) ≃ coker(αd+1) for each d ≥ 0.

Therefore αd is an isomorphism for each d ≥ 0. Now by Proposition 1.3.13 we have

H0(X,OX) ∼= Bφ=1 ∼= Qp.

For each d < 0, we see that H0(X,OX) does not contain a nonzero element with vanishing
order −d at x, which means that H0(X,O(d)) is trivial. Hence Proposition 1.3.12 shows that
αd is an isomorphism for each d < 0 as well.

It remains to establish statement (2). For every d ≥ 0, Proposition 2.1.7 implies that the
cohomology group H1(X,O(d+ 1)/tO(d)) vanishes and in turn yields a long exact sequence

H0(X,O(d+ 1)) −! H0(X,O(d+ 1)/tO(d)) −! H1(X,O(d)) −! H1(X,O(d+ 1)) −! 0.

where the first map is surjective. Now we find

H1(X,O(d)) ≃ H1(X,O(d+ 1)) for each d ≥ 0

and thus use the isomorphism (2.5) to establish the desired assertion. □

Remark. Theorem 2.1.8 provides analogues of the following facts about P1
C:

(1) For every d ∈ Z, the cohomology group H0(P1
C,OP1

C
(d)) is naturally isomorphic to

the group of homogeneous polynomials of degree d in C[z1, z2].

(2) For every d ≥ 0, the cohomology group H1(P1
C,OP1

C
(d)) vanishes.
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2.2. Harder-Narasimhan filtration

In this subsection, we introduce a general formalism for studying vector bundles on alge-
braic curves and similar objects.

Definition 2.2.1. A complete abstract curve is a scheme Z with the following properties:

(i) Z is connected, separated, noetherian and regular of dimension 1.

(ii) Z admits a homomorphism degZ : Pic(Z) ! Z, called a degree map, which takes a
positive value on every line bundle given by a nonzero effective Weil divisor on Z.

Example 2.2.2. Below are two important examples of complete abstract curves.

(1) Every regular proper curve over a field is a complete abstract curve by a general fact
stated in the Stacks project [Sta, Tag 0AYY].

(2) The Fargues-Fontaine curve is a complete abstract curve by Theorem 1.4.22 and
Proposition 2.1.6.

Proposition 2.2.3. Let Z be a complete abstract curve.

(1) The scheme Z is integral.

(2) Every line bundle on Z given by a principal Weil divisor maps to 0 under degZ .

(3) The cohomology group H0(Z,OZ) is naturally a field.

Proof. The first two statements are consequences of standard facts stated in the Stacks
project [Sta, Tag 033N and Tag 0BE9]. For the last statement, let us denote the function field
of Z by K(Z) and the Weil divisor of an element f ∈ K(Z)× by DivZ(f). The cohomology
group H0(Z,OZ) is naturally a subring of K(Z) via the identification H0(Z,OZ) ∼= OZ(Z);
indeed, an element f ∈ K(Z)× yields a global section of OZ if and only if DivZ(f) is effective.
Meanwhile, by the second statement, a principal Weil divisor on Z is effective if and only if
it is trivial. Hence we find

H0(Z,OZ)\ { 0 } =
{
f ∈ K(Z)× : DivZ(f) = 0

}
and in turn identify H0(Z,OZ) with a subfield of K(Z). □

Proposition 2.2.4. Let L and M be line bundles on a complete abstract curve Z.

(1) If we have degZ(L) > degZ(M), every OZ-module map from L to M is zero.

(2) If we have degZ(L) = degZ(M), every nonzero OZ-module map from L to M is an
isomorphism.

Proof. Let us assume that there exists a nonzero OZ-module map f : L!M. Denote
the dual bundle of L by L∨. We may identify f with a nonzero global section of L∨ ⊗OZ

M
via the identification

HomOZ
(L,M) ∼= H0(Z,L∨ ⊗OZ

M). (2.6)

Hence L∨ ⊗OZ
M arises from an effective Weil divisor D on Z by a general fact stated in the

Stacks project [Sta, Tag 01X0]. Now we find

degZ(M) − degZ(L) = degZ(L∨ ⊗OZ
M) ≥ 0

and in turn obtain statement (1).

For statement (2), we henceforth assume the equality degZ(L) = degZ(M). Since we
have degZ(L∨ ⊗OZ

M) = 0, we see that the effective Weil divisor D on Z is zero, which
means that L∨⊗OZ

M is trivial. Hence the isomorphism (2.6) and Proposition 2.2.3 together
imply that f is an isomorphism as desired. □

https://stacks.math.columbia.edu/tag/0AYY
https://stacks.math.columbia.edu/tag/033N
https://stacks.math.columbia.edu/tag/0BE9
https://stacks.math.columbia.edu/tag/01X0
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For the rest of this subsection, we let Z be a complete abstract curve.

Definition 2.2.5. Let V be a nonzero vector bundle on Z.

(1) We define the degree of V to be deg(V) := degZ (det(V)).

(2) We write rk(V) for the rank of V and define the slope of V to be µ(V) :=
deg(V)

rk(V)
.

Remark. If we define the degree of the zero bundle to be 0, many results about nonzero
vector bundles in this subsection are valid for zero bundles.

Lemma 2.2.6. For nonzero free modules M and N over a ring R respectively of rank r and s,
there exists a natural isomorphism

det(M ⊗R N) ∼= det(M)⊗s ⊗R det(N)⊗r. (2.7)

Proof. Let us choose R-bases (mi) and (nj) respectively for M and N . We obtain the
isomorphism (2.7) by mapping

∧
(mi⊗nj) to (

∧
mi)

⊗s⊗(
∧
nj)

⊗r. This map does not depend
on the choice of R-bases for M and N ; indeed, if we take R-module automorphisms f and g
respsectively for M and N , we obtain the equalities∧

(f(mi) ⊗ g(nj)) = det(f)s det(g)r
∧

(mi ⊗ nj),(∧
f(mi)

)⊗s
⊗
(∧

g(nj)
)⊗r

= det(f)s det(g)r
(∧

mi

)⊗s
⊗
(∧

nj

)⊗r
.

Therefore we establish the desired assertion. □

Proposition 2.2.7. Given nonzero vector bundles V and W on Z, we have

deg(V ⊗OZ
W) = deg(V)rk(W) + deg(W)rk(V) and µ(V ⊗OZ

W) = µ(V) + µ(W).

Proof. The first equality is evident by Lemma 2.2.6. The second equality follows from
the first equality as we have rk(V ⊗OZ

W) = rk(V)rk(W). □

Proposition 2.2.8. Let U , V, and W be nonzero vector bundles on Z with an exact sequence

0 −! U −! V −!W −! 0.

(1) U , V, and W satisfy the equalities

rk(V) = rk(U) + rk(W) and deg(V) = deg(U) + deg(W).

(2) U , V, and W satisfy the inequality

min (µ(U) , µ(W)) ≤ µ(V) ≤ max (µ(U), µ(W))

with equality precisely when µ(U) and µ(W) are equal.

Proof. The first identity in statement (1) is evident, whereas the second identity in state-
ment (1) follows from a general fact stated in the Stacks project [Sta, Tag 0B38]. Moreover,
by statement (1) we have

µ(V) =
deg(V)

rk(V)
=

deg(U) + deg(W)

rk(U) + rk(W)
.

and thus obtain statement (2). □

Remark. We can define the degree of an arbitrary nonzero coherent OZ-module such that
Proposition 2.2.8 extends to nonzero coherent OZ-modules U , V, W with an exact sequence

0 −! U −! V −!W −! 0.

https://stacks.math.columbia.edu/tag/0B38
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Proposition 2.2.9. Let V be a vector bundle on Z and W be its coherent OZ-submodule.

(1) W is a vector bundle on Z.

(2) If W is nonzero, there exists a subbundle W̃ of V with the following properties:

(i) W̃ contains W as a coherent OZ-submodule and satisfies the relations

rk(W) = rk(W̃), deg(W) ≤ deg(W̃).

(ii) W̃ coincides with W if and only if it satisfies the equality deg(W) = deg(W̃).

Proof. The scheme Z is integral as noted in Proposition 2.2.3. By a general fact stated
in the Stacks project [Sta, Tag 0CC4], a coherent OZ-module is a vector bundle if and only
if it is torsion free. Hence we deduce that W is a vector bundle on Z.

Let us henceforth assume that W is nonzero. We write T for the torsion subsheaf of the
quotient V/W and take W̃ to be the preimage of T under the natural surjection V ↠ V/W.

We see that W̃ is a subbundle of V as V/W̃ is torsion free. Moreover, W̃ contains W as a

coherent OZ-module with W̃/W ≃ T being a torsion sheaf. Hence we find rk(W̃) = rk(W)

and in turn obtain a nonzero OZ-module homomorphism f : det(W) ! det(W̃) induced by

the embedding W ↪! W̃. Now Proposition 2.2.4 yields the inequality deg(W) ≤ deg(W̃).

In addition, if we have deg(W) = deg(W̃), the embedding W ↪! V is an isomorphism as its
determinant f is an isomorphism by Proposition 2.2.4; indeed, since the induced maps on
the stalks are injective, they are isomorphisms precisely when the determinant is invertible.
Therefore we establish the desired assertions. □

Remark. In general, W is not necessarily a subbundle of V as the quotient V/W may have
a nonzero torsion subsheaf.

Definition 2.2.10. For a vector bundle V over Z with a nonzero coherent OZ-submodule W,

we refer to the vector bundle W̃ on Z given by Proposition 2.2.9 as the saturation of W in V.

Proposition 2.2.11. Given a nonzero vector bundle V on Z, there exists an integer dV
with deg(W) ≤ dV for every nonzero subbundle W of V.

Proof. If V is a line bundle, we obtain the desired assertion with dV = deg(V) as V is
its only nonzero subbundle. Let us now assume the inequality rk(V) > 1 and proceed by
induction on rk(V). If V is its only nonzero subbundle, the assertion is evident. Hence we
may also assume that there exists a nonzero subbundle U of V with U ̸= V. Consider an
arbitrary nonzero subbundle W of V. We write P := W∩U and denote by Q the image of W
under the natural surjection V ↠ V/U . Proposition 2.2.9 shows that P and Q are vector
bundles on Z. Hence by the induction hypothesis, we have

deg(P) ≤ dU and deg(Q) ≤ dV/U

for some integers dU and dV/U which do not depend on W. Since we have an exact sequence

0 −! P −!W −! Q −! 0,

we apply Proposition 2.2.8 to find

deg(W) = deg(P) + deg(Q) ≤ dU + dV/U ,

thereby completing the proof. □

Remark. On the other hand, unless V has rank 1, we don’t necessarily have an integer d′V
with deg(W) ≥ d′V for every subbundle W of V.

https://stacks.math.columbia.edu/tag/0CC4
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Definition 2.2.12. Let V be a nonzero vector bundle on Z.

(1) V is semistable if we have µ(W) ≤ µ(V) for every nonzero subbundle W of V.

(2) V is stable if we have µ(W) < µ(V) for every nonzero subbundle W of V with W ≠ V.

Example 2.2.13. Every line bundle on Z is stable as it is its only nonzero subbundle.

Proposition 2.2.14. Given a semistable vector bundle V on Z, every nonzero coherent
OZ-submodule W of V is a vector bundle on Z with µ(W) ≤ µ(V).

Proof. Since W is a vector bundle on Z as noted in Proposition 2.2.9, we take the

saturation W̃ of W in V and find µ(W) ≤ µ(W̃) ≤ µ(V). □

Proposition 2.2.15. Let U , V, and W be nonzero vector bundles on Z with an exact sequence

0 −! U −! V −!W −! 0.

(1) If U and V are semistable of slope λ, then W is also semistable of slope λ.

(2) If V and W are semistable of slope λ, then U is also semistable of slope λ.

(3) If U and W are semistable of slope λ, then V is also semistable of slope λ.

Proof. Let us first assume for statement (1) that U and V are semistable of slope λ.
Proposition 2.2.8 implies that W has slope λ. Take an arbitrary subbundle Q of W and
denote by Q′ the preimage of Q under the map V ↠ W. We have a short exact sequence

0 −! U −! Q′ −! Q −! 0.

Moreover, Proposition 2.2.14 shows that Q′ is a vector bundle on Z with µ(Q′) ≤ µ(V) = λ.
Hence we find µ(Q) ≤ λ by Proposition 2.2.8 and in turn see that W is semistable of slope λ.

We now assume for statement (2) that V and W are semistable of slope λ. Proposition 2.2.8
implies that U has slope λ. Since every subbundle of U is a coherent OZ-submodule of V, we
deduce from Proposition 2.2.14 that U is semistable of slope λ.

Finally, let us assume for statement (3) that U and W are semistable of slope λ.
Proposition 2.2.8 implies V has slope λ. Take an arbitrary subbundle R of V and denote
by R′ the image of R under the map V ↠ W. We have a short exact sequence

0 −! U ∩R −! R −! R′ −! 0,

Moreover, Proposition 2.2.14 shows that U ∩R and R′ are vector bundles on Z with

µ(U ∩R) ≤ µ(U) = λ and µ(R′) ≤ µ(W) = λ.

Hence we find µ(R) ≤ λ by Proposition 2.2.8 and in turn see that V is semistable of slope λ,
thereby completing the proof. □

Proposition 2.2.16. Given semistable vector bundles V and W on Z with µ(V) > µ(W),
every OZ-module homomorphism from V to W is zero.

Proof. Suppose for contradiction that we have a nonzero OZ-module map f : V ! W.
Let Q denote the image of f . Proposition 2.2.14 shows that Q is a vector bundle on Z with

µ(Q) ≤ µ(W) < µ(V). (2.8)

Moreover, Q fits into a short exact sequence

0 −! ker(f) −! V f
−! Q −! 0.

We have ker(f) ̸= 0 as Q and V are not isomorphic by the inequality (2.8). Hence we obtain
the inequality µ(ker(f)) ≤ µ(V) by the semistability of V and in turn find µ(Q) ≥ µ(V) by
Proposition 2.2.8, thereby deducing a desired contradiction by the inequality (2.8). □
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Definition 2.2.17. Given a vector bundle V on Z, its Harder-Narasimhan filtration is a finite
chain of vector bundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V
which satisfies the following properties:

(i) Each Vi is a subbundle of Vi+1.

(ii) The vector bundles V1/V0, · · · ,Vn/Vn−1 are semistable with

µ(V1/V0) > · · · > µ(Vn/Vn−1).

Remark. It is not hard to see that each Vi must be a subbundle of V.

Lemma 2.2.18. Every nonzero vector bundle V on Z admits a semistable subbundle V1 with
µ(V1) ≥ µ(V) and µ(V1) > µ(W) for each nonzero subbundle W of V/V1.

Proof. Proposition 2.2.11 yields an integer dV such that each nonzero subbundle U of V
satisfies the inequalities 0 < rk(U) ≤ rk(V) and deg(U) ≤ dV . Hence the set

S := { q ∈ Q : q = µ(U) for some nonzero subbundle U of V }

is discrete and bounded above. In particular, S admits the maximum element λ. Let us
take V1 to be an element of maximal rank in the set of subbundles of V with slope λ. The
maximality of λ implies that V1 satisfies the inequality µ(V1) ≥ µ(V). Moreover, since every
subbundle of V1 is a coherent OZ-module of V, we use Proposition 2.2.9 and the maximality
of λ to see that V1 is semistable. Let us now consider an arbitrary nonzero subbundle W
of V/V1 and denote by W ′ the preimage of W under the natural map V ↠ V/V1. We observe
that W ′ is a subbundle of V and also obtain a short exact sequence

0 −! V1 −!W ′ −!W −! 0.

In addition, we find µ(W ′) < λ = µ(V1) by the maximality of λ and V1. Hence we deduce the
inequality µ(W) < µ(V1) from Proposition 2.2.8, thereby completing the proof. □

Remark. Our proof of Lemma 2.2.18 relies on the fact that the degree map takes values in
the discrete group Z. However, in the general context where the degree map takes values in
an arbitrary totally ordered abelian group, we can still prove Lemma 2.2.18 and consequently
show that all results from this subsection remain valid. We refer curious readers to the notes
of Kedlaya [Ked19, Lemma 3.4.10 and Example 3.5.7] for details.

Lemma 2.2.19. Let V be a nonzero vector bundle on Z with a Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V.

For every semistable vector bundle W on Z with HomOZ
(W,V) ̸= 0, we have µ(W) ≤ µ(V1).

Proof. Let us take a nonzero OZ-module map f : W ! V and denote its image by Q.
Since Q is a nonzero coherent OZ-submodule of V, we can find the smallest integer i ≥ 1
with Q ⊆ Vi. We see that f induces a nonzero OZ-module map W ! Vi ↠ Vi/Vi−1 and in
turn apply Proposition 2.2.16 to obtain the inequality

µ(W) ≤ µ(Vi/Vi−1) ≤ µ(V1),

thereby completing the proof. □

Remark. Lemma 2.2.19 does not hold without the semistability assumption on W; for ex-
ample, if we take W = V1 ⊕ L for some line bundle L on Z with µ(L) > µ(V1), we obtain a
nonzero OZ-module map W ↠ V1 ↪! V and also find µ(W) > µ(V1).
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Theorem 2.2.20 (Harder-Narasimhan [HN75]). Every vector bundle V on Z admits a unique
Harder-Narasimhan filtration.

Proof. If V is the zero bundle on Z, the assertion is trivial. Let us now assume the
inequality rk(V) > 0 and proceed by induction on rk(V). Lemma 2.2.18 yields a semistable
subbundle V1 of V with µ(V1) > µ(U) for every nonzero subbundle U of V/V1. By the induction
hypothesis, the vector bundle V/V1 on Z admits a unique Harder-Narasimhan filtration

0 = U1 ⊂ · · · ⊂ Un = V/V1. (2.9)

For each i ∈ Z with 2 ≤ i ≤ n, let us set Vi to be the preimage of Ui under the map V ↠ V/V1.
We see that each Vi/Vi−1 with i ≥ 2 admits a natural isomorphism Vi/Vi−1

∼= Ui/Ui−1.
Moreover, we have µ(V1) > µ(U2) whenever the Harder-Narasimhan filtration (2.9) is not
trivial. Therefore V admits a Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V. (2.10)

It remains to show that the chain (2.10) is a unique Harder-Narasimhan filtration of V.
Let us assume that V admits another Harder-Narasimhan filtration

0 = W0 ⊂ W1 ⊂ · · · ⊂ Wm = V. (2.11)

We note that V/W1 admits a Harder-Narasimhan filtration

0 = W1/W1 ⊂ · · · Vm/W1 = V/W1. (2.12)

Since V1 and W1 are nonzero semistable subbundles of V, Lemma 2.2.19 yields the inequalities
µ(W1) ≤ µ(V1) and µ(V1) ≤ µ(W1). Hence we have

µ(W1) = µ(V1) > µ(V2/V1) = µ(U2/U1)

unless the Harder-Narasimhan filtration (2.9) is trivial. We deduce from Lemma 2.2.19 that
the natural map W1 ↪! V ↠ V/V1 is zero and in turn see that V1 contains W1. Similarly, we
find that W1 contains V1. Now we obtain the identity V1 = W1, which in particular implies
that the Harder-Narasimhan filtrations (2.9) and (2.12) must coincide. We see that each Wi

with i ≥ 1 is the preimage of Wi/W1 = Ui under the natural surjection V ↠ V/W1 = V/V1 and
consequently deduce that the Harder-Narasimhan filtrations (2.10) and (2.11) coincide. □

Remark. A careful examination of our discussion shows that Theorem 2.2.20 is a formal con-
sequence of Proposition 2.2.8 and Proposition 2.2.9. Hence we can extend Theorem 2.2.20 to
every additive category which admits reasonable notions of rank and degree with appropriate
analogues of Proposition 2.2.8 and Proposition 2.2.9. We refer curious readers to the notes
of Kedlaya [Ked19, Definition 3.3.1] for a precise characterization of such a category, often
referred to as a slope category.

Slope categories are prevalent in p-adic Hodge theory. We have already introduced two
important examples, namely the category of filtered isocrystals over a p-adic field and the
category of vector bundles on the Fargues-Fontaine curve. In the next section, we will ex-
plore the relationship between these categories to prove that every weakly admissible filtered
isocrystal over a p-adic field is admissible.

It is worthwhile to mention that a slope category does not need to admit tensor products;
indeed, our proof of Theorem 2.2.20 does not involve tensor products. Moreover, even for a
slope category with tensor products, the Harder-Narasimhan filtrations may behave unfavor-
ably under tensor products; for example, when Z is a projective curve over a field of positive
characteristic, a result of Gieseker [Gie73] shows that the tensor product of semistable vector
bundles on Z is not necessarily semistable. However, most slope categories in practice admit
tensor products which exhibit nice properties in relation to the Harder-Narasimhan filtrations.
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2.3. Classification of vector bundles

Our main goal for this subsection is to provide an explicit classification of vector bundles on
the Fargues-Fontaine curve. For every integer h > 0, we write Eh for the degree h unramified
extension of Qp.

Definition 2.3.1. Given an integer h > 0, the degree h unramified cover of X is the scheme

Xh := Proj (Ph) with Ph :=
⊕
n≥0

Bφh=pn .

Lemma 2.3.2. Let m and n be integers with m > 0. Given a positive integer h and a nonzero
homogeneous element f ∈ P , there exists a canonical isomorphism

B[1/f ]φ
m=pn ⊗Qp Eh

∼= B[1/f ]φ
mh=pnh

.

Proof. The group Gal(Eh/Qp) is cyclic of order h and admits a canonical generator γ

induced by the p-th power map on Fph . We see that B[1/f ]φ
mh=pnh

is naturally a semilinear

Gal(Eh/Qp)-module with the action of γ given by p−nφm. Hence we find

B[1/f ]φ
m=pn =

(
B[1/f ]φ

mh=pnh
)Gal(Eh/Qp)

and in turn obtain the desired isomorphism by Lemma 2.4.16 in Chapter III. □

Remark. Proposition 1.3.13 and Lemma 2.3.2 together imply that Bφh=1 is canonically
isomorphic to Eh.

Proposition 2.3.3. For every integer h > 0, there exists a natural isomorphism

Xh
∼= X ×Spec (Qp) Spec (Eh).

Proof. Since Lemma 2.3.2 yields a canonical isomorphism

Bφ=pn ⊗Qp Eh
∼= Bφh=pnh

for every n ∈ Z,
we obtain a natural isomorphism

Xh = Proj

⊕
n≥0

Bφh=pn

 ∼= Proj

⊕
n≥0

Bφh=pnh

 ∼= Proj
(
P ⊗Qp Eh

)
and consequently establish the desired assertion. □

Lemma 2.3.4. Given an integer h > 0, the scheme Xh = Proj (Ph) admits an affine open cover
given by the standard open subschemes associated to homogeneous elements in P .

Proof. Take an arbitrary point x on Xh. We wish to show that x lies in a standard open
subscheme of Xh = Proj (Ph). Proposition 2.3.3 yields a natural morphism

πh : Xh
∼= X ×Spec (Qp) Spec (Eh) −! X.

Let us take a nonzero homogeneous element f ∈ P such that πh(x) lies in the standard open

subscheme U(f) := Spec (B[1/f ]φ=1) of X = Proj (P ). We apply Lemma 2.3.2 to obtain a
canonical isomorphism

B[1/f ]φ=1 ⊗Qp Eh
∼= B[1/f ]φ

h=1

and in turn identify π−1
h (U(f)) with the standard open subscheme Uh(f) := Spec (B[1/f ]φ

h=1)

of Xh = Proj (Ph). Now the desired assertion is evident as x lies in π−1
h (U(f)). □

Remark. In fact, by Proposition 1.4.19 we can take f to be an element in Bφ=p.
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We state the following generalization of Proposition 1.4.19 without a proof.

Proposition 2.3.5. Given integers h, n ≥ 1, every nonzero f ∈ Bφh=pn admits an expression

f = f1 · · · fn with fi ∈ Bφh=p

where the factors are unique up to E×
h -multiple.

Remark. Let us briefly sketch the proof of Proposition 2.3.5. The theory of Lubin-Tate
formal groups yields a unique 1-dimensional p-divisible formal group law µLT over OEh

with

[p]µLT(t) = pt + tp
h
. Denote by GLT the associated p-divisible group over OEh

. By means of
the logarithm for GLT, we can construct a group homomorphism

logh : GLT(OF ) := lim −
i

GLT(OF /m
i
FOF ) −! Bφh=p.

It turns out that all results from §1.4 remain valid with Qp, log, 1 + m∗
F , φ, ϕ, P , and X

respectively replaced by Eh, logh, GLT(OF ), φh, ϕh, Ph, and Xh. We refer readers to the
article of Fargues-Fontaine [FF18, §6.2] or the notes of Lurie [Lur, Lectures 22-26] for details.

Definition 2.3.6. Given integers d and h with h > 0, the d-fold Serre twist of OXh
is the

quasicoherent OXh
-module Oh(d) = OXh

(d) associated to Ph(d) :=
⊕
n≥0

Bφh=pd+n
.

Lemma 2.3.7. Given integers d and h with h > 0, the OXh
-module Oh(d) is a line bundle

on Xh with a canonical isomorphism Oh(d) ∼= Oh(1)⊗d.

Proof. The assertion follows from Proposition 2.3.5 and a standard fact stated in the
Stacks project [Sta, Tag 01MT]. □

Definition 2.3.8. Let h be a positive integer.

(1) Given an integer r > 0, we refer to the morphism πrh,h : Xrh ! Xh induced by the
natural embedding Ph ↪! Prh as the standard projection from Xrh to Xh.

(2) Given integers d, r with r > 0, we refer to Oh(d, r) := (πrh,h)∗Orh(d) as the standard
OXh

-module of type (d, r).

Proposition 2.3.9. Given integers d, h, and r with h, r > 0, the OXh
-module Oh(d, r) is a

vector bundle on Xh of rank r.

Proof. Proposition 2.3.3 shows that the morphism πrh,h is finite of degree r. Hence the
desired assertion follows from Lemma 2.3.7. □

Proposition 2.3.10. Given integers d, h, and r with h, r > 0, we have a natural isomorphism

(πhn,h)∗Oh(d, r) ∼= Ohn(dn, r) for every n > 0.

Proof. Let us take an arbitrary nonzero homogeneous element f ∈ P . We write Uh(f)
and Uhn(f) respectively for the standard open subschemes of Xh and Xhn associated to f .
We apply Lemma 2.3.2 and Proposition 2.3.3 to find

(πhn,h)∗Oh(d, r) (Uhn(f)) ∼= Oh(d, r) (Uh(f)) ⊗
B[1/f ]φ

h=1 B[1/f ]φ
hn=1

∼= B[1/f ]φ
hr=pd ⊗

B[1/f ]φ
h=1

(
B[1/f ]φ

h=1 ⊗Qp En

)
∼= B[1/f ]φ

hnr=pdn

∼= Ohn(dn, r) (Uhn(f)) .

Hence we establish the desired assertion by Lemma 2.3.4. □

https://stacks.math.columbia.edu/tag/01MT
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Proposition 2.3.11. Given integers d, h, and r with h, r > 0, we have a natural isomorphism

Oh(dn, dn) ∼= Oh(d, r)⊕n for every n > 0.

Proof. Proposition 2.3.10 yields a natural isomorphism

Oh(dn, rn) = (πhr,h)∗(πhnr,hr)∗Ohnr(dn) ∼= (πhr,h)∗(πhnr,hr)∗(πhnr,hr)
∗Ohr(d).

Moreover, we use the projection formula and Proposition 2.3.3 to find

(πhnr,hr)∗(πhnr,hr)
∗Ohr(d) ∼= (πhnr,hr)∗OXhnr

⊗OXhr
Ohr(d)

∼= O⊕n
Xhr

⊗OXhr
Ohr(d) ∼= Ohr(d)⊕n.

Now the desired assertion is evident. □

Proposition 2.3.12. Given an integer h > 0, there exists a canonical isomorphism

Oh(d1, r1) ⊗OXh
Oh(d2, r2) ∼= Oh(d1r2 + d2r1, r1r2)

for every d1, d2, r1, r2 ∈ Z with r1, r2 > 0.

Proof. Let g and l respectively denote the greatest common divisor and the least common
multiple of r1 and r2. Since r′1 := r1/g and r′2 := r2/g are relatively prime integers, the field
extensions Er1h and Er2h of Eh yield a natural isomorphism Elh ∼= Er1h ⊗Egh

Er2h. Hence by
Proposition 2.3.3, we obtain a cartesian diagram

Xlh Xr2h

Xr1h Xgh

πlh,r2h

πlh,r1h πr2h,gh

πr1h,gh

where all arrows are finite étale. Moreover, we apply the Künneth formula, Lemma 2.3.7, and
Proposition 2.3.10 to obtain an identification

Ogh(d1, r
′
1) ⊗OXgh

Ogh(d2, r
′
2) = (πr1h,gh)∗(Or1h(d1)) ⊗OXgh

(πr2h,gh)∗(Or2h(d2))

∼= (πlh,gh)∗

(
(πlh,r1h)∗Or1h(d1) ⊗OXlh

(πlh,r2h)∗Or2h(d2)
)

∼= (πlh,gh)∗

(
Olh(d1r

′
1) ⊗OXlh

Olh(d2r
′
2)
)

∼= (πlh,gh)∗Olh(d1r
′
1 + d2r

′
2)

= Ogh(d1r
′
1 + d2r

′
2, r

′
1r

′
2).

Now we use the projection formula, Proposition 2.3.10, and Proposition 2.3.11 to find

Oh(d1, r1) ⊗OXh
Oh(d2, r2) = (πgh,h)∗Ogh(d1, r

′
1) ⊗OXh

Oh(d2, r2)

∼= (πgh,h)∗

(
Ogh(d1, r

′
1) ⊗OXgh

(πgh,h)∗Oh(d2, r2)
)

∼= (πgh,h)∗

(
Ogh(d1, r

′
1) ⊗OXgh

Ogh(d2g, r2)
)

∼= (πgh,h)∗

(
Ogh(d1, r

′
1) ⊗OXgh

Ogh(d2, r
′
2)

⊕g
)

∼= (πgh,h)∗Ogh(d1r
′
1 + d2r

′
2, r

′
1r

′
2)

⊕g

= Oh(d1r
′
1 + d2r

′
2, gr

′
1r

′
2)

⊕g

∼= Oh(d1r1 + d2r2, r1r2),

thereby completing the proof. □
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Proposition 2.3.13. Given integers d, h, and r with h, r > 0, the dual Oh(d, r)∨ of Oh(d, r)
admits a canonical isomorphism

Oh(d, r)∨ ∼= Oh(−d, r).

Proof. Proposition 2.3.11 and Proposition 2.3.12 together yield a natural isomorphism

Oh(d, r) ⊗OXh
Oh(−d, r) ∼= O⊕r2

Xh
.

In addition, since OXh
is isomorphic to its dual, there exists a canonical perfect pairing

O⊕r
Xh

⊗OXh
O⊕r
Xh
−! OXh

.

Hence we use the natural isomorphism O⊕r2
Xh

∼= O⊕r
Xh

⊗OXh
O⊕r
Xh

to obtain a perfect pairing

Oh(d, r) ⊗OXh
Oh(−d, r) −! OXh

,

thereby establishing the desired assertion. □

Proposition 2.3.14. Let d and r be integers with r > 0.

(1) The vector bundle O(d, r) := O1(d, r) on X is semistable of rank r and degree d.

(2) If d and r are relatively prime, the vector bundle O(d, r) is stable.

Proof. Proposition 2.3.11 and Proposition 2.3.12 together yield a natural isomorphism

O(d, r)⊗r ∼= O(drr, rr) ∼= O(d)⊕r
r
.

In addition, we find deg
(
O(d)⊕r

r)
= drr by Proposition 2.2.8. Therefore we deduce from

Proposition 2.2.7 and Proposition 2.3.9 that O(d, r) has rank r and degree d.

Let us now consider an arbitrary nonzero subbundle V of O(d, r) with V ≠ O(d, r). We
may regard V⊗r as a coherent OX -submodule of O(d, r)⊗r. Moreover, Example 2.2.13 and
Proposition 2.2.15 together show that O(d, r)⊗r ∼= O(d)⊕r

r
is semistable. Hence we apply

Proposition 2.2.7 and Proposition 2.2.14 to find

µ(V) = µ(V⊗r)/r ≤ µ(O(d, r)⊗r)/r = µ(O(d, r)),

thereby deducing that O(d, r) is semistable. If d and r are relatively prime, we also find
µ(V) ̸= d/r by the inequality rk(V) < rk(O(d, r)) = r and in turn see that O(d, r) is stable. □

Remark. Proposition 2.3.14 remains valid if we replace O(d, r) and X respectively with
Oh(d, r) and Xh for an arbitrary integer h > 0, as Xh turns out to be a complete abstract
curve.

Definition 2.3.15. Given a rational number λ = d/r written in a reduced form with r > 0,
we refer to O(λ) := O1(d, r) as the canonical stable bundle of slope λ on X.

Proposition 2.3.16. Let λ be a rational number.

(1) The dual O(λ)∨ of O(λ) admits a canonical isomorphism O(λ)∨ ∼= O(−λ).

(2) Given a rational number λ′, there exists a natural isomorphism

O(λ) ⊗OX
O(λ′) ∼= O(λ+ λ′)⊕n for some n ≥ 1.

Proof. Statement (1) is a special case of Proposition 2.3.13. Statement (2) follows from
Proposition 2.3.11 and Proposition 2.3.12. □

Remark. In Statement (2), if we write λ = d/r and λ′ = d′/r′ in reduced form, n is equal to
the greatest common divisor of dr′ + d′r and rr′.
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In order to explain the classification theorem for vector bundles on the Fargues-Fonaine
curve, we invoke the following crucial result without a proof.

Proposition 2.3.17. Let λ be a rational number.

(1) A vector bundle on X is semistable of slope λ if and only if it is isomorphic to O(λ)⊕n

for some n ≥ 1.

(2) If we have λ ≥ 0, the cohomology group H1(X,O(λ)) vanishes.

Remark. Statement (2) is relatively easy to prove. Let us write λ = d/r in reduced form.
We can adjust our argument in §2.1 to show that Theorem 2.1.8 is valid with Or(d) and Xr

respectively in place of O(d) and X. Hence if λ is nonnegative, we find

H1(X,O(λ)) = H1(X, (πr)∗Or(d)) ∼= H1(Xr,Or(d)) = 0.

On the other hand, statement (1) is one of the most technical results from the original work
of Fargues-Fontaine [FF18]. Its proof employs a series of dévissage arguments to deduce the
assertion from some deep results about Lubin-Tate p-disivible groups due to Drinfeld [Dri76],
Laffaille [Laf85], and Gross-Hopkins [GH94]. We refer curious readers to the survey article
of Fargues-Fontaine [FF14, §6] for an excellent exposition of the proof.

Theorem 2.3.18 (Fargues-Fontaine [FF18]). Every vector bundle V on X admits a direct
sum decomposition

V ≃
n⊕
i=1

O(λi)
⊕mi with λi ∈ Q.

Proof. Theorem 2.2.20 shows that V admits a unique Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V.
We wish to show that the Harder-Narasimhan filtration splits. If we have n = 0, the assertion
is trivial. Let us henceforth assume the inequality n > 0 and proceed by induction on n.
Proposition 2.3.17 implies that each Vi/Vi−1 admits an isomorphism

Vi/Vi−1 ≃ O(λi)
⊕mi with λi ∈ Q.

In addition, by the induction hypothesis, the Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1

splits into a direct sum decomposition

Vn−1 ≃
n−1⊕
i=1

O(λi)
⊕mi .

Meanwhile, for each i = 1, · · · , n, we apply Proposition 2.3.16 to find

Ext1OX
(O(λn),O(λi)) ∼= H1(X,O(λi) ⊗OX

O(λn)∨) ∼= H1(X,O(λi − λn)⊕ni) with ni > 0

and in turn use Proposition 2.3.17 to see that Ext1OX
(O(λn),O(λi)) vanishes. Hence we deduce

that Ext1OX
(V/Vn−1,Vn−1) also vanishes, thereby establishing the desired assertion. □

Remark. Theorem 2.3.18 is an analogue of the fact that every vector bundle V on P1
C admits

a direct sum decomposition

V ≃
n⊕
i=1

OP1
C
(di)

⊕mi with di ∈ Z

as proved by Grothendieck [Gro57].
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3. Applications to p-adic representations

In this section, we establish some fundamental results about p-adic representations and pe-
riod rings by means of the Fargues-Fontaine curve and related objects. The primary references
for this section are the survey articles of Fargues-Fontaine [FF12] and Morrow [Mor19].

3.1. Geometrization of p-adic period rings

Throughout this section, we let K be a p-adic field with absolute Galois group ΓK and
residue field k. In addition, we write K0 for the fraction field of W (k).

Proposition 3.1.1. The tilt of CK is algebraically closed.

Proof. Let f(z) be an arbitrary monic polynomial of degree d > 0 over C♭K . We wish

to show that f(z) has a root in C♭K . Take a nonzero element a in the maximal ideal of OC♭
K

.

We may replace f(z) by amdf(z/am) for some sufficiently large m ∈ Z to assume that f(z) is
a polynomial over OC♭

K
. Let us write

f(z) = zd + c1z
d−1 + · · · + cd with ci ∈ OC♭

K
.

Proposition 2.1.7 in Chapter III yields a natural isomorphism

OC♭
K

∼= lim −
x 7!xp

OCK
/pOCK

, (3.1)

via which we identify each ci with a sequence (ci,n)n≥0 in OCK
/pOCK

. Choose a lift c̃i,n ∈ OCK

of each ci,n. In addition, for each n ≥ 0 we set

fn(z) := zd + c1,nz
d−1 + · · · + cd,n and f̃n(z) := zd + c̃1,nz

d−1 + · · · + c̃d,n.

For each n ≥ 1, we have

fn−1(z
p) = zdp + cp1,nz

(d−1)p + · · · + cpd,n =
(
zd + c1,nz

d−1 + · · · + cd,n

)p
= fn(z)p. (3.2)

Meanwhile, since CK is algebraically closed by Proposition 3.1.10 in Chapter II, each f̃n(z)
admits a factorization

f̃n(z) = (z − αn,1) · · · (z − αn,d) with αn,j ∈ OCK
.

Let us denote by αn,j the image of each αn,j under the natural surjection OCK
↠ OCK

/pOCK
.

The identity (3.2) shows that each αn,j with n ≥ 1 satisfies the equality

fn−1(αn,j
p) = fn(αn,j)

p = 0

and in turn yields the relation

f̃n−1(α
p
n,j) = (αpn,j − αn−1,1) · · · (αpn,j − αn−1,d) ∈ pOCK

.

Now for each αn,j with n ≥ 1, we find m ∈ Z with αpn,j − αn−1,m ∈ p1/dOCK
and thus obtain

the identity αn,j
pd = αn−1,m

pd−1
by Proposition 2.1.6 in Chapter III. We deduce that there

exists a sequence of integers (jn) with αn,jn
pd = αn−1,jn−1

pd−1
for every n ≥ 1. Let us take the

element α ∈ OC♭
K

given by the sequence
(
αn+d−1,jn+d−1

pd−1
)
n≥0

via the isomorphism (3.1).

We apply the identity (3.2) to find

fn

(
αn+d−1,jn+d−1

pd−1
)

= fn+d−1

(
αn+d−1,jn+d−1

)
= 0 for every n ≥ 0

and in turn see that α is a root of f , thereby completing the proof. □

Remark. Proposition 3.1.1 is a special case of the tilting equivalence for perfectoid fields.
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For the rest of this section, we take F = C♭K and regard CK as an untilt of F . In addition,

we fix a distinguished element ξ = [p♭] − p ∈ Ainf for some p♭ ∈ OF with (p♭)
♯

= p.

Proposition 3.1.2. There exists a refinement of the discrete valuation topology on B+
dR with

the following properties:

(i) The subring Ainf of B+
dR is closed.

(ii) The map θCK
[1/p] : Ainf [1/p] ↠ CK is continuous and open with respect to the

p-adic topology on CK .

(iii) The tilted logarithm yields a continuous map log : Zp(1)! B+
dR via natural injective

maps Zp(1) ↪! 1 + mF and Bφ=p ↪! B+
dR.

(iv) The ring B+
dR is complete.

Proof. Proposition 1.3.20 shows that B+
dR is a discrete valuation ring with uniformizer ξ.

Proposition 1.3.20 also yields a natural isomorphism

B+
dR

∼= lim −
i

B/ ker(θ̂CK
)i,

via which we endow B+
dR with the topology induced by B. This topology refines the discrete

valuation topology as ξ generates ker(θ̂CK
) by Proposition 1.3.17.

We observe by Proposition 1.3.10 that Ainf is closed in B and thus obtain property (i).
In addition, we establish property (ii) as an immediate consequence of Proposition 1.2.16.
Meanwhile, since Proposition 1.4.3 yields a continuous Zp-linear injective map Zp(1) ↪! 1+mF ,
we deduce property (iii) from Proposition 1.3.25 and Proposition 1.4.17. Therefore it remains
to verify property (iv).

Proposition 1.2.16 implies that ξB = ker(θ̂CK
) is closed in B. We deduce that each

ξiB = ker(θ̂CK
)i is closed in B and in turn find that each B/ ker(θ̂CK

)i is complete. Hence
we conclude that B+

dR is complete as desired. □

Remark. Proposition 3.1.2 establishes Proposition 2.2.20 in Chapter III. Our proof does not
rely on any results which we stated without a proof.

Proposition 3.1.3. There exists a unique closed point ∞ on X whose associated prime ideal
in P contains every cyclotomic uniformizer of B+

dR as a generator.

Proof. Proposition 2.2.25 in Chapter III shows that a cyclotomic uniformizer of B+
dR

is unique up to Z×
p -multiple. In addition, Proposition 3.1.2 implies that every cyclotomic

uniformizer of B+
dR is an element in Bφ=p. Therefore we establish the desired assertion by

Proposition 1.4.17 and Theorem 1.4.22. □

Definition 3.1.4. We refer to the closed point ∞ on X given by Proposition 3.1.3 as the
distinguished point on X and write U := X\ {∞ }.

Proposition 3.1.5. The completed local ring at ∞ is naturally isomorphic to B+
dR.

Proof. Given a Zp-basis element ε ∈ Zp(1), we find θ̂CK
(log(ε)) = 0 by Proposition 1.4.3

and in turn deduce from Proposition 1.4.13 that CK represents ϕn(yε) ∈ Y for some n ∈ Z.
Hence the assertion follows from Theorem 1.4.22. □

Remark. Proposition 1.3.20 and Proposition 3.1.5 together show that the residue field of ∞
is naturally isomorphic to CK .
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Definition 3.1.6. Given a real number ρ with 0 < ρ < 1, we refer to the closure of Ainf [1/p]
in B[ρ,ρ] to be the ring of Gauss normally integral elements in B[ρ,ρ], denoted by B+

ρ .

Lemma 3.1.7. Given a closed interval [a, b] ⊆ (0, 1), there exists a real number λ > 0 with

|f |b ≤ |f |λa for every f ∈ Ainf [1/p].

Proof. Let us take the positive real number λ ≤ 1 with aλ = b. For every f ∈ Ainf [1/p]
with a Teichmüller expansion f =

∑
[cn]pn, we find

|f |b = sup
n∈Z

(|cn| bn) = sup
n∈Z

(
|cn| aλn

)
≤ sup

n∈Z

(
|cn|λ aλn

)
= sup

n∈Z

(
(|cn| an)λ

)
= |f |λa

as desired. □

Proposition 3.1.8. Given a closed interval [a, b] ⊆ (0, 1), there exists a canonical continuous
embedding B+

a ↪! B+
b .

Proof. By Lemma 3.1.7, every Cauchy sequence in Ainf [1/p] under the Gauss a-norm is
Cauchy under the Gauss b-norm. Therefore we obtain a canonical continuous ring homomor-
phism B+

a ! B+
b . It remains to show that this map is injective. Take an arbitrary nonzero

element f ∈ B+
a and denote by f ′ its image in B+

b . Lemma 3.1.7 implies that f is naturally an

element in B[a,b]. Since L[a,b]
f takes finite values by Proposition 1.3.6, we find |f ′|b = |f |b ̸= 0

and in turn deduce that f ′ is nonzero, thereby completing the proof. □

Lemma 3.1.9. The completion of a normed Qp-space V is naturally isomorphic to V̂0[1/p],

where V̂0 denotes the p-adic completion of the closed unit disk V0 in V .

Proof. Since p is topologically nilpotent in Qp, a sequence (vn) in V is Cauchy under
the norms if and only if (p−mvn) is p-adically Cauchy in V0 for some m ≥ 0. □

Proposition 3.1.10. For every c ∈ O×
F , there exists a canonical topological isomorphism

B+
|c|

∼= ̂Ainf [[c]/p][1/p]

where ̂Ainf [[c]/p] denotes the p-adic completion of Ainf [[c]/p].

Proof. The ring B+
|c| is naturally isomorphic to the completion of Ainf [1/p] under the

Gauss |c|-norm. In light of Lemma 3.1.9, it suffices to establish the identification

Ainf [[c]/p] =
{
f ∈ Ainf [1/p] : |f ||c| ≤ 1

}
.

Since we have |[c]/p||c| = 1, every f ∈ Ainf [[c]/p] satisfies the inequality |f ||c| ≤ 1. Hence it

remains to show that every f ∈ Ainf [1/p] with |f ||c| ≤ 1 lies in Ainf [[c]/p]. Let us write

f =
∑
n<0

[cn]pn +
∑
n≥0

[cn]pn with cn ∈ OF . (3.3)

For every n ∈ Z, we have |cn| |c|n ≤ |f ||c| ≤ 1 or equivalently cnc ∈ OF . Hence we find

[cn]pn = [cnc
n] · ([c]/p)−n ∈ Ainf [[c]/p] for every n < 0

and in turn deduce that the first sum in the identity (3.3) yields an element in Ainf [[c]/p] for
having finitely many nonzero terms. Now we obtain the desired assertion by observing that
the second sum in the identity (3.3) yields an element in Ainf . □
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Proposition 3.1.11. There exist natural continuous injective maps

B+
1/pp ↪−! B+

cris and B+
cris ↪−! B+

1/p.

Proof. Proposition 3.1.10 yields natural isomorphisms

B+
1/pp

∼= ̂Ainf [[(p♭)p]/p][1/p] and B+
1/p

∼= ̂Ainf [[p♭]/p][1/p],

where ̂Ainf [[(p♭)p]/p] and ̂Ainf [[p♭]/p] respectively denote the p-adic completions ofAinf [[(p
♭)p]/p]

and Ainf [[p
♭]/p]. Meanwhile, we have the identification B+

cris = Acris[1/p] where Acris is the
p-adic completion of A0

cris. Hence it suffices to establish the relation

Ainf [[(p
♭)p]/p] ⊆ A0

cris ⊆ Ainf [[p
♭]/p].

We see that A0
cris contains Ainf [[(p

♭)p]/p] as we have

[p♭]p

p
=

(ξ + p)p

p
= (p− 1)! · ξ

p

p!
+

p∑
i=1

(
p

i

)
pi−1ξp−i ∈ A0

cris.

In addition, we find

ξn

n!
=

([p♭] − p)n

n!
=
pn

n!

(
[p♭]

p
− 1

)n
∈ Ainf [[p

♭]/p] for each n ≥ 0

and in turn deduce that A0
cris lies in Ainf [[p

♭]/p]. □

Proposition 3.1.12. Given a real number ρ ∈ (0, 1), the Frobenius automorphism of Ainf

uniquely extends to a continuous injective endomorphism φ+
ρ on B+

ρ with φ+
ρ (B+

ρ ) ∼= B+
ρp .

Proof. The Frobenius automorphism of Ainf = W (OF ) uniquely extends to an automor-
phism on Ainf [1/p], which we denote by φinf . Since we have

φinf

(∑
[cn]pn

)
=
∑

[cpn]pn for each cn ∈ OF ,

we obtain the equality

|φinf(f)|ρp = |f |pρ for each f ∈ Ainf [1/p].

Hence Lemma 1.2.15 and Proposition 3.1.8 together show that φinf extends to a continuous
injective homomorphism

φ+
ρ : B+

ρ
∼
−! B+

ρp ↪−! B+
ρ

as desired. □

Definition 3.1.13. Given a real number ρ ∈ (0, 1), we refer to the map φ+
ρ constructed in

Proposition 3.1.12 as the Frobenius endomorphism on B+
ρ and often write φ = φ+

ρ .

Proposition 3.1.14. The Frobenius endomorphism of Bcris is injective.

Proof. Lemma 3.1.15 in Chapter III shows that the Frobenius endomorphism on B+
1/p

restricts to the Frobenius endomorphism on B+
cris via the natural embedding B+

cris ↪! B+
1/p

given by Proposition 3.1.11. Hence we deduce that the Frobenius endomorphism is injective
on B+

cris. Now we obtain the desired assertion as we have Bcris = B+
cris[1/t] for every cyclotomic

uniformizer t ∈ B+
dR. □

Remark. Proposition 3.1.14 establishes Proposition 3.2.1 in Chapter III. Our proof does not
rely on any results which we stated without a proof.
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Definition 3.1.15. We refer to the closure of Ainf [1/p] in B to be the ring of Gauss normally
integral elements in B, denoted by B+.

Proposition 3.1.16. The ring B+ is naturally a subring of B+
cris with

B+ =
⋂
n≥0

φn(B+
cris).

Proof. Proposition 3.1.11 yields a natural injective homomorphism

B+
1/pp ↪−! B+

cris ↪−! B+
1/p.

Moreover, Lemma 3.1.15 in Chapter III shows that the Frobenius endomorphism on B+
1/p

restricts to the Frobenius endomorphism on B+
cris. Hence we find

B+

1/ppn+1 = φn(B+
1/pp) ⊆ φn(B+

cris) ⊆ φn(B+
1/p) = B+

1/ppn
for every n ≥ 0

and in turn apply Proposition 3.1.8 to obtain the identity

B+ =
⋂
ρ>0

B+
ρ =

⋂
n≥0

B+
1/ppn

=
⋂
n≥0

φn(B+
cris)

as desired. □

Remark. By Proposition 3.1.16, we may identify B+ as the largest subring of B+
cris on which

φ is an automorphism.

Proposition 3.1.17. The rings B+
cris, B

+, and B satisfy the equality

(B+
cris)

φ=pn = (B+)φ=p
n

= Bφ=pn for every n ∈ Z.

Proof. It is not hard to see by Proposition 3.1.16 that (B+
cris)

φ=pn and (B+)φ=p
n

coincide.

In addition, (B+)φ=p
n

is evidently a subset of Bφ=pn . Hence we only need to prove that
(B+)φ=p

n
contains Bφ=pn . If we have n ≤ 0, the assertion is evident by Proposition 1.3.12

and Proposition 1.3.13. If we have n ≥ 1, we find

log(ε) =

∞∑
m=1

(−1)m+1 ([ε] − 1)m

m
∈ B+ for every ε ∈ 1 + mF ,

as each summand lies in Ainf [1/p], and in turn apply Proposition 1.4.19 to establish the
assertion. □

Proposition 3.1.18. The scheme X admits an identification

X = Proj

⊕
n≥0

(B+
cris)

φ=pn

 .

Proof. The assertion is evident by Proposition 3.1.17. □

Remark. If we write B
(n)
e := Be∩Fil−n(BdR) for every n ≥ 0, we can use Proposition 3.1.18

to obtain a natural isomorphism

X ∼= Proj

⊕
n≥0

B(n)
e


as described in Chapter I.
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Proposition 3.1.19. The ring Be = Bφ=1
cris is a principal ideal domain with a canonical

isomorphism Be ∼= B[1/t]φ=1 for every cyclotomic uniformizer t ∈ B+
dR.

Proof. Proposition 3.1.17 yields a natural identification

Be = B+
cris[1/t]

φ=1 ∼= B[1/t]φ=1.

Hence we obtain a canonical isomorphism U ∼= Spec (Be) and in turn establish the desired
assertion by Theorem 1.4.22. □

Remark. Fontaine originally deduced Proposition 3.1.19 from the result of Berger [Ber08],
which shows that Be is Bézout. As briefly mentioned in Chapter I, Fontaine’s proof of Propo-
sition 3.1.19 directly led to the constrution of the Fargues-Fontaine curve.

Proposition 3.1.20. There exists a natural isomorphism B×
e
∼= Q×

p .

Proof. Since we have Be ∼= B[1/t]φ=1 for every cyclotomic uniformizer t ∈ B+
dR as noted

in Proposition 3.1.19, the assertion is straightforward to verify by Proposition 1.4.19. □

Theorem 3.1.21 (Fontaine [Fon94a]). The ring Be = Bφ=1
cris fits into a natural exact sequence

0 −! Qp −! Be −! BdR/B
+
dR −! 0. (3.4)

Proof. Fix a cyclotomic uniformizer t ∈ B+
dR. We assert that each Bφ=pn with n ≥ 1

canonically fits into a short exact sequence

0 −! Qpt
n −! Bφ=pn −! B+

dR/t
nB+

dR −! 0. (3.5)

Proposition 2.2.25 in Chapter III implies that both Qpt
n and B+

dR/t
nB+

dR do not depend on
our choice of t. In addition, we apply Proposition 1.3.13 and Lemma 1.4.16 to identify Qpt

n

with the kernel of the natural embedding Bφ=pn ↪! B+
dR given by Proposition 1.3.25. Hence

it remains to prove that the map Bφ=pn ! B+
dR/t

nB+
dR is surjective. For n = 1, the assertion

is evident by Proposition 1.4.3. Let us now proceed by induction on n. Take an arbitrary
element b ∈ B+

dR. Since CK is algebraically closed by Proposition 3.1.10 in Chapter II, we

use Proposition 1.4.3 to obtain an element s ∈ Bφ=p with b − sn ∈ tB+
dR. By the induction

hypothesis, we find f ∈ Bφ=pn−1
and b′ ∈ B+

dR with

b = sn + t(f + tn−1b′) = (sn + tf) + tnb′.

We observe that sn + tf lies in Bφ=pn and thus deduce that the map Bφ=pn ! B+
dR/t

nB+
dR is

surjective.

Our discussion in the preceding paragraph shows that for every n ≥ 1 there exists a
canonical short exact sequence

0 −! Qp −! t−nBφ=pn −! t−nB+
dR/B

+
dR −! 0.

Moreover, by Proposition 3.1.17 we have natural isomorphisms

Be ∼= B[1/t]φ=1 ∼= lim−! t−nBφ=pn and BdR/B
+
dR

∼= lim−! t−nB+
dR/B

+
dR,

where the transition maps for the colimits are the canonical embeddings. Therefore we obtain
the natural short exact sequence (3.4) as desired. □

Remark. Theorem 3.1.21 establishes Theorem 3.2.19 in Chapter III. Our proof invokes
Lemma 1.4.16 and thus relies on Proposition 1.4.14, which we stated without a proof. We
note that the exact sequence (3.5) coincides with the short exact sequence

0 −! H0(X,OX) −! H0(X,OX(n)) −! H0(X,OX(n)/tnOX) −! 0,

where tnOX denotes the quasicoherent OX -module associated to tnP .
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3.2. Geometrization of isocrystals

Throughout this subsection, we fix a cyclotomic uniformizer t ∈ B+
dR and generally write φ

for a map naturally induced by the Frobenius endomorphism on Bcris or an isocrystal. In

addition, we denote the completed stalk of an OX -module V at ∞ by V̂∞. Let us state the
following generalization of Proposition 3.1.17 without a proof.

Proposition 3.2.1. Given integers d and r with r > 0, we have

(B+
cris)

φr=pd = (B+)φ
r=pd = Bφr=pd .

Remark. The first equality is not hard to verify by Proposition 3.1.16. The second equality
follows from the fact that the map logr described in the remark after Proposition 2.3.5 takes
values in (B+)φ

r=p, as explained in the article of Fargues-Fontaine [FF18, §6.3] or the notes
of Lurie [Lur, Lectures 24].

Definition 3.2.2. Given an isocrystal D over K0, its crystalline OX-module is the quasico-

herent OX -module E(D) associated to P (D) :=
⊕
n≥0

(D ⊗K0 B)φ=p
n
.

Lemma 3.2.3. Let r and d be integers with r > 0. For every homogeneous f ∈ P , the

B[1/f ]φ=1-module B[1/f ]φ
r=pd is free of rank r with a basis (φi(g)) for some g ∈ B[1/f ]φ

r=pd .

Proof. By Lemma 2.3.7, there exists a basis element g of B[1/f ]φ
r=p−d

over B[1/f ]φ
r=1.

Moreover, Lemma 2.3.2 yields a canonical isomorphism

B[1/f ]φ=1 ⊗Qp Er
∼= B[1/f ]φ

r=1

Hence we deduce that B[1/f ]φ
r=p−d

admits a basis (φi(g)) over B[1/f ]φ=1. □

Proposition 3.2.4. Let D be an isocrystal over K0 of rank r and degree d.

(1) The OX -module E(D) is a vector bundle on X of rank r and degree −d.

(2) There exist natural isomorphisms

H0(U, E(D)) ∼= (D ⊗K0 Bcris)
φ=1 and Ê(D)∞ ∼= DK ⊗K B+

dR.

Proof. Since K̂un
0 = W (k)[1/p] naturally embeds into B and Bcris, we may replace D

by D ⊗K0 K̂
un
0 to assume that k is algebraically closed. By Theorem 2.3.25 in Chapter II,

we may further assume that D is isomorphic to a simple isocrystal Dλ with λ = d/r. Let
us choose a K0-basis (φi(e)) of D ≃ Dλ with e ∈ D and φr(e) = pde. For every nonzero

homogeneous element f ∈ P , the open subscheme U(f) := Spec (B[1/f ]φ=1) of X = Proj (P )
yields a canonical isomorphism

E(D)(U(f)) ∼= (D ⊗K0 B[1/f ])φ=1 ∼= B[1/f ]φ
r=p−d

.

Hence we find E(D) ∼= O(−λ) and in turn establish statement (1).

It remains to prove statement (2). By Proposition 3.2.1, we have a natural isomorphism

H0(U, E(D)) ∼= B[1/t]φ
r=p−d ∼= B+

cris[1/t]
φr=p−d ∼= (D ⊗K0 Bcris)

φ=1.

Moreover, if we take a nonzero homogeneous element f ∈ P with ∞ ∈ U(f), we apply
Proposition 3.1.5 and Lemma 3.2.3 to obtain an identification

Ê(D)∞ ∼= E(D)(U(f)) ⊗B[1/f ]φ=1 B+
dR

∼= B[1/f ]φ
r=p−d

⊗B[1/f ]φ=1 B+
dR

∼= DK ⊗K B+
dR.

Therefore we establish the desired assertion. □
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Definition 3.2.5. A (Be, B
+
dR)-pair is a pair (Me,M

+
dR) consisting of a free Be-module Me

of finite rank and a B+
dR-lattice M+

dR in Me ⊗Be BdR.

Proposition 3.2.6. There exists a equivalence of categories{
(Be, B

+
dR)-pairs

} ∼
−! { vector bundles on X }

which maps each (Be, B
+
dR)-pair (Me,M

+
dR) to a vector bundle V on X with identifications

H0(U,V) ∼= Me, V̂∞ ∼= M+
dR, H0(X,V) ∼= Me ∩M+

dR.

Proof. Proposition 3.1.5 and Proposition 3.1.19 respectively yield natural isomorphisms

ÔX,∞ ∼= B+
dR and U ∼= Spec (Be).

Moreover, by Theorem 1.4.22, the closed point ∞ lies in an open subscheme of X which is the
spectrum of a principal ideal domain. Hence the desired assertion is straightforward to verify
by the theorem of Beauville-Laszlo [BL95] stated in the Stacks project [Sta, Tag 0BP2]. □

Proposition 3.2.7. Every filtered isocrystal D over K naturally yields a vector bundle F(D)
on X with identifications

H0(U,F(D)) ∼= (D ⊗K0 Bcris)
φ=1 and F̂(D)∞ ∼= Fil0(DK ⊗K BdR).

Proof. Proposition 3.2.4 and Proposition 3.2.6 together yield an isomorphism

(D ⊗K0 Bcris)
φ=1 ⊗Be BdR

∼= DK ⊗K BdR.

Meanwhile, we see by Proposition 2.3.6 in Chapter III that Fil0(DK ⊗K BdR) is a B+
dR-lattice

in DK ⊗K BdR. Hence we deduce the desired assertion from Proposition 3.2.6. □

Definition 3.2.8. Given a filtered isocrystal D over K, we refer to the vector bundle F(D)
on X given by Proposition 3.2.7 as the modified crystalline OX-module of D.

Lemma 3.2.9. Given a line bundle L on X and a coherent nonzero OX -submodule M of L
with the quotient L/M supported at ∞, there exists a natural isomorphism

L̂∞/M̂∞ ∼= B+
dR/t

deg(L)−deg(M)B+
dR.

Proof. The assertion is straightforward to verify. □

Proposition 3.2.10. Every filtered isocrystal D over K satisfies the equalities

rk(F(D)) = rk(D) and deg(F(D)) = deg•(D) − deg(D).

Proof. The first equality is evident by Proposition 3.2.4 and Proposition 3.2.7. Hence
it remains to establish the second equality. Let us take the Hodge-Tate weights m1, · · · ,mr

of D in ascending order and write m := min(0,m1). We can construct a K-basis (vi,j) of DK

such that each Films(DK) has a K-basis (vi,j)i≥s; indeed, we choose a K-basis for Filmr(DK)
and inductively extend a K-basis for each Films(DK) to a K-basis for Films−1(DK). For
every n ∈ Z, we deduce from Proposition 2.3.6 in Chapter III that Fil0(D(n)K ⊗K BdR)
admits a B+

dR-basis (vi,j ⊗ tn−mi). Therefore Proposition 3.2.4 and Proposition 3.2.7 together
imply that E(D) and F(D) are naturally coherent OX -submodules of F(D(m)) with their
quotients supported at ∞. Moreover, we apply Proposition 3.3.9 in Chapter III to find

̂det(F(D(m)))∞/ ̂det(E(D))∞ ∼= tm·rk(D)−deg•(D)B+
dR/B

+
dR,

̂det(F(D(m)))∞/ ̂det(F(D))∞ ∼= tm·rk(D)B+
dR/B

+
dR.

Now the assertion is straightforward to verify by Proposition 3.2.4 and Lemma 3.2.9. □

https://stacks.math.columbia.edu/tag/0BP2
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Proposition 3.2.11. The ΓK-action on BdR naturally induces a ΓK-action on X, under
which both U and ∞ are stable.

Proof. We note that φ is ΓK-equivariant on B+
cris and in turn find that each (B+

cris)
φ=pn

is stable under the ΓK-action on BdR. Hence Proposition 3.1.18 implies that the ΓK-action
on BdR naturally gives rise to a ΓK-action on X. Moreover, both U = X\ {∞ } and ∞
are stable under the ΓK-action on X as ΓK acts on t via the cyclotomic character of K by
Theorem 2.2.26 in Chapter III. □

Definition 3.2.12. A ΓK-equivariant vector bundle on X is a vector bundle V on X with an
isomorphism cγ : γ∗V ≃ V for each γ ∈ ΓK , called a γ-twist map, satisfying the relation

cγγ′ = cγ′ ◦ (γ′)∗(cγ) for every γ, γ′ ∈ ΓK .

Proposition 3.2.13. Let D be a filtered isocrystal over K.

(1) The OX -module F(D) is naturally a ΓK-equivariant vector bundle on X.

(2) The Qp-vector space H0(X,F(D)) admits a natural ΓK-action with an identification

H0(X,F(D)) = (D ⊗K0 Bcris)
φ=1 ∩ Fil0(DK ⊗K BdR).

Proof. Theorem 2.2.26 in Chapter III shows that each Filn(BdR) = tnB+
dR is stable under

the ΓK-action on BdR. Moreover, φ is ΓK-equivariant on Bcris by construction. Hence we see

that ΓK naturally acts on H0(U,F(D)) ∼= (D⊗K0 Bcris)
φ=1 and F̂(D)∞ ∼= Fil0(DK ⊗K BdR).

Now the desired assertions are straightforward to verify by Proposition 3.2.6. □

Lemma 3.2.14. Every vector bundle V on X satisfies the equalities

rk(γ∗V) = rk(V) and deg(γ∗V) = deg(V) for each γ ∈ ΓK .

Proof. Since the first equality is evident, we only need to establish the second equality.
Let us write d := deg(V). We apply Proposition 2.1.6 to see that det(V) is isomorphic to the
line bundle give by the Weil devisor d∞ on X. Moreover, we deduce from Proposition 3.2.11
that det(γ∗V) ∼= γ∗ det(V) is also isomorphic to the line bundle give by the Weil devisor d∞
on X. Hence we obtain the second equality as desired, thereby completing the proof. □

Lemma 3.2.15. Given an element γ ∈ ΓK , a vector bundle V on X is semistable if and only
if γ∗V is semistable.

Proof. There exists a natural bijection

{ subbundles of V } ∼
−! { subbundles of γ∗V }

which sends each subbundle W of V to γ∗W. Hence the assertion is an immediate consequence
of Lemma 3.2.14. □

Proposition 3.2.16. Given a ΓK-equivariant vector bundle V onX with a Harder-Narasimhan
filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V,
each Vi is naturally a ΓK-equivariant vector bundle on X.

Proof. For every γ ∈ ΓK , we apply Lemma 3.2.14 and Lemma 3.2.15 to see that the
vector bundle γ∗V on X admits a Harder-Narsimhan filtration

0 = γ∗V0 ⊂ γ∗V1 ⊂ · · · ⊂ γ∗Vn = γ∗V.
Since V admits a unique Harder-Narasimhan filtration by Theorem 2.2.20, we deduce that
each Vi is a ΓK-equivariant vector bundle with a γ-twist map cγ,i : γ∗Vi ≃ Vi given by the
γ-twist map cγ : γ∗V ≃ V for V. □
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Proposition 3.2.17. Let V be a ΓK-equivariant vector bundle on X.

(1) The K0-vector space D(V) := (H0(U,V) ⊗Be Bcris)
ΓK is naturally an isocrystal and

gives rise to a canonical injective Bcris-linear ΓK-equivariant map

αV : D(V) ⊗K0 Bcris ↪−! H0(U,V) ⊗Be Bcris.

(2) D(V) satisfies the inequality

rk(D(V)) ≤ rk(V) (3.6)

with equality precisely when αV is an isomorphism.

Proof. Let us consider the natural Bcris-linear ΓK-equivariant map

αV : D(V) ⊗K0 Bcris −! H0(U,V) ⊗Be Bcris ⊗Be Bcris −! H0(U,V) ⊗Be Bcris

We assert that αV is injective. Denote by Ccris the fraction field of Bcris. It suffices to prove
the injectivity of the induced Ccris-linear map

βV : D(V) ⊗K0 Ccris −! H0(U,V) ⊗Be Ccris.

Suppose for contradiction that ker(βV) is not trivial. Take a K0-basis (ei) of D(V) and choose
a nontrivial Ccris-linear relation

∑
ciei = 0 with minimal number of nonzero terms. We may

set cj = 1 for some j. For every γ ∈ ΓK , we find∑
(γ(ci) − ci)ei = γ

(∑
ciei

)
−
∑

ciei = 0 and γ(cj) − cj = γ(1) − 1 = 0.

By the minimality of our relation, each ci satisfies the equality ci = γ(ci) for every γ ∈ ΓK .

Hence Theorem 3.1.14 in Chapter III shows that each ci lies in CΓK
cris

∼= K0. Now we have a
nontrivial K0-linear relation

∑
ciei = 0 for the K0-basis (ei) of D(V), thereby obtaining a

desired contradiction.

The injectivity of αV implies that the K0-vector space D(V) is finite dimensional. Mean-
while, for arbitrary v ∈ H0(U,V), b ∈ Bcris, and c ∈ K0, we find

(1 ⊗ φ)(c(v ⊗ b)) = (1 ⊗ φ)(v ⊗ bc) = v ⊗ φ(b)φ(c) = φ(c) · (1 ⊗ φ)(v ⊗ b).

Since φ extends the Frobenius automorphism σ of K0, the additive map 1⊗φ is σ-semilinear.
In addition, the map 1⊗φ is injective on D(V) by Proposition 3.1.14. Hence we deduce from
Lemma 3.2.5 in Chapter III that D(V) is an isocrystal over K0 with Frobenius automorphism
1 ⊗ φ and in turn establish statement (1).

It remains to verify statement (2). Since the inequality (3.6) is evident by statement (1),
we only need to consider the equality condition. If αV is an isomorphism, the inequality
becomes an equality. For the converse, we henceforth assume the identity rk(D(V)) = rk(V).
Let us choose a K0-basis (ui) of D(V) and a Be-basis (vi) of H0(U,V). We may represent αV
by a r × r matrix MV with r := rk(D(V)) = rk(V). We wish to show that det(MV) is a unit
in Bcris. We have det(MV) ̸= 0 as the Ccris-linear map βV induced by αV is an isomorphism
for being an injective map between vector spaces of equal dimension. Meanwhile, ΓK acts
trivially on u1 ∧ · · · ∧ ud and by some Be-valued character η on v1 ∧ · · · ∧ vd. Since the
ΓK-equivariant map αV yields the identity

(∧dαV)(u1 ∧ · · · ∧ ud) = det(MV)(v1 ∧ · · · ∧ vd),
we deduce that ΓK acts on det(MV) by η−1. Now we observe by Proposition 3.1.20 that η is
Qp-valued and in turn find by Theorem 3.1.14 in Chapter III that det(MV) is a unit in Bcris,
thereby completing the proof. □

Definition 3.2.18. Given a ΓK-equivariant vector bundle V on X, its associated isocrystal
is the isocrystal D(V) constructed in Proposition 3.2.17..
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Lemma 3.2.19. Every isocrystal D over K0 admits a natural isomorphism

D ∼= ((D ⊗K0 Bcris)
φ=1 ⊗Be Bcris)

ΓK .

Proof. Since K̂un
0 naturally embeds into Bcris, we may replace D by D⊗K0K̂

un
0 to assume

that k is algebraically closed. By Theorem 2.3.25 in Chapter II, we may further assume that
D is isomorphic to a simple isocrystal Dλ. Let us write λ = d/r in reduced form and choose
a K0-basis (φi(e)) of D ≃ Dλ with e ∈ D and φr(e) = pde. We have an identification

(D ⊗K0 Bcris)
φ=1 ∼= Bφr=p−d

cris .

In addition, Proposition 3.2.1 and Lemma 3.2.3 together show that Bφr=p−d

cris = B+
cris[1/t]

φr=p−d

admits a basis (φi(g)) over Be = B+
cris[1/t]

φ=1 for some g ∈ Bφr=p−d

cris . Hence we obtain a
canonical isomorphism

(D ⊗K0 Bcris)
φ=1 ⊗Be Bcris

∼= Bφr=p−d

cris ⊗Be Bcris
∼= D ⊗K0 Bcris.

It is straightforward to verify that this map is ΓK-equivariant. Now we deduce the desired
assertion from Theorem 3.1.14 in Chapter III. □

Proposition 3.2.20. Given a weakly admissible filtered isocrystal D over K, the vector
bundle F(D) on X is trivial with rk(F(D)) = rk(D).

Proof. Let us write V := F(D) for notational convenience. By Proposition 3.2.10, we
find rk(F(D)) = rk(D) and deg(F(D)) = 0. In light of Proposition 2.3.17, it suffices to show
that V is semistable. Suppose for contradiction that V is not semistable. Theorem 2.2.20
yields a Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V with n > 1.

Let us set V ′ := V1 and V ′′ := V/V ′. We find µ(V ′) > µ(V) = 0 by Proposition 2.2.8. In
addition, Proposition 3.2.16 implies that both V ′ and V ′′ are naturally ΓK-equivariant vector
bundles on X. Hence we have a short exact sequence

0 −! D(V ′) −! D(V) −! D(V ′′).

Since Proposition 3.2.17 yields the inequalities

rk(D(V ′)) ≤ rk(V ′) and rk(D(V ′′)) ≤ rk(V ′′),

we obtain the relation

rk(D(V)) ≤ rk(D(V ′)) + rk(D(V ′′)) ≤ rk(V ′) + rk(V ′′) = rk(V).

Meanwhile, we see that D admits a natural isomorphism D ∼= D(V) by Lemma 3.2.19 and in
turn find rk(D(V)) = rk(V) by Proposition 3.2.10. Therefore all nonstrict inequalities are in
fact equalities. Now Proposition 3.2.17 yields a canonical isomorphism

H0(U,V ′) ∼= (H0(U,V ′) ⊗Be Bcris)
φ=1 ∼= (D(V ′) ⊗K0 Bcris)

φ=1. (3.7)

Take D′ to be the isocrystal D(V ′) with the filtration on D′
K given by

Filn(D′
K) := Filn(DK) ∩D′

K for each n ∈ Z,
where we regard D(V ′) as a subisocrystal of D ∼= D(V). We obtain a natural isomorphism

V̂ ′
∞

∼= Fil0(D′
K ⊗K BdR).

and in turn identify V ′ with F(D′). Hence we apply Proposition 3.2.10 to find

µ(V ′) = deg•(D′) − deg(D′) ≤ 0

as D is weakly admissible, thereby obtaining a desired contradiction. □
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Proposition 3.2.21. Given a weakly admissible filtered isocrystal D over K, the Qp-vector
space H0(X,F(D)) is naturally a p-adic ΓK-representation with

dimQp H
0(X,F(D)) = rk(D). (3.8)

Proof. Since we have H0(X,OX) ∼= Qp by Proposition 1.3.13 and Theorem 2.1.8, we
obtain the equality (3.8) by Proposition 3.2.20. Moreover, we deduce from Proposition 3.1.2
that the ΓK-action on H0(X,F(D)) given by Proposition 3.2.13 is continuous with respect
to the p-adic topology, thereby completing the proof. □

Theorem 3.2.22 (Colmez-Fontaine [CF00]). A filtered isocrystal D over K is admissible if
and only if it is weakly admissible.

Proof. If D is admissible, it is weakly admissible by Proposition 3.3.3 in Chapter III.
For the converse, we now assume that D is weakly admissible and write V := H0(X,F(D)).
Proposition 3.2.13 yields a natural Bcris-linear map

αV : V ⊗Qp Bcris −! D ⊗K0 Bcris ⊗Qp Bcris −! D ⊗K0 Bcris

which is compatible with the ΓK-actions and the Frobenius endomorhpisms. Let us denote
the fraction field of Bcris by Ccris and concider the induced Ccris-linear map

βV : V ⊗Qp Ccris −! D ⊗K0 Ccris.

We note that βV (V ⊗Qp Ccris) is stable under the ΓK-action and thus apply Theorem 3.1.14
in Chapter III to obtain a K0-subspace D′ of D with βV (V ⊗Qp Ccris) = D′ ⊗K0 Ccris; indeed,
if we identify βV (V ⊗Qp Ccris) as a Ccris-point of a Grassmannian for D, it descends to a
K0-point for being ΓK-invariant. Moreover, D′ is naturally a filtered subisocrystal of D with

Filn(D′
K) := Filn(DK) ∩D′

K for each n ∈ Z.

Since βV is injective on V by construction, we find

V ⊆ (D ⊗K0 Bcris) ∩ (D′ ⊗K0 Ccris) = D′ ⊗K0 Bcris

and in turn establish the identification V = H0(X,F(D′)) by Proposition 3.2.13.

Choose a K0-basis (ei) of D′ and a Ccris-basis (βV (vj)) of βV (V ⊗Qp Ccris) with vj ∈ V .
Each βV (vj) admits an identity βV (vj) =

∑
bi,jei with bi,j ∈ Bcris. Let us write r := rk(D′)

and denote by M the r× r matrix whose (i, j)-entry is bi,j . We find det(M) ̸= 0 by observing
that M represents a Ccris-linear isomorphism. In addition, we obtain the equality

(∧rβV )(v1 ∧ · · · ∧ vr) = det(M)(e1 ∧ · · · ∧ er) (3.9)

and consequently use Proposition 3.2.13 to identify (∧rβV )(v1∧· · ·∧vr) as a nonzero element
of H0(X,F(det(D′))). Since Proposition 3.2.10 shows that F(det(D′)) is a line bundle with

deg(F(det(D′))) = deg•(D′) − deg(D′) ≤ 0,

we have deg•(D′) = deg(D′) by Proposition 1.3.12 and Theorem 2.1.8. Hence we deduce that
D′ is weakly admissible. Now Proposition 3.2.21 yields the identity rk(D′) = rk(D), which
implies that D′ and D coincide. We see that βV is an isomorphism for being a surjective map
between vector spaces of equal dimension. Meanwhile, since ΓK acts trivially on e1 ∧ · · · ∧ er
and via some Qp-valued character η on v1 ∧ · · · ∧ vr, we note by the equality (3.9) that ΓK
acts on det(M) via η−1 and in turn find det(M) ∈ B×

cris by Theorem 3.1.14 in Chapter III.
Therefore αV is an isomorphism and gives rise to an identification D ∼= Dcris(V ). Now we
observe by Proposition 3.2.21 that V is crystalline, thereby deducing that D is admissible as
desired. □
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Exercises

1. Let ξ be an element in Ainf .

(1) Show that an element ξ ∈ Ainf is primitive if and only if it satisfies the following
equivalent conditions:

(i) ξ is a unit multiple of [m] − p for some m ∈ mF .

(ii) ξ generates ker(θC) for some untilt C of F .

(2) If ξ is primitive, show that ξAinf contains infinitely many primitive elements.

2. Let ξ be a primitive element in Ainf .

(1) Show that ξ is irreducible in Ainf .

(2) Show that every f ∈ Ainf admits an identity f = gξ + [c] with g ∈ Ainf and c ∈ OF .

3. Given a primitive element ξ ∈ Ainf , prove that Ainf is ξ-adically complete.

Hint. Prove that each Ainf/p
nAinf is ξ-adically complete.

4. Let f be an element in Ainf [1/p, 1/[ϖ]] with a Teichmüller expansion f =
∑

[cn]pn.

(1) Show that the Newton polygon of f , given by the largest decreasing convex function
Nf : R! R ∪ {∞ } with Nf (n) ≤ νF (cn) for each n ∈ Z, yields the equality

Lf (s) = inf
r∈R

(Nf (r) + rs) for each s ∈ (0,∞).

(2) Show that an integer n is a slope for the piecewise linear function Lf if and only if
Nf is not differentiable at n.

(3) Show that a rational number λ is a slope for the piecewise linear function Nf if and
only if Lf is not differentiable at n.

5. Let f be a nonzero element in Ainf .

(1) Show that f is a unit if and only if Lf is the zero function on (0,∞).

(2) Show that f is strongly primitive if and only if there exists r ∈ (0,∞) with

Lf (s) =

{
s for s ≤ r,

r for s ≥ r.

6. Given a closed interval [a, b] ⊆ (0, 1), let y be an element in Y[a,b] and C be its representative.

(1) Prove that the map θC uniquely extends to a surjective continuous open ring homo-

morphism θ̂a,bC : B[a,b] ↠ C.

(2) Prove that there exists a natural isomorphism

B+
dR(y) ∼= lim −

i

B[a,b]/ ker(θ̂a,bC )i.
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7. Let n be a positive integer.

(1) Show that the Qp-vector space Ainf [1/p, 1/[ϖ]]φ=p
n

vanishes.

(2) Show that the Qp-vector space Bφ=pn is infinite dimensional.

8. Given an element y ∈ Y and a nonzero element t ∈ Bφ=p vanishing at y, establish a natural
isomorphism

H1(X,O(d)) ∼= B+
dR(y)/(t−dB+

dR(y) + Qp) for every d < 0.

Remark. For d = −1, we see that H1(X,O(−1)) does not vanish whereas H1(P1
C,OP1

C
(−1))

vanishes.

9. Let V be a nonzero vector bundle on a complete abstract curve Z and write V∨ for the
dual bundle of V.

(1) Verify the equality µ(V∨) = −µ(V).

(2) Show that V is semistable if and only if V∨ is semistable.

10. Given a complete abstract curve Z and a rational number λ, show that the zero bundle
and the semistable vector bundles of slope λ on Z together form an abelian category.

11. Let Z be a complete abstract curve.

(1) If the degree map degZ is not an isomorphism, prove that there exist semistable
vector bundles V and W on Z with µ(V) ≤ µ(W) and HomOZ

(V,W) = 0.

(2) If Z is either P1
C or X, for arbitrary semistable vector bundles V and W on Z

with µ(V) ≤ µ(W) prove that HomOZ
(V,W) does not vanish.

12. Let Z be a complete abstract curve.

(1) Prove that the tensor product of a semistable vector bundle and a line bundle on Z
is semistable.

(2) If Z is either P1
C or X, prove that the tensor product of semistable vector bundles

on Z is semistable.

13. For every integer h, show that Xh is a complete abstract curve.

Hint. Show that Xh is a Dedekind scheme by observing that the natural map πh : Xh ! X
is finite étale. Define the degree map for Xh via the pushforward along πh.

14. Let d, h, and r be integers with h, r > 0.

(1) Show that the vector bundle Oh(d, r) on Xh is semistable of rank r and degree d.

(2) If d and r are relatively prime, show that Oh(d, r) is stable.
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15. For every closed interval [a, b] ⊆ (0, 1) with a ̸= b, show that the canonical continuous
embedding B+

a ↪! B+
b is not surjective.

16. Given a p-adic field K, show that the principal ideal domain Be is not Euclidean.

17. Assume that F is the tilt of CK for a p-adic field K.

(1) Show that every vector bundle on X is isomorphic to E(D) for a unique isocrystal D

over K̂un up to isomorphism.

(2) Find two isocrystals D′ and D over K̂un with

HomIsoc(D
′, D) = 0 and HomOX

(E(D′), E(D)) ̸= 0.

18. Assume that F is the tilt of CK for a p-adic field K and let B̃cris denote either B+[1/t]
or B[1/t] for a cyclotomic uniformizer t ∈ B+

dR.

(1) Show that B̃cris is naturally a ΓK-stable subring of BdR.

(2) Show that B̃cris is (Qp,ΓK)-regular with an identification B̃ΓK
cris

∼= K0.

Hint. Adapt the argument for Theorem 3.1.14 in Chapter III.

(3) For every p-adic ΓK-representation V , show that D̃cris(V ) := (V ⊗Qp B̃cris)
ΓK is

naturally an isocrystal over K0 with a canonical isomorphism

Dcris(V ) ∼= D̃cris(V ).

Hint. Construct injective morphisms Dcris(V ) ↪! D̃cris(V ) and D̃cris(V ) ↪! Dcris(V )

after observing that Lemma 3.2.19 remains valid with B̃cris in place of Bcris.

19. Assume that F is the tilt of CK for a p-adic field K.

(1) Given a cyclotomic uniformizer t ∈ B+
dR, prove that an element in Bφ=p is invertible

in B[1/t] if and only if it is a Q×
p -multiple of t.

(2) Prove that ∞ is the only closed point on X with finite ΓK-orbit.

20. Assume that F is the tilt of CK for a p-adic field K and let B be a (Qp,ΓK)-regular ring
which contains Be as a ΓK-stable subring.

(1) Show that every ΓK-equivariant vector bundle V on X naturally gives rise to a vector
space DB(V) := (H0(U,V) ⊗Be B)ΓK over E := BΓK with the following properties:

(i) There exists a canonical injective B-linear ΓK-equivariant map

αV : DB(V) ⊗E B ↪−! H0(U,V) ⊗Be B.

(ii) DB(V) satisfies the inequality

dimE DB(V) ≤ rk(V)

with equality precisely when αV is an isomorphism.

(2) For every p-adic ΓK-representation V , show that the OX -module V ⊗Qp OX is nat-
urally a ΓK-equivariant vector bundle on X with a canonical isomorphism

DB(V ) ∼= DB(V ⊗Qp OX).



CHAPTER V

Additional topics

1. Semistable representations

In this section, we define and study the semistable period ring and semistable represen-
tations. Our primary references for this section are the notes of Brinon-Conrad [BC, §9] and
the notes of Fontaine-Ouyang [FO, §8].

1.1. The semistable period ring Bst

Throughout this section, we let K be a p-adic field with absolute Galois group ΓK , inertia
group IK , and residue field k. We write F := C♭K and denote the fraction field of W (k)
by K0. In addition, we fix a cyclotomic uniformizer t = log(ε) of B+

dR for some ε ∈ Zp(1) and

a distinguished element ξ = [p♭] − p ∈ Ainf for some p♭ ∈ OF with (p♭)
♯

= p.

Lemma 1.1.1. There exists a unique cocycle ω : ΓK ! Zp(1) with

γ(p♭) = εω(γ)p♭ for each γ ∈ ΓK .

Proof. The assertion is straightforward to verify. □

Definition 1.1.2. We refer to the cocycle ω : ΓK ! Zp(1) given by Lemma 1.1.1 as the

logarithmic cocycle associated to p♭.

Proposition 1.1.3. The tilted logarithm extends to a ΓK-equivariant homomorphism
log : F× ! B+

dR with an equality

log(p♭) =
∞∑
n=1

(−1)n+1 ([p♭]/p− 1)n

n
=

∞∑
n=1

ξn

npn
. (1.1)

Proof. The tilted logarithm extends to a homomorphism O×
F
∼= (1 + mF ) × k×F ! B+

dR

with trivial image on k×F , where mF and kF respectively denote the maximal ideal and the

residue field of OF , and consequently extends to a homomorphism log : F× ! B+
dR with the

equality (1.1) as every c ∈ F× admits an identity cm = (p♭)nc′ with c′ ∈ O×
F for some m,n ∈ Z.

Hence we obtain the assertion as the tilted logarithm is ΓK-equivariant by construction. □

Definition 1.1.4. We refer to the map log in Proposition 1.1.3 as the extended tilted logarithm
and define the semistable period ring to be Bst := Bcris[u] with u := log(p♭).

Remark. Let us explain Fontaine’s insight behind the construction of Bst. Fontaine intro-
duced the ring Bst to formulate an analogue of the crystalline comparison isomorphism for
proper smooth varieties over K with semistable reduction. For an elliptic curve over K, hav-
ing semistable reduction means that the mod p reduction may have a nodal singularity. A
primordial example of an elliptic curve over K with semistable reduction is the Tate curve Ep

which admits an identification Ep(K) ∼= K
×
/pZ. After noting that Vp(Ep) is isomorphic to

the Qp-subspace of BdR spanned by t and u, Fontaine constructed Bst as a (Qp,ΓK)-regular
ring containing Bcris such that Vp(Ep) is Bst-admissible.

187
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Lemma 1.1.5. The group ΓK acts on u via the equality

γ(u) = u+ ω(γ)t for each γ ∈ ΓK .

Proof. The assertion is evident as log is ΓK-equivariant by construction. □

Remark. Since Theorem 2.2.26 in Chapter III shows that ΓK acts on t via the cyclotomic
character, we deduce from Lemma 1.1.5 that the Qp-subspace of BdR spanned by t and u is
a nonsplit extension of Qp by Qp(1).

Proposition 1.1.6. The element u ∈ B+
dR is transcendental over the fraction field of Bcris.

Proof. Suppose for contradiction that u is algebraic over the fraction field Ccris of Bcris.
The element u ∈ B+

dR admits a unique minimal polynomial equation

ud + c1u
d−1 + · · · + cd−1u+ cd = 0 with ci ∈ Ccris.

For each γ ∈ ΓK , we apply Lemma 1.1.5 to obtain an equality

(u+ ω(γ)t)d + γ(c1)(u+ ω(γ)t)d−1 + · · · + γ(cd−1)(u+ ω(γ)t) + γ(cd) = 0

and in turn find c1 = γ(c1) + dω(γ)t by the uniqueness of the minimal polynomial equation.

We see that c1 + du lies in BΓK
cris

∼= K0 by Theorem 3.1.14 in Chapter III and consequently
deduce that u is an element in Ccris.

Since Ccris naturally embeds into the fraction field of the p-adically complete ringAinf [[ξ/p]]
by Proposition 3.1.3 in Chapter III, there exists an element b ∈ Ainf [[ξ/p]] with b /∈ pAinf [[ξ/p]]
and pebu ∈ Ainf [[ξ/p]] for some integer e > 0. Let us write b =

∑
ai(ξ/p)

i with ai ∈ Ainf . If
each θ(ai) is divisible by p in OCK

, we see by Proposition 2.2.12 in Chapter III that each ai lies
in pAinf + ξAinf and in turn deduce that b is divisible by p in Ainf [[ξ/p]], which is impossible.
Now we take the smallest integer m > 0 with θ(am) /∈ pOCK

and obtain an identity

b = p
∑
i<m

bi
ξi

pi
+ bm

ξm

pm
+
∑
i>m

bi
ξi

pi

where each bi is an element in Ainf with θ(bm) /∈ pOCK
. In addition, we fix an integer n > e

with pn > m and find

pn−1u =
∑
j<pn

pn−1

j
· ξ

j

pj
+

1

p
· ξ

pn

ppn
+
∑
j>pn

pn−1

j
· ξ

j

pj
.

Therefore we have an equality

bm
p

· ξ
m+pn

pm+pn
= pn−1ub− b

∑
j<pn

pn−1

j
· ξ

j

pj
− b

∑
j>pn

pn−1

j
· ξ

j

pj
−
∑
i<m

bi
ξi+p

n

pi+pn
−
∑
i>m

bi
p
· ξ

i+pn

pi+pn
.

It is not hard to see that the third term on the right side lies in Ainf [[ξ/p]] + ξm+pn+1B+
dR,

while every other term on the right side belongs to either Ainf [[ξ/p]] or ξm+pn+1B+
dR. Since

the left side lies in ξm+pnB+
dR, we deduce that the right side represents a sum of elements

in (ξ/p)m+pnAinf [[ξ/p]] and ξm+pn+1B+
dR. Hence we may write

bm
p

= b′ + ξb′′ with b′ ∈ Ainf [[ξ/p]] and b′′ ∈ B+
dR.

Now we find θ+dR(bm/p) = θ(bm)/p /∈ OCK
and θ+dR(b′ + ξb′′) = θ+dR(b′) ∈ OCK

, thereby
obtaining a desired contradiction. □

Remark. Proposition 1.1.6 implies that Bst is isomorphic to the polynomial ring over Bcris.
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Proposition 1.1.7. The ring Bst is naturally a filtered K0-subalgebra of BdR which is stable
under the action of ΓK .

Proof. We note that Bcris is canonically a K0-subalgebra of BdR by Proposition 3.1.8
in Chapter III and consequently find that Bst is naturally a filtered K0-subalgebra of BdR

with Filn(Bst) = Bst ∩ tnB+
dR for every n ∈ Z. Now we apply Lemma 1.1.5 to see that Bst is

stable under the ΓK-action, thereby establishing the desired assertion. □

Remark. It is worthwhile to mention that the embedding Bst ↪! BdR is not completely
canonical; indeed, it depends on the definition of the extended tilted logarithm which involves
some choices.

Proposition 1.1.8. The natural ΓK-equivariant map Bst ⊗K0 K ! BdR is injective.

Proof. Proposition 3.1.9 in Chapter III shows that the natural map Bcris⊗K0 K ! BdR

is injective. Moreover, since K is finite over K0 by Proposition 2.2.19 in Chapter III, we
deduce from Proposition 1.1.6 that u is trascendental over the fraction field of Bcris ⊗K0 K.
Hence we find that the kernel of the natural map Bst ⊗K0 K ! BdR is zero as desired. □

Proposition 1.1.9. There exists a natural ΓK-equivariant graded K-algebra isomorphism

gr(Bst ⊗K0 K) ∼= BHT.

Proof. Theorem 2.2.26 in Chapter III and Proposition 1.1.8 together imply that the
canonical filtered K-algebra homomorphism Bst ⊗K0 K ! BdR yields an injective graded
K-algebra homomorphism

gr(Bst ⊗K0 K) ↪−! gr(BdR) ∼= BHT. (1.2)

This map is surjective as it restricts to an isomorphism gr(Bcris ⊗K0 K) ∼= BHT given by
Proposition 3.1.10 in Chapter III. Moreover, since each Filn(Bst) = Bst ∩ tnB+

dR is stable
under the ΓK-action by Theorem 2.2.26 in Chapter III, we obtain a canonical action of ΓK
on gr(Bst ⊗K0 K) and in turn deduce that the map (1.2) is ΓK-equivariant. □

Theorem 1.1.10 (Fontaine [Fon94a]). The ring Bst is (Qp,ΓK)-regular with BΓK
st

∼= K0.

Proof. The ring Bst is a subring of the field BdR and thus is an integral domain.
Proposition 1.1.7 implies that the fraction field Cst of Bst is a K0-subalgebra of BdR which is
stable under the ΓK-action. In addition, Theorem 2.2.26 in Chapter III and Proposition 1.1.8
together yield natural injective K-algebra homomorphisms

BΓK
st ⊗K0 K ↪−! BΓK

dR
∼= K and CΓK

st ⊗K0 K ↪−! BΓK
dR

∼= K.

Therefore we have K0
∼= BΓK

st
∼= CΓK

st .

It remains to prove that every nonzero b ∈ Bcris with Qpb being stable under the ΓK-action
is a unit. We apply Proposition 2.2.23 to write b = tnb′ for some b′ ∈ (B+

dR)× and n ∈ Z. We
observe that t is a unit in Bst and in turn find b′ = bt−n ∈ Bst. Moreover, Theorem 2.2.26
in Chapter III implies that Qpb

′ is stable under the ΓK-action. Hence we may replace b by b′

to assume that b lies in (B+
dR)×. Proposition 3.1.13 in Chapter III yields a polynomial equation

bd + c1b
d−1 + · · · + cd−1b+ cd = 0 with cd ̸= 0

where each ci is an element in the fraction field K̂un
0 of W (k). Now we find

b−1 = −c−1
d (bd−1 + c1b

d−2 + · · · + cd−1) ∈ Bcris

by noting that K̂un
0 naturally embeds into Bst, thereby completing the proof. □
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Proposition 1.1.11. The Frobenius endomorphism of Bcris canonically extends to a
ΓK-equivariant endomorphism φ on Bst with φ(u) = pu.

Proof. The assertion is evident by Lemma 1.1.5 and Proposition 1.1.6. □

Remark. The equality φ(u) = pu ensures that φ is compatible with the Frobenius automor-
phism on F× via the extended tilted logarithm.

Definition 1.1.12. We refer to the map φ given by Proposition 1.1.11 as the Frobenius
endomorphism of Bst.

Proposition 1.1.13. The Frobenius endomorphism of Bst is injective.

Proof. Since the Frobenius endomorphism of Bcris is injective by Theorem 1.1.13 in
Chapter III, we deduce the desired assertion from Proposition 1.1.6. □

Proposition 1.1.14. There exists a unique Bcris-linear map N : Bst ! Bst such that each
element b =

∑
bnu

n ∈ Bst with bn ∈ Bcris satisfies the equality

N(b) = −
∑
n≥1

nbnu
n−1.

Proof. The assertion is an immediate consequence of Proposition 1.1.6. □

Remark. We may identify N as the unique Bcris-derivation on Bst which maps u to −1.

Definition 1.1.15. We refer to the map N given by Proposition 1.1.14 as the monodromy
operator on Bst.

Remark. Let us provide some motivation for the construction of N . Fix a prime ℓ ̸= p
and take the cocycle ψ : IK ! Zℓ(1) given by the IK-action on the ℓ-power roots of a
uniformizer. For every proper smooth K-variety X with semistable reduction, the ℓ-adic
ΓK-representation V := Hn

ét(XK ,Qℓ) turns out to admit a nilpotent endomorphism NV such
that each γ ∈ IK acts via exp(ψ(γ)NV ). The endomorphism NV serves as an analogue of the
monodromy operator from complex geometry. Moreover, the identification of each γ ∈ IK
with exp(ψ(γ)NV ) indicates that NV essentially behaves as the derivative of a representation
does. Fontaine introduced the monodromy operator N on Bst to provide an analogue of the
monodromy operator for p-adic ΓK-representations.

Proposition 1.1.16. The monodromy operator N on Bst satisfies the following properties:

(i) N is surjective with ker(N) ∼= Bcris.

(ii) N is ΓK-equivariant and admits the identity N ◦ φ = pφ ◦N .

Proof. Property (i) is straightforward to verify by Proposition 1.1.6. Moreover, given
an integer n ≥ 1 we find by Lemma 1.1.5 that each γ ∈ ΓK satisfies the relation

N(γ(un)) = N((u+ ω(γ)t)n) = −n(u+ ω(γ)t)n−1 = −γ(nun−1) = γ(N(un))

and also see that φ yields the equality

N(φ(un)) = N(pnun) = −npnun−1 = −pφ(nun−1) = pφ(N(un)),

thereby establishing property (ii). □
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1.2. Properties of semistable representations

For the rest of this section, we denote by σ the Frobenius automorphism of K0 and by
VectK0 the category of K0-vector spaces.

Definition 1.2.1. For a K0-vector space V , we write VK = V ⊗K0 K.

(1) A (φ,N)-module over K0 is an isocrystal D over K0 together with a K0-linear endo-
morphism ND, called the monodromy operator of D, which satisfies the equality

ND ◦ φD = pφD ◦ND.

(2) A filtered (φ,N)-module over K is a (φ,N)-module D over K0 such that DK is a
filtered K-vector space.

(3) A K0-linear map f : D ! D′ for (φ,N)-modules D and D′ over K0 is a morphism
of (φ,N)-modules if it satisfies the identities

f ◦ φD = φD′ ◦ f and f ◦ND = ND′ ◦ f.
(4) Given two filtered (φ,N)-modules D and D′ over K, a morphism f : D ! D′ of

(φ,N)-modules is K-filtered if the induced map fK : DK ! D′
K is filtered.

Remark. A K-filtered isomorphism of (φ,N)-modules is a bijective K-filtered morphism of
(φ,N)-modules with a K-filtered inverse.

Proposition 1.2.2. Let D be a filtered (φ,N)-module over K.

(1) Given a filtered (φ,N)-module D′ over K, the tensor product D⊗K0 D
′ is naturally

a filtered (φ,N)-module over K with monodromy operator ND ⊗ 1 + 1 ⊗ND′ .

(2) The dual D∨ = HomK0(D,K0) is naturally a filtered (φ,N)-module over K with
monodromy operator given by the dual map of −ND.

Proof. The assertions follow from Proposition 3.2.4 in Chapter III. □

Remark. We note that the formulas for the monodromy operators in Proposition 1.2.2 are
analogous to the formulas for the tensor products and duals of Lie algebra representations.

Proposition 1.2.3. Let V be a p-adic ΓK-representation.

(1) The K0-vector space Dst(V ) := (V ⊗Qp Bst)
ΓK is naturally a filtered (φ,N)-module

over K with Frobenius automorphism 1 ⊗ φ, monodromy operator 1 ⊗N , and

Filn(Dst(V )K) = (V ⊗Qp Filn(Bst ⊗K0 K))ΓK for each n ∈ Z. (1.3)

(2) There exists a canonical K-filtered isomorphism of isocrystals

Dcris(V ) ∼= Dst(V )1⊗N=0.

Proof. Theorem 1.2.1 in Chapter III and Theorem 1.1.10 together imply that Dst(V ) is
a finite dimensional K0-vector space. In addition, we find

Dst(V )K = (V ⊗Qp Bst)
ΓK ⊗K0 K = (V ⊗Qp (Bst ⊗K0 K))ΓK

and in turn deduce from Proposition 1.1.8 that Dst(V )K is a filtered K-vector space with the
identification (1.3). Meanwhile, since 1 ⊗ φ is σ-semilinear by the fact that φ extends σ, it is
bijective on Dcris(V ) by Lemma 3.2.5 in Chapter III and Proposition 1.1.13. Now we apply
Proposition 1.1.16 to find

(1 ⊗N) ◦ (1 ⊗ φ) = p(1 ⊗ φ) ◦ (1 ⊗N)

and thus obtain statement (1). Statement (2) is straightforward to verify by statement (1). □
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Definition 1.2.4. Let V be a p-adic ΓK-representation.

(1) We refer to Dst(V ) in Proposition 1.2.3 as the filtered (φ,N)-module associated to V .

(2) We say that V is semistable if it is Bst-admissible.

Proposition 1.2.5. A p-adic ΓK-representation V is crystalline if and only if it is semistable
with trivial monodromy operator on Dst(V ).

Proof. By Proposition 1.2.3, we may identify Dcris(V ) with the kernel of the monodromy
operator on Dst(V ). If V is crystalline, we apply Theorem 1.2.1 in Chapter III to find

dimQp V = dimK0 Dcris(V ) ≤ dimK0 Dst(V ) ≤ dimQp V

and in turn deduce that V is semistable with trivial monodromy operator on Dst(V ). Con-
vsersely, if V is semistable with trivial monodromy operator on Dst(V ), we obtain a canonical
isomorphism Dcris(V ) ∼= Dst(V ) and thus see that V is crystalline. □

Example 1.2.6. Theorem 2.2.26 in Chapter III and Lemma 1.1.5 together imply that the
Qp-subspace V of Bst spanned by t and u is a p-adic ΓK-representation. Since Dst(V ) contains
K0-linearly independent elements t⊗ t−1 and −t⊗ ut−1 + u⊗ 1, we find that the inequality

dimK0 Dst(V ) ≤ dimQp V = 2

given by Theorem 1.2.1 in Chapter III must be an equality, which means that V is semistable.
In addition, we observe that −t ⊗ ut−1 + u ⊗ 1 does not map to 0 under 1 ⊗N and in turn
deduce from Proposition 1.2.5 that V is not crystalline.

Remark. As mentioned after Definition 1.1.4, the p-adic ΓK-representation V is isomorphic
to the rational Tate module of the Tate curve Ep. Hence its dual H1

ét(Ep,Qp) is semistable by
Proposition 1.2.7 in Chapter III and Example 1.2.6. In fact, the work of Tsuji [Tsu99] shows
that the p-adic étale cohomology of every proper smooth K-variety with semistable reduction
is semistable, as originally conjectured by Fontaine [Fon94b].

Lemma 1.2.7. If a (φ,N)-module D over K0 has rank 1, its monodromy operator vanishes.

Proof. Take a K0-basis element e for D. We may write φD(e) = ce and ND(e) = c′e for
some c, c′ ∈ K0. By the relation ND ◦ φD = pφD ◦ND, we obtain the equality cc′ = pcσ(c′).

Since we have c ̸= 0 and Kσ=p−1

0 = 0, we find c′ = 0 and in turn see that ND vanishes. □

Remark. In fact, the monodromy operator of an arbitrary (φ,N)-module is nilpotent.

Proposition 1.2.8. A p-adic ΓK-representation V of dimension 1 is semistable if and only if
it is crystalline.

Proof. The assertion is evident by Proposition 1.2.5 and Lemma 1.2.7. □

Example 1.2.9. Example 3.2.10 in Chapter III and Proposition 1.2.8 together show that
every Tate twist Qp(n) of Qp is semistable; indeed, Dst(Qp(n)) is naturally isomorphic to the
simple isocrystal of slope −n with trivial monodromy operator and admits identifications

Film(Dst(Qp(n))K) ∼=

{
K for m ≤ −n,
0 for m > −n.

Lemma 1.2.10. Given an integer n, a p-adic ΓK-representation V is semistable if and only if
its Tate twist V (n) is semistable.

Proof. Since we have V (n) ∼= V ⊗Qp Qp(n) and V ∼= V (n) ⊗Qp Qp(−n), the assertion
follows from Proposition 1.2.4 in Chapter III and Example 1.2.9. □



1. SEMISTABLE REPRESENTATIONS 193

Proposition 1.2.11. If a p-adic ΓK-representation V is semistable, it is de Rham with a
natural K-linear filtered isomorphism

Dst(V )K ∼= DdR(V ).

Proof. Proposition 1.1.7 and Proposition 1.1.8 together show that Bst⊗K0K is naturally
a filtered K-subalgebra of BdR with

Filn(Bst ⊗K0 K) = (Bst ⊗K0 K) ∩ Filn(BdR) for every n ∈ Z.

Therefore Proposition 1.2.3 yields a natural injective K-linear filtered map

Dst(V )K = (V ⊗Qp (Bst ⊗K0 K))ΓK ↪−! (V ⊗Qp BdR)ΓK = DdR(V )

with an identification

Filn(Dst(V )K) = Dst(V )K ∩ Filn(DdR(V )) for every n ∈ Z.

In addition, we find

dimK0 Dst(V ) = dimK Dst(V )K ≤ dimK DdR(V ) ≤ dimQp V

where the last inequality follows from Theorem 1.2.1 in Chapter III. Since V is semistable, we
see that both inequalities should be equalities and in turn establish the desired assertion. □

Example 1.2.12. Given a continuous character η : ΓK ! Q×
p with η(IK) being nontrivially

finite, Proposition 3.2.27 in Chapter III and Proposition 1.2.8 together imply that Qp(η) is
de Rham but not semistable.

Proposition 1.2.13. Let V be a p-adic ΓK-representation and L be a finite unramified
extension of K with residue field l. Denote by L0 the fraction field of W (l).

(1) There exists an L-filtered isomorphism of isocrystals

Dst,K(V ) ⊗K0 L0
∼= Dst,L(V )

where we set Dst,K(V ) := (V ⊗Qp Bst)
ΓK and Dst,L(V ) := (V ⊗Qp Bst)

ΓL .

(2) V is semistable if and only if it is semistable as a ΓL-representation.

Proof. Lemma 2.4.16 in Chapter III shows that L is a p-adic field. Moreover, L and L0

are respectively Galois over K and K0 with natural isomorphisms

Gal(L/K) ∼= Gal(L0/K0) ∼= Gal(l/k).

Hence we find

Dst,K(V ) = Dst,L(V )Gal(L/K) = Dst,L(V )Gal(L0/K0)

and in turn apply Lemma 2.4.16 in Chapter III to obtain a natural bijective L0-linear map

Dst,K(V ) ⊗K0 L0 −! Dst,L(V ). (1.4)

This map is evidently a morphism of (φ,N)-modules. In addition, by Proposition 2.4.17 in
Chapter III and Proposition 1.2.11, the map (1.4) induces an L-linear filtered isomorphism

(Dst,K(V ) ⊗K0 K) ⊗K L ∼= Dst,L(V ) ⊗L0 L.

We deduce that the map (1.4) is an L-filtered isomorphism of (φ,N)-modules and consequently
establish statement (1). Statement (2) is an immediate consequence of statement (1). □

Remark. We can show that Proposition 1.2.13 remains valid for L = K̂un by the remark
following Lemma 2.4.16 in Chapter III. On the other hand, Example 1.2.12 implies that
Proposition 1.2.13 fails for a ramified extension L of K.
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For the rest of this section, we denote by Repst
Qp

(ΓK) the category of semistable

ΓK-representations and by MFφ,NK the category of filtered (φ,N)-module over K.

Proposition 1.2.14. Every V ∈ Repst
Qp

(ΓK) admits a natural ΓK-equivariant isomorphism

Dst(V ) ⊗K0 Bst
∼= V ⊗Qp Bst

with the following properties:

(i) It is compatible with the Frobenius endomorphisms and the monodromy operators.

(ii) It induces a filtered isomorphism of vector spaces

Dst(V )K ⊗K (Bst ⊗K0 K) ∼= V ⊗Qp (Bst ⊗K0 K).

Proof. Theorem 1.2.1 in Chapter III implies that the natural Bst-linear map

Dst(V ) ⊗K0 Bst −! (V ⊗Qp Bst) ⊗K0 Bst
∼= V ⊗Qp (Bst ⊗K0 Bst) −! V ⊗Qp Bst

is ΓK-equivariant and bijective. Moreover, this map is compatible with the natural Frobenius
endomorphisms and monodromy actions on Dst(V ) ⊗K0 Bst and V ⊗Qp Bst. Let us now
consider the induced K-linear bijective map

Dst(V )K ⊗K (Bst ⊗K0 K) −! V ⊗Qp (Bst ⊗K0 K).

It is straightforward to verify that this map is filtered. Therefore by Proposition 2.3.10 in
Chapter III, it suffices to prove the bijectivity of the graded map

gr (Dst(V )K ⊗K (Bst ⊗K0 K)) −! gr
(
V ⊗Qp (Bst ⊗K0 K)

)
. (1.5)

Proposition 2.4.3 in Chapter III and Proposition 1.2.11 show that V is Hodge-Tate with

gr(Dst(V )K) ∼= gr(DdR(V )) ∼= DHT(V )

We apply Proposition 2.3.9 in Chapter III and Proposition 3.1.10 to obtain isomorphisms

gr (Dst(V )K ⊗K (Bst ⊗K0 K)) ∼= gr(Dst(V )K) ⊗K gr(Bst ⊗K0 K) ∼= DHT(V ) ⊗K BHT,

gr
(
V ⊗Qp (Bst ⊗K0 K)

) ∼= V ⊗Qp gr(Bst ⊗K0 K) ∼= V ⊗Qp BHT.

Now we identify the map (1.5) with the natural isomorphism

DHT(V ) ⊗K BHT
∼= V ⊗Qp BHT

given by Theorem 1.2.1 in Chapter III and thus establish the desired assertion. □

Proposition 1.2.15. The functorDst with values in MFφ,NK is faithful and exact on Repst
Qp

(ΓK).

Proof. Since the forgetful functor MFφ,NK ! VectK0 is faithful, Proposition 1.2.2 in
Chapter III implies that Dst is faithful on Repst

Qp
(ΓK). Hence it remains to verify that Dst is

exact on Repst
Qp

(ΓK). Consider an exact sequence of semistable ΓK-representations

0 −! U −! V −!W −! 0.

By Proposition 1.2.2 in Chapter III, this sequence yields an exact sequence of (φ,N)-modules

0 −! Dst(U) −! Dst(V ) −! Dst(W ) −! 0. (1.6)

Moreover, we use Proposition 1.2.11 to identify the induced sequence of filtered vector spaces

0 −! Dst(U)K −! Dst(V )K −! Dst(W )K −! 0

with the exact sequence of filtered vector spaces

0 −! DdR(U) −! DdR(V ) −! DdR(W ) −! 0

given by Proposition 2.4.9 in Chapter III. Therefore the sequence (3.6) is exact in MFφ,NK . □
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Proposition 1.2.16. Given a semistable ΓK-representation V , every subquotient W of V is

semistable with Dst(W ) naturally identified as a subquotient of Dst(V ) in MFφ,NK .

Proof. The assertion is an immediate consequence of Proposition 1.2.3 in Chapter III
and Proposition 1.2.15. □

Proposition 1.2.17. Given two semistable ΓK-representations V andW , their tensor product
V ⊗Qp W is semistable with a natural K-filtered isomorphism of (φ,N)-modules

Dst(V ) ⊗K0 Dst(W ) ∼= Dst(V ⊗Qp W ). (1.7)

Proof. Proposition 1.2.4 in Chapter III shows that V ⊗Qp W is semistable and yields
the desired isomorphism (1.7) as a K0-linear bijection. It is straightforward to verify that the
map (1.7) is a K-filtered morphism of (φ,N)-modules. Moreover, we use Proposition 1.2.11
to identify the induced map

Dst(V )K ⊗K Dst(W )K −! Dst(V ⊗Qp W )K .

with the natural K-linear filtered isomorphism

DdR(V ) ⊗K DdR(W )K ∼= DdR(V ⊗Qp W )

given by Proposition 2.4.11 in Chapter III. Hence we deduce that the map (1.7) is a K-filtered
isomorphism of (φ,N)-modules, thereby completing the proof. □

Proposition 1.2.18. Given a semistable ΓK-representation V and a positive integer n, both
∧n(V ) and Symn(V ) are semistable with natural K-filtered isomorphisms of (φ,N)-modules

∧n(Dst(V )) ∼= Dst(∧n(V )) and Symn(Dst(V )) ∼= Dst(Symn(V )).

Proof. Proposition 1.2.5 in Chapter III shows that ∧n(V ) and Symn(V ) are semistable.
Moreover, Proposition 1.2.5 in Chapter III yields the desired isomorphisms as K0-linear bi-
jections. Proposition 1.2.16 and Proposition 1.2.17 imply that these maps are K-filtered
isomorphisms of (φ,N)-modules. □

Example 1.2.19. Given a semistable ΓK-representation V , we have

µ(Dst(V (n))) = µ(Dst(V )) − n for each n ∈ Z
by Example 1.2.9, Proposition 1.2.17, and Proposition 1.2.18.

Proposition 1.2.20. For every semistable ΓK-representation V , the dual representation V ∨

is semistable with a natural K-filtered perfect pairing of (φ,N)-modules

Dst(V ) ⊗K0 Dst(V
∨) ∼= Dst(V ⊗Qp V

∨) −! Dst(Qp).

Proof. Proposition 1.2.7 in Chapter III shows that V ∨ is semistable and yields the
desired pairing as a K0-linear perfect pairing. This pairing is a K-filtered morphism of
(φ,N)-modules over K0 by Proposition 1.2.17 and thus gives rise to a K-filtered bijective
morphism of (φ,N)-modules

Dst(V )∨ −! Dst(V
∨). (1.8)

Moreover, we apply Proposition 1.2.11 to identify the induced K-linear filtered map

Dst(V )∨K −! Dst(V
∨)K

with the natural K-linear filtered isomorphism

DdR(V ) ∼= DdR(V ∨)

given by Proposition 2.4.14 in Chapter III. Now we deduce that the map (1.8) is a K-filtered
isomorphism of (φ,N)-modules, thereby completing the proof. □
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For the rest of this section, we generally write φ and N respectively for maps naturally
induced by the Frobenius endomorphism and the monodromy operator on Bst.

Proposition 1.2.21. Every semistable ΓK-representation V admits canonical isomorphisms

V ∼= (Dst(V ) ⊗K0 Bst)
φ=1,N=0 ∩ Fil0 (Dst(V )K ⊗K (Bst ⊗K0 K))

∼= (Dst(V ) ⊗K0 Bst)
φ=1,N=0 ∩ Fil0 (Dst(V )K ⊗K BdR) .

Proof. Proposition 1.2.14 yields a natural ΓK-equivariant isomorphism

Dst(V ) ⊗K0 Bst
∼= V ⊗Qp Bst

which is compatible with the Frobenius endomorphisms and the monodromy operators. More-
over, this isomorphism gives rise to a canonical filtered isomorphism

Dst(V )K ⊗K (Bst ⊗K0 K) ∼= V ⊗Qp (Bst ⊗K0 K),

which in turn yields a natural filtered isomorphism

Dst(V )K ⊗K BdR
∼= DdR(V ) ⊗K BdR

∼= V ⊗Qp BdR.

Therefore we obtain canonical isomorphisms

(Dst(V ) ⊗K0 Bst)
φ=1,N=0 ∼= V ⊗Qp B

φ=1,N=0
st ,

Fil0 (Dst(V )K ⊗K (Bst ⊗K0 K)) ∼= V ⊗Qp Fil0(Bst ⊗K0 K),

Fil0 (Dst(V )K ⊗K BdR) ∼= V ⊗Qp B
+
dR.

Since we have an identification Be ∼= Bφ=1,N=0
st given by Proposition 1.1.16, we establish the

desired assertion by Lemma 3.2.20 in Chapter III. □

Theorem 1.2.22 (Fontaine [Fon94b]). The functor Dst with values in MFφ,NK is exact and
fully faithful on Repst

Qp
(ΓK).

Proof. By Proposition 1.2.15, we only need to prove that Dst is full on Repst
Qp

(ΓK).

Let V and W be arbitrary semistable ΓK-representations. Consider an arbitrary morphism

f : Dst(V )! Dst(W ) in MFφ,NK . Proposition 1.2.14 yields a ΓK-equivariant Bst-linear map

V ⊗Qp Bst
∼= Dst(V ) ⊗K0 Bst Dst(W ) ⊗K0 Bst

∼= W ⊗Qp Bst.
f⊗1

Moreover, Proposition 1.2.21 implies that this map restricts to a Qp-linear map ϕ : V ! W .
Now we identify f with the restriction of ϕ⊗ 1 on (V ⊗Qp Bst)

ΓK under the identification

(V ⊗Qp Bst)
ΓK ∼= (Dst(V ) ⊗K0 Bst)

ΓK ∼= Dst(V )

and in turn deduce that f corresponds to ϕ under the functor Dst. □

Definition 1.2.23. Let D be a filtered (φ,N)-module over K.

(1) We say thatD is weakly admissible if every nonzero filtered (φ,N)-submoduleD′ ofD
satisfies the inequality deg•(D′) ≤ deg(D′) with equality for D′ = D.

(2) We say that D is admissible if it admits an isomorphism D ≃ Dst(V ) for some
semistable ΓK-reprsentation V .

Remark. While every weakly admissible filtered isocrystal is naturally a weakly admissible
filtered (φ,N)-module with zero monodromy operator, there exist weakly admissible filtered
(φ,N)-modules over K which are not weakly admissible filtered isocrystals. Nonetheless,
most statements about weakly admissible filtered isocrystals proved in Chapter III have gen-
eralizations for weakly admissible filtered (φ,N)-modules.
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We close this section by stating two important theorems on semistable ΓK-representations
without providing proofs.

Theorem 1.2.24 (Colmez-Fontaine [CF00]). A filtered (φ,N)-module over K is admissible
if and only if it is weakly admissible.

Remark. In fact, Theorem 1.2.24 is not difficult to prove by adapting our argument for
Theorem 3.2.22 in Chapter IV. Here we list some key analogues of statements proved in
Chapter IV about isocrystals and their associated vector bundles on the Fargues-Fontaine
curve.

(1) Every filtered (φ,N)-module D over K naturally gives rise to a ΓK-equivariant vector
bundle Fst(D) on X with canonical isomorphisms

H0(U,Fst(D)) ∼= (D ⊗K0 Bst)
φ=1,N=0 and ̂Fst(D)∞ ∼= Fil0(DK ⊗K BdR),

where ̂Fst(D)∞ denotes the completed stalk of Fst(D) at ∞.

(2) Every ΓK-equivariant vector bundle V on X naturally gives rise to a (φ,N)-module
Dst(V) := (H0(U,V) ⊗Be Bst)

ΓK over K0 with the following properties:

(i) There exists a canonical injective Bst-linear ΓK-equivariant map

αV : Dst(V) ⊗E Bst ↪−! H0(U,V) ⊗Be Bst.

(ii) Dst(V) satisfies the inequality

dimK0 Dst(V) ≤ rk(V)

with equality precisely when αV is an isomorphism.

(3) Every (φ,N)-module D over K0 admits a natural isomorphism

D ∼= ((D ⊗K0 Bst)
φ=1,N=0 ⊗Be Bst)

ΓK .

(4) Given a weakly admissible filtered (φ,N)-module D over K, the vector bundle Fst(D)
on X is trivial with rk(Fst(D)) = rk(D).

Theorem 1.2.25 (Berger [Ber02]). A p-adic ΓK-representation is de Rham if and only if it
is semistable as a ΓL-representation for some finite extension L of K.

Remark. The main inspiration for Theorem 1.2.25 comes from the semistable reduction the-
orem of Grothendieck [Gro72], which states that every abelian variety over K has semistable
reduction over a finite extension of K. The proof of this theorem crucially relies on the
study of ΓK-representations with unipotent IK-action, called unipotent ΓK-representations.
For a prime ℓ ̸= p, unipotent ℓ-adic ΓK-representations serve as analogues of semistable
ΓK-representations; indeed, the ℓ-adic étale cohomology of a proper smooth K-variety with
semistable reduction is unipotent. A key fact behind the semistable reduction theorem
is that every ℓ-adic ΓK-representation is unipotent as a ΓL-representation for some finite
extension L of K. Theorem 1.2.25 is an analogue of this fact for p-adic ΓK-representations,
originally conjectured by Fontaine [Fon94b].

The key ingredients for Berger’s proof of Theorem 1.2.25 are (φ,Γ∞)-modules, which we
will briefly discuss in the next section. By means of (φ,Γ∞)-modules, Berger discovered a
remarkable link between de Rham ΓK-representations and p-adic differential equations. This
link allowed Berger to deduce Theorem 1.2.25 from a conjecture of Crew [Cre98] on p-adic
differential equations proved by André [And02], Kedlaya [Ked04], and Mebkhout [Meb02].
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2. Galois representations and φ-modules

In this section, we classify various kinds of Galois representations via certain modules
with semilinear endomorphisms. Our primary references for this section are the notes of
Brinon-Conrad [BC, §3 and §13] and the notes of Fontaine-Ouyang [FO, §3].

2.1. Galois representations for fields of characteristic p

Let us begin by introducing some key algebraic notions for this section.

Definition 2.1.1. Let L be an arbitrary field.

(1) A mod-p ΓL-representation is a finite dimensional Fp-vector space V with a contin-
uous homomorphism ΓL ! GL(V ).

(2) An integrally p-adic ΓL-representation is a finitely generated Zp-module M with a
continuous homomorphism ΓL ! GL(M).

Remark. We may regard mod-p ΓL-representations as integrally p-adic ΓL-representations
via the natural surjection Zp ↠ Fp.

Example 2.1.2. Let L be an arbitrary field.

(1) Given a p-divisible group G over L, its Tate module Tp(G) is an integrally p-adic
ΓL-representation by Proposition 2.1.18 in Chapter II.

(2) For a proper smooth variety X over L, the étale cohomology group Hn
ét(XE ,Zp) is

an integrally p-adic ΓL-representation.

Definition 2.1.3. Given a topological ring R with an action of a group Γ, a semilinear
Γ-module over R is an R-module M which carries a continuous Γ-action with

γ(rm) = γ(r)γ(m) for each γ ∈ Γ, r ∈ R, and m ∈M.

Example 2.1.4. Given a p-adic field K, every p-adic ΓK-representation V yields a semilinear
ΓK-module V ⊗Qp BdR over BdR.

Definition 2.1.5. Let R be a ring with an endomorphism φ.

(1) Given an R-module M , we define its φ-twist to be φ∗(M) := M ⊗R,φ R where the
factor R in the product has φ as structure morphism.

(2) Given two R-modules M and M ′, we say that an additive map f : M ! M ′ is
φ-semilinear if it satisfies the identity

f(rm) = φ(r)f(m) for each r ∈ R and m ∈M.

(3) Given a φ-semilinear map f : M ! M ′ for R-modules M and M ′, we define its
linearization to be the R-linear map f lin : φ∗(M)!M ′ with

f lin(m⊗ r) = rf(m) for each m ∈M and r ∈ R.

(4) A φ-module over R is a finitely generated R-module M with a φ-semilinear endo-
morphism φM , called the φ-endomorphism of M and often simply denoted by φ.

(5) An R-linear map f : M ! M ′ for φ-modules M and M ′ over R is a morphism of
φ-modules if it satisfies the identity f ◦ φM = φM ′ ◦ f .

Example 2.1.6. Let E be a field of characteristic p with Frobenius endomorphism φ. Every
a finite dimensional E-algebra A is naturally a φ-module with φA given by the p-th power
map. The φ-twist of A and the linearlization of φA respectively coincide with the p-Frobenius

twist A(p) and the relative p-Frobenius φ
[1]
A .
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We aim to classify various Galois representations for a field E of characteristic p. We
assume for simplicity that E is perfect and write φ for the Frobenius endomorphism of E.

Definition 2.1.7. A φ-module D over E is étale if φlin
D is an isomorphism.

Example 2.1.8. A finite flat E-group G = Spec (A) is étale if and only if the φ-module A is
étale by Proposition 1.5.17 in Chapter II and Example 2.1.6.

Lemma 2.1.9. Let D be an étale φ-module over E.

(1) Given an étale φ-module D′ over E, the tensor product D⊗ED
′ is naturally an étale

φ-module over E with φ-endomorphism φD ⊗ φD′ .

(2) The dual D∨ is naturally an étale φ-module over E with φlin
D∨ given by the dual map

of (φlin
D )−1.

Proof. All statements are straightforward to verify. □

Lemma 2.1.10. Every semilinear ΓE-module M over E admits a natural isomorphism

M ∼= MΓE ⊗E E.

Proof. Let us write GalModE/E for the category of semilinear ΓE-modules over E, where

morphisms are ΓE-equivariant E-linear maps, and VectL for the category of E-vector spaces.
A general fact stated in the Stacks Project [Sta, Tag 0CDR] yields an equivalence

GalModE/E
∼= VectE

which sends each M ∈ GalModE/E to MΓE with the inverse sending each V ∈ VectE

to V ⊗E E. Hence we establish the desired assertion. □

Proposition 2.1.11. Let V be a mod-p ΓE-representation.

(1) The E-vector space Dred(V ) := (V ⊗Fp E)ΓE is naturally an étale φ-module over E.

(2) There exists a canonical ΓE-equivariant isomorphism

Dred(V ) ⊗E E ∼= V ⊗Fp E (2.1)

which is compatible with the φ-endomorphisms.

Proof. Lemma 2.1.10 yields the ΓE-equivariant isomorphism (2.1) and in turn implies
that Dred(V ) is finite dimensional. We see that Dred(V ) is canonically a φ-module over E
with φ-endomorphism 1 ⊗ φ. Moreover, the isomorphism (2.1) is evidently compatible with
the φ-endomorphisms. Hence it remains to prove that Dred(V ) is étale.

Let us write d := dimE Dred(V ). Take an E-basis (ei) of Dred(V ) and an Fp-basis (vj) of V .

For each i = 1, · · · , d, we use the isomorphism (2.1) to obtain an E-linear relation ei =
∑
ci,jvj

and in turn find (1 ⊗ φ)(ei) =
∑
cpi,jvj . Let M and M (p) respectively denote the d × d

matrices whose (i, j)-entries are ci,j and cpi,j . Since M is invertible by construction, M (p) is

also invertible by the relation det(M (p)) = det(M)p. Now we note that M−1M (p) represents
the linearization of 1 ⊗ φ and consequently deduce that Dred(V ) is étale as desired. □

Definition 2.1.12. Given a mod-p ΓE-representation V , we refer to the φ-module Dred(V )
in Proposition 2.1.11 as the mod-p étale φ-module associated to V .

Remark. If we regard E as an (Fp,ΓE)-regular ring, we may identify Dred with a refinement

of the functor associated to E. Proposition 2.1.11 implies that every mod-p ΓE-representation
is E-admissible. Moreover, we can adapt our arguments in Chapter III to prove that Dred is
compatible with tensor products and duals.

https://stacks.math.columbia.edu/tag/0CDR


200 V. ADDITIONAL TOPICS

Theorem 2.1.13. The functor Dred is an exact equivalence of categories

{ mod-p ΓE-representations } ∼
−! { étale φ-modules over E }

whose inverse sends each étale φ-module D over E to Vred(D) := (D ⊗E E)φ=1.

Proof. Let D be an étale φ-module over E. The ΓE-action on E is φ-equivariant and
induces a ΓE-action on Vred(D). Moreover, we have a natural E-linear ΓE-equivariant map

Vred(D) ⊗Fp E −! (D ⊗E E) ⊗Fp E −! D ⊗E (E ⊗Fp E) −! D ⊗E E (2.2)

which is evidently compatible with the φ-endomorphisms.

We assert that the map (2.2) is injective. Suppose for contradiction that the kernel is
nonzero. Take an Fp-basis (vi) of Vred(D) and choose a nontrivial E-linear relation

∑
civi = 0

with minimal number of nonzero terms. We may set cj = 1 for some j. We have the identities∑
(φ(ci) − ci)vi = φ

(∑
civi

)
−
∑

civi = 0 and φ(cj) − cj = φ(1) − 1 = 0.

By the minimality of our relation, each ci satisfies the equality ci = φ(ci) and thus lies in Fp.
Now we have a nontrivial Fp-linear relation

∑
civi = 0 for the Fp-basis (vi) of Vred(D), thereby

obtaining a desired contradiction.

The injectivity of the map (2.2) implies that Vred(D) is finite dimensional over Fp. More-
over, the ΓE-action on Vred(D) is continuous as each element in Vred(D) is a finite sum of pure
tensors and thus has an open stabilizer. We deduce that Vred(D) is a mod-p ΓE-representation.

Let us now prove that the injective map (2.2) is an isomorphism. We only need to show
that Vred(D) has Fp-dimension d := dimE D, or equivalently that Vred(D) has pd elements.
Lemma 2.1.9 implies that the dual D∨ of D is naturally an étale φ-module. We take an
E-basis (fi) of D∨ and see that each fi yields an E-linear relation φ(fi) =

∑
ci,jfj . Let us

denote by M the d × d matrix whose (i, j)-entry is ci,j and set A := E[t1, · · · , td]/I for the
ideal I generated by the polynomials tpi −

∑
ci,jtj . We obtain an identification

Vred(D) ∼=
{
f ∈ HomE(D∨, E) : φ ◦ f = f ◦ φ

}
induced by the isomorphism D ⊗E E ∼= HomE(D∨, E) and in turn find

Vred(D) ∼= HomE-alg(A,E).

Meanwhile, we observe that A is étale over E; indeed, since M is invertible for representing
the linearization of the Frobenius endomorphism on D∨, the A-module ΩA/E vanishes by a
standard fact stated in the Stacks project [Sta, Tag 00RU] and the relation

d
(
tpi −

∑
ci,jtj

)
= −

∑
ci,jdtj for each i = 1, · · · , d.

Now we note that A has rank pd over E and consequently see that Vred(D) has pd elements
by a general fact about étale morphisms stated in the Stacks project [Sta, Tag 00U3].

The isomorphism (2.2) gives rise to an isomorphism of φ-modules D ∼= Dred(Vred(D)).
Meanwhile, Proposition 2.1.11 shows that every mod-p ΓE-representation V admits an
identification V ∼= Vred(Dred(V )) and also implies that Dred is exact as E is faithfully flat
over E by a general fact stated in the Stacks project [Sta, Tag 00HQ]. Hence we establish
the desired assertion. □

Remark. If E is not perfect, both Proposition 2.1.11 and Theorem 2.1.13 remain valid with
the separable closure Esep of E in place of E.

https://stacks.math.columbia.edu/tag/00RU
https://stacks.math.columbia.edu/tag/00U3
https://stacks.math.columbia.edu/tag/00HQ
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For the rest of this section, we write E := W (E)[1/p] and Ôun
E := W (E). In addition, we

let φ denote the Frobenius automorphism on Ê un = W (E)[1/p].

Lemma 2.1.14. The rings OE and Ôun
E satisfy the following properties:

(i) There exists a natural ΓE-action on Ôun
E with (Ôun

E )ΓE ∼= OE .

(ii) Both OE and Ôun
E are complete discrete valuation rings with uniformizer p.

(iii) The ring Ôun
E is faithfully flat over OE .

Proof. Property (i) is an immediate consequence of Theorem 2.3.1 in Chapter II. Prop-
erty (ii) is evident by Lemma 2.3.9 in Chapter II. Property (iii) follows from standard facts
stated in the Stacks project [Sta, Tag 0539 and Tag 00HQ]. □

Proposition 2.1.15. Every finitely generated semilinear ΓE-module M over Ôun
E admits a

natural isomorphism

M ∼= MΓE ⊗OE
Ôun

E .

Proof. We begin with the case where M is pn-torsion for some n ≥ 0. Since the assertion
is trivial for n = 0, we henceforth assume the inequality n > 0 and proceed by induction on n.

By Lemma 2.1.10, we observe that pn−1M is isomorphic to E
⊕d

for some d ≥ 1 and in turn
find H1(ΓE , p

n−1M) = 0. Hence we use Lemma 2.1.14 to get a natural commutative diagram

0 (pn−1M)ΓE ⊗OE
Ôun

E MΓE ⊗OE
Ôun

E (M/pn−1M)ΓE ⊗OE
Ôun

E 0

0 pn−1M M M/pn−1M 0

with exact rows. Since the left and right vertical arrows are isomorphisms by Lemma 2.1.10
and the induction hypothesis, the middle vertical arrow is also an isomorphism as desired.

We now consider the general case. For each i, j ∈ Z with i ≥ j ≥ 1, our discussion in the
previous paragraph and Lemma 2.1.14 together yield a short exact sequence

0 −! (piM/pjM)ΓE −! (M/pjM)ΓE −! (M/piM)ΓE −! 0.

Moreover, Lemma 2.1.14 implies that M admits an identification M ∼= lim −M/pjM and in-

duces a canonical isomorphismMΓE ∼= lim −(M/pjM)ΓE with surjective transition maps. Hence
for each integer i ≥ 1, we obtain a short exact sequence

0 −! piMΓE −!MΓE −! (M/piM)ΓE −! 0

by a general fact stated in the Stacks project [Sta, Tag 03CA] and in turn find

M/piM ∼= (M/piM)ΓE ⊗OE
Ôun

E
∼= MΓE/piMΓE ⊗OE

Ôun
E

where the first isomorphism follows from our discussion in the previous paragraph. In addition,
Lemma 2.1.10 shows that MΓE/pMΓE ∼= (M/pM)ΓE is finite dimensional over E ∼= OE /pOE ,
which in particular implies that MΓE is finitely generated over OE by a standard fact stated in

the Stacks project [Sta, Tag 031D]. Now we establish the desired assertion as the Ôun
E -modules

M and MΓE ⊗OE
Ôun

E are p-adically complete by Lemma 2.1.14. □

Remark. Given a p-adic field K with residue field k, we can show that Proposition 2.1.15

remains valid with K, K̂un and k respectively in place of OE , Ôun
E and E, as remarked after

Lemma 2.4.16 in Chapter III.

https://stacks.math.columbia.edu/tag/0539
https://stacks.math.columbia.edu/tag/00HQ
https://stacks.math.columbia.edu/tag/03CA
https://stacks.math.columbia.edu/tag/031D
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Definition 2.1.16. A φ-module D over OE is étale if φlin
D is an isomorphism.

Remark. We may regard étale φ-modules over E as p-torsion φ-modules over OE via the
natural surjection OE ↠ E.

Lemma 2.1.17. Let D be an étale φ-module over OE .

(1) Given an étale φ-module D′ over OE , the tensor product D ⊗OE
D′ is naturally an

étale φ-module over OE with φ-endomorphism φD ⊗ φD′ .

(2) If D is free, the dual D∨ is naturally an étale φ-module over OE with φlin
D∨ given by

the dual map of (φlin
D )−1.

Proof. All statements are straightforward to verify. □

Remark. If D is torsion, we can show that the Pontryagin dual D∧ := HomOE
(D,E /OE )

is naturally an étale φ-module over OE . Moreover, for an étale φ-module over E we can
naturally identify its E-dual with its Pontryagin dual.

Proposition 2.1.18. Let D be a φ-module over OE .

(1) For each integer n ≥ 1, the OE -modules pnD and D/pnD are naturally φ-modules
over OE .

(2) D is étale if and only if D/pD is étale.

Proof. Statement (1) is straightforward to verify by the equality φ(p) = p. Let us
now consider statement (2). We know by Lemma 2.1.14 that OE is a discrete valuation ring
with uniformizer p. Since D and its φ-twist are isomorphic OE -modules, the map φlin

D is
an isomorphism if and only if it is surjective. Hence we establish the desired assertion by
observing that the surjectivity of φlin

D is equivalent to the surjectivity of φlin
D/pD. □

Proposition 2.1.19. Let M be an integrally p-adic ΓE-representation.

(1) The OE -module Dint(M) := (M ⊗Zp Ôun
E )ΓE is naturally an étale φ-module over OE .

(2) There exists a canonical ΓE-equivariant isomorphism

Dint(M) ⊗OE
Ôun

E
∼= M ⊗Zp Ôun

E (2.3)

which is compatible with the φ-endomorphisms.

Proof. Proposition 2.1.15 yields the ΓE-equivariant isomorphism (2.5) and in turn im-
plies that Dint(M) is a finitely generated OE -module. We see that Dint(M) is canonically
a φ-module over OE . Moreover, we note that the isomorphism (2.5) is compatible with the
φ-endomorphisms and consequently deduce from Lemma 2.1.14 that Dint(M) is étale as the

linearization of the φ-endomorphism on M ⊗Zp Ôun
E is evidently an isomorphism. □

Definition 2.1.20. Given an integrally p-adic ΓE-representation M , we refer to the
φ-module Dint(M) in Proposition 2.1.19 as the integral étale φ-module associated to M .

Remark. If we identify mod-p ΓE-representations and étale φ-modules over E respectively
as p-torsion integrally p-adic ΓE-representations and p-torsion étale φ-modules over OE , we
may regard Dint as an extension of Dred. Moreover, we can extend the compatibility of Dred

with tensor products and duals to prove the compatibility of Dint with tensor products, duals
of free modules, and Pontryagin duals of torsion modules.
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Theorem 2.1.21 (Fontaine [Fon90]). The functor Dint is an exact equivalence of categories

{ integrally p-adic ΓE-representations } ∼
−! { étale φ-modules over OE }

whose inverse sends each étale φ-module D over OE to Mint(D) := (D ⊗OE
Ôun

E )φ=1.

Proof. Let D be an étale φ-module over OE . The ΓE-action on Ôun
E is φ-equivariant and

induces a ΓE-action on Mint(D). Moreover, we have a natural Ôun
E -linear ΓE-equivariant map

Mint(D)⊗Zp Ôun
E −! (D⊗OE

Ôun
E )⊗Zp Ôun

E −! D⊗OE
(Ôun

E ⊗Zp Ôun
E ) −! D⊗OE

Ôun
E (2.4)

which is evidently compatible with the φ-endomorphisms.

We assert that the map (2.4) is an isomorphism. Let us first consider the case where D is
pn-torsion for some n ≥ 0. Since the assertion is trivial for n = 0, we henceforth assume
the inequality n > 0 and proceed by induction on n. By Theorem 2.1.13, we observe that

pn−1D⊗OE
Ôun

E is isomorphic to E
⊕d

for some d ≥ 1 and in turn find that φ− 1 is surjective

on pn−1D⊗OE
Ôun

E . Hence we use the snake lemma, Lemma 2.1.14, and Proposition 2.1.18 to
obtain a commutative diagram

0 Mint(p
n−1D) ⊗Zp Ôun

E Mint(D) ⊗Zp Ôun
E Mint(D/p

n−1D) ⊗Zp Ôun
E 0

0 pn−1D ⊗OE
Ôun

E D ⊗OE
Ôun

E D/pn−1D ⊗OE
Ôun

E 0

with exact rows. Since the left and right vertical arrows are isomorphisms by Theorem 2.1.13
and the induction hypothesis, the middle vertical arrow is also an isomorphism as desired.

We now consider the general case. For each i, j ∈ Z with i ≥ j ≥ 1, our discussion in the
previous paragraph and Lemma 2.1.14 together yield a short exact sequence

0 −!Mint(p
iD/pjD) −!Mint(D/p

jD) −!Mint(D/p
iD) −! 0.

Moreover, Lemma 2.1.14 implies that D admits an identification D ∼= lim −D/p
jD and induces

a canonical isomorphism Mint(D) ∼= lim −Mint(D/p
jD) with surjective transition maps. Hence

for each integer i ≥ 1, we obtain a short exact sequence

0 −! piMint(D) −!Mint(D) −!Mint(D/p
iD) −! 0

by a general fact stated in the Stacks project [Sta, Tag 03CA] and in turn find

D/piD ⊗OE
Ôun

E
∼= Mint(D/p

iD) ⊗OE
Ôun

E
∼= Mint(D)/piMint(D) ⊗OE

Ôun
E

where the first isomorphism follows from our discussion in the previous paragraph. In addition,
Theorem 2.1.13 shows that Mint(D)/pMint(D) ∼= Mint(D/pD) is finite dimensional over Fp,
which in particular implies that Mint(D) is finitely generated over Zp by a standard fact stated
in the Stacks project [Sta, Tag 031D]. We deduce that the map (2.4) is an isomorphism as

the Ôun
E -modules D⊗OE

Ôun
E and Mint(D)⊗Zp Ôun

E are p-adically complete by Lemma 2.1.14.

It is not hard to see that the ΓE-action on Mint(D) is continuous, which means that
Mint(D) is an integrally p-adic ΓE-representation. Moreover, the isomorphism (2.4) induces
an isomorphism of φ-modules D ∼= Dint(Mint(D)). Meanwhile, Proposition 2.1.19 shows that
every integrally p-adic ΓE-representation M admits an identification M ∼= Mint(Dint(M)) and
also implies by Lemma 2.1.14 that Dint is exact. Hence we establish the desired assertion. □

Remark. If E is not perfect, both Proposition 2.1.19 and Theorem 2.1.21 remain valid with

OE and Ôun
E replaced by the Cohen rings of E and its separable closure.

https://stacks.math.columbia.edu/tag/03CA
https://stacks.math.columbia.edu/tag/031D
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Definition 2.1.22. A φ-module D over E is étale if it admits an OE -lattice which is stable
under φD and is étale as a φ-module over OE .

Remark. If D is étale, it is not difficult to show that φlin
D is an isomorphism.

Lemma 2.1.23. Given a field L, every p-adic ΓL-representation V admits a Zp-lattice M which
is stable under the ΓL-action.

Proof. Let ρ : ΓL ! GL(V ) denote the map encoding the continuous ΓL-action on V
and choose a Zp-lattice M0 in V . Since GL(M0) is open in GL(V ), its inverse image Γ0

under ρ is open in the compact group ΓL and thus has finite index. Now we take Γ0-coset
representatives γ1, · · · , γn ∈ ΓK and deduce that the Zp-lattice M :=

∑
ρ(γi)M0 in V is

stable under the ΓL-action, thereby completing the proof. □

Lemma 2.1.24. Let D be an étale φ-module over E .

(1) Given an étale φ-module D′ over E , the tensor product D⊗E D
′ is naturally an étale

φ-module over E with φ-endomorphism φD ⊗ φD′ .

(2) The dual D∨ is naturally an étale φ-module over E with φlin
D∨ given by the dual map

of (φlin
D )−1.

Proof. All statements are immediate consequences of Lemma 2.1.17. □

Proposition 2.1.25. Let V be a p-adic ΓE-representation.

(1) The E -vector space Drat(V ) := (V ⊗Qp Ê un)ΓE is naturally an étale φ-module over E .

(2) There exists a canonical ΓE-equivariant isomorphism

Drat(V ) ⊗E Ê un ∼= V ⊗Qp Ê un (2.5)

which is compatible with the φ-endomorphisms.

Proof. By Lemma 2.1.23, the p-adic ΓE-representation V admits a Zp-lattice M which
is stable under the ΓE-action. Moreover, M induces a natural E -linear isomorphism

Drat(V ) ∼= Dint(M)[1/p].

Hence the desired assertions are straightforward to verify. □

Definition 2.1.26. Given a p-adic ΓE-representation V , we refer to the φ-module Drat(V )
in Proposition 2.1.25 as the rational étale φ-module associated to V .

Remark. The compatibility of Dint with tensor products and duals of free modules yields
the compatibility of Drat with tensor products and duals.

Theorem 2.1.27. The functor Drat is an exact equivalence of categories

{ p-adic ΓE-representations } ∼
−! { étale φ-modules over E }

whose inverse sends each étale φ-module D over E to Vrat(D) := (D ⊗OE
Ê un)φ=1.

Proof. For every étale φ-module D over E , we find by Theorem 2.1.21 that Vrat(D) is a
p-adic ΓE-representation and gives rise to an isomorphism of φ-modules D ∼= Drat(Vrat(D)).
Meanwhile, Proposition 2.1.25 shows that every p-adic ΓE-representation V admits an iden-

tification V ∼= Vrat(Drat(V )) and also implies that Drat is exact as Ê un is faithfully flat over E
by a general fact stated in the Stacks project [Sta, Tag 00HQ]. Hence we establish the desired
assertion. □

Remark. If E is not perfect, both Proposition 2.1.25 and Theorem 2.1.27 remain valid with

E and Ê un replaced by the fraction fields of the Cohen rings of E and its separable closure.

https://stacks.math.columbia.edu/tag/00HQ
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2.2. Galois representations for p-adic fields

In this subsection, we present a classification of various Galois representations for a finite
extension K of Qp. Let us state the following fundamental result without a proof.

Theorem 2.2.1 (Scholze [Sch12]). Let C be a perfectoid field.

(1) Every finite extension of C is perfectoid.

(2) There exists a canonical isomorphism ΓC ∼= ΓC♭ induced by a bijection

{ Finite extensions of C } ∼
−!

{
Finite extensions of C♭

}
which sends each finite extension L of C to its tilt L♭.

Definition 2.2.2. Let ζp∞ denote the set of p-power roots of unity in K.

(1) The p-cyclotomic extension of K is K∞ := K(ζp∞).

(2) The completed p-cyclotomic extension of K is the p-adic completion K̂∞ of K∞.

Proposition 2.2.3. The valued field K̂∞ is perfectoid.

Proof. By Theorem 2.2.1, we may assume the identity K = Qp. Since K̂∞ is evidently
complete with a nondiscrete value group, we only need to show that the p-th power map is
surjective on O

K̂∞
/pO

K̂∞
. For each n ≥ 1, we take a primitive pn-th root of unity ζpn ∈ K

and identify the valuation ring of K(ζpn) with Zp[ζpn ]. We see that O
K̂∞

is isomorphic to the

p-adic completion Ẑp[ζp∞ ] of Zp[ζp∞ ]. Meanwhile, Zp[ζp∞ ] admits an identification

Zp[ζp∞ ] ∼= Zp[t1/p
∞

]/(1 + t+ · · · + tp−1)

where t1/p
∞

denotes the set of p-power roots of the variable t. Hence we find

O
K̂∞

/pO
K̂∞

∼= Ẑp[ζp∞ ]/pẐp[ζp∞ ] ∼= Zp[ζp∞ ]/pZp[ζp∞ ]

∼= Fp[t1/p
∞

]/(t− 1)p−1 ∼= Fp[t1/p
∞

]/tp−1

and in turn establish the desired assertion. □

Definition 2.2.4. The perfectoid norm field of K is EK := K̂∞
♭
.

Proposition 2.2.5. The field EK admits a canonical continuous φ-equivariant ΓK-action
under which ΓK∞ acts via a natural isomorphism ΓK∞

∼= ΓEK
.

Proof. The action of Gal(K∞/K) ∼= ΓK/ΓK∞ on K∞ is continuous and uniquely extends

to a continuous action on K̂∞. Therefore EK = lim −
x 7!xp

K̂∞ is stable under the continuous

ΓK-action on C♭K = lim −
x 7!xp

CK . Moreover, we naturally identify EK as a subfield of C♭K by

Proposition 3.1.1 in Chapter IV and see that EK is also stable under the ΓK-action on C♭K .

It is evident by construction that the ΓK-action on EK is φ-eqivariant. Now we obtain
a natural isomorphism ΓK∞

∼= ΓEK
by Lemma 3.1.11 in Chapter III and Theorem 2.2.1,

thereby completing the proof. □

Remark. The work of Fontaine-Wintenberger [FW79a, FW79b] constructs a discretely
valued subfield Edisc

K of EK , called the norm field of K, and proves that Proposition 2.2.5 re-

mains valid with Edisc
K and its separable closure respectively in place of EK and EK . Moreover,

Edisc
K turns out to be isomorphic to k∞((t)) where k∞ denotes the residue field of K∞.
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Definition 2.2.6. Let us write Γ∞ := Gal(K∞/K) and EK := W (EK)[1/p].

(1) A (φ,Γ∞)-ring is a topological OEK
-algebra R with a φ-semilinear endomorphism φR,

often simply denoted by φ, and a continuous φR-equivariant Γ∞-action.

(2) Given a (φ,Γ∞)-ring R, a (φ,Γ∞)-module over R is a φ-module D over R which is
also a semilinear Γ∞-module with the Γ∞-action being φ-equivariant.

(3) Given a (φ,Γ∞)-ring R, an R-linear map f : D ! D′ for (φ,Γ∞)-modules D and D′

over R is a morphism of (φ,Γ∞)-modules if it is Γ∞-equivariant with f ◦φD = φD′◦f .

Remark. We can extend the notion of (φ,Γ∞)-rings by replacing OEK
with the Cohen ring

of Edisc
K . It is worthwhile to mention that many authors denote Gal(K∞/K) by ΓK and

Gal(K/K) by GK .

Example 2.2.7. Proposition 2.2.5 implies that EK , OEK
, and EK are naturally (φ,Γ∞)-rings

as Γ∞ admits an identification Γ∞ ∼= ΓK/ΓK∞ .

Definition 2.2.8. A (φ,Γ∞)-module over OEK
is étale if it is étale as a φ-module.

Lemma 2.2.9. Let D be an étale (φ,Γ∞)-module over OEK
.

(1) Given an étale (φ,Γ∞)-module D′ over OEK
, the tensor product D ⊗OEK

D′ is nat-

urally an étale (φ,Γ∞)-module over OEK
.

(2) If D is free, the dual D∨ is naturally an étale (φ,Γ∞)-module over OEK
.

Proof. The assertions immediately follow from Lemma 2.1.17. □

Remark. If D is torsion, we can show that the Pontryagin dual D∧ := HomOEK
(D,EK/OEK

)

is naturally an étale (φ,Γ∞)-module over OEK
.

Theorem 2.2.10. There exists an exact equivalence of categories

{ integrally p-adic ΓK-representations } ∼
−! { étale (φ,Γ∞)-modules over OEK

}
induced by the functor Dint and its inverse Mint.

Proof. Let us write Ôun
EK

:= W (EK). Consider an integrally p-adic ΓK-representation M

and an étale (φ,Γ∞)-module D over OEK
. We observe that M is canonically an integrally

p-adic ΓEK
-representation via the isomorphism ΓK∞

∼= ΓEK
given by Proposition 2.2.5 and

thus gives rise to an étale φ-module Dint(M) = (M⊗Zp Ôun
EK

)ΓEK over OEK
. In fact, Dint(M) is

naturally an étale (φ,Γ∞)-module over OEK
as easily seen by Proposition 2.2.5 and the isomor-

phism Γ∞ ∼= ΓK/ΓK∞ . Meanwhile, since D carries a canonical ΓK-action given by the surjec-

tion ΓK ↠ Γ∞, the Zp-module Mint(D) = (D⊗OEK
Ôun

EK
)φ=1 is naturally an integrally p-adic

ΓK-representation. Now we apply Theorem 2.1.21 to obtain a Zp-linear ΓK-equivariant iso-
morphism M ∼= Mint(Dint(M)) and an isomorphism of (φ,Γ∞)-modules D ∼= Dint(Mint(D)),
thereby establishing the desired assertion. □

Remark. Let us mention two additional facts about the equivalence in Theorem 2.2.10.

(1) By the remark after Definition 2.1.20, the equivalence is compatible with tensor
products, duals of free modules, and Pontryagin duals of torsion modules.

(2) By the remark after Theorem 2.1.21, the equivalence remains valid with the Cohen
ring of Edisc

K in place of OEK
.

Example 2.2.11. Since the p-adic cyclotomic character χ of K factors through the surjective
map ΓK ↠ Γ∞, we use Theorem 2.2.10 to obtain a natural isomorphism of (φ,Γ∞)-modules

Dint(Zp(n)) ∼= OEK
(n) for each n ∈ Z.
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Definition 2.2.12. A (φ,Γ∞)-module over EK is étale if it is étale as a φ-module.

Lemma 2.2.13. Let D be an étale (φ,Γ∞)-module over EK .

(1) Given an étale (φ,Γ∞)-module D′ over EK , the tensor product D⊗EK
D′ is naturally

an étale (φ,Γ∞)-module over EK .

(2) The dual D∨ is naturally an étale (φ,Γ∞)-module over EK .

Proof. The assertions immediately follow from Lemma 2.1.9. □

Theorem 2.2.14. There exists an exact equivalence of categories

{ mod-p ΓK-representations } ∼
−! { étale (φ,Γ∞)-modules over EK }

induced by the functor Dred and its inverse Vred.

Proof. Every mod-p ΓK-representation is canonically a p-torsion integrally p-adic
ΓK-representation. Meanwhile, every étale (φ,Γ∞)-module over EK is naturally a p-torsion
étale (φ,Γ∞)-module over OEK

. Therefore the desired assertion is straightforward to verify
by Theorem 2.2.10. □

Remark. The remark after Theorem 2.2.10 implies the following facts:

(1) The equivalence in Theorem 2.2.14 is compatible with tensor products and duals.

(2) The equivalence in Theorem 2.2.14 remains valid with Edisc
K in place of EK .

Example 2.2.15. Example 2.2.11 and Theorem 2.2.14 together yield a natural isomorphism
of (φ,Γ∞)-modules

Dred(Fp(n)) ∼= EK(n) for each n ∈ Z.
Definition 2.2.16. A (φ,Γ∞)-module D over EK is étale if it admits an OEK

-lattice which
is stable under the Γ∞[φ]-action and is étale as a φ-module.

Lemma 2.2.17. Let D be an étale (φ,Γ∞)-module over EK .

(1) Given an étale (φ,Γ∞)-module D′ over EK , the tensor product D⊗EK
D′ is naturally

an étale (φ,Γ∞)-module over EK .

(2) The dual D∨ is naturally an étale (φ,Γ∞)-module over EK .

Proof. The assertions immediately follow from Lemma 2.2.9. □

Theorem 2.2.18. There exists an exact equivalence of categories

{ p-adic ΓK-representations } ∼
−! { étale (φ,Γ∞)-modules over EK }

induced by the functor Drat and its inverse Vrat.

Proof. Every p-adic ΓK-representation admits a Zp-lattice which is stable under the
ΓK-action by Lemma 2.1.23. Meanwhile, every étale (φ,Γ∞)-module over EK contains an
OEK

-lattice which is stable under the Γ∞[φ]-action and is étale as a φ-module over OEK
.

Therefore the desired assertion is straightforward to verify by Theorem 2.2.10. □

Remark. The remark after Theorem 2.2.10 implies the following facts:

(1) The equivalence in Theorem 2.2.18 is compatible with tensor products and duals.

(2) The equivalence in Theorem 2.2.18 remains valid with EK replaced by the fraction
field of the Cohen ring of Edisc

K .

Example 2.2.19. Example 2.2.11 and Theorem 2.2.18 together yield a natural isomorphism
of (φ,Γ∞)-modules

Drat(Qp(n)) ∼= EK(n) for each n ∈ Z.
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3. The Fargues-Fontaine curve and p-adic geometry

In this section, we introduce some fundamental notions in p-adic geometry and use them
to describe another incarnation of the Fargues-Fontaine curve. The primary reference for this
section is the book of Scholze-Weinstein [SW20].

3.1. Huber rings and adic spaces

Our main objective for this subsection is to briefly discuss a modern framework for nonar-
chimedean geometry developed by Huber [Hub93, Hub94].

Proposition 3.1.1. Every totally ordered abelian group T naturally gives rise to a totally
ordered monoid T ∪ { 0 } with τ · 0 = 0 · τ = 0 and 0 ≤ τ for each τ ∈ T .

Proof. The assertion is straightforward to verify. □

Definition 3.1.2. Given a totally ordered abelian group T , we define its extension by mini-
mum element to be the monoid T ∪ { 0 } given by Proposition 3.1.1.

Example 3.1.3. For the additive group R with the natural total order, its extension by
minimum element is the additive monoid [−∞,∞).

Definition 3.1.4. Let R be a topological ring.

(1) A valuation on R is a nonconstant map v : R ! T ∪ { 0 } for some totally ordered
abelian group T with

v(rs) = v(r)v(s) and v(r + s) ≤ max(v(r), v(s)) for every r, s ∈ R.

(2) Two valuations v and w on R are equivalent if there exists an isomorphism of totally
ordered monoids δ : v(R) ≃ w(R) with δ(v(r)) = w(r) for each r ∈ R.

(3) A valuation v : R ! T ∪ { 0 } for a totally ordered abelian group T is continuous if
for every τ ∈ T the set { r ∈ R : v(r) < τ } is open in R.

(4) The continuous valuation spectrum of R, denoted by Cont(R), is the set of equiva-
lence classes of continuous valuations on R.

(5) For every f ∈ R and x ∈ Cont(R), the value of f at x is |f(x)| := v(f) where v is a
representative for x.

Example 3.1.5. We record some simple examples of continuous valuations.

(1) Given a topological ring R, every open prime ideal p of R gives rise to a trivial
valuation vp on R with

vp(r) =

{
0 for r ∈ p,

1 for r /∈ p.

(2) Given a nonarchimedean field L, its valuation ν is evidently continuous.

Remark. For a nonarchimedean field L, we may take values of the valuation ν in the multi-
plicative monoid [0,∞) via an isomorphism [0,∞) ≃ (−∞,∞] given by a logarithm map.

Lemma 3.1.6. Given a topological ring R, every valuation v on R satisfies the equalities

v(0) = 0 and v(1) = 1.

Proof. We note that every nonzero element in v(R) is invertible. If v(0) is nonzero, for
each r ∈ R we have v(0) = v(r)v(0) and thus obtain the identity v(r) = 1, which is impossible
as v is not constant. Hence we deduce that v(0) is zero. Moreover, we take an element r ∈ R
with v(r) ̸= 0 and use the relation v(r) = v(r)v(1) to find v(1) = 1. □
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Definition 3.1.7. Let R be a topological ring.

(1) R is adic if it admits a neighborhood basis at 0 given by the powers of an ideal I,
called an ideal of definition.

(2) R is Huber if it admits an open adic subring R0, called a ring of definition, with a
finitely generated ideal of definition.

Example 3.1.8. Let us present some simple examples of Huber rings.

(1) Every ring R with the discrete topology is a Huber ring; indeed, R is a ring of
definition with an ideal of definition given by the zero ideal.

(2) Every nonarchimedean field L is a Huber ring; indeed, OL is a ring of definition with
an ideal of definition given by mOL for any element m in the maximal ideal.

Definition 3.1.9. Let R be a Huber ring.

(1) A pair of definition for R is a pair (R0, I) for some ring of definition R0 and its ideal
of definition I.

(2) A rational pair for R is a pair (T, g) consisting of a nonempty finite set T ⊆ R with
TR being open in R and an element g ∈ R with gn ̸= 0 for every integer n > 0.

Proposition 3.1.10. Let R be a Huber ring and (T, g) be a rational pair for R. Fix a pair
of definition (R0, I) for R and denote the elements of T by f1, · · · , fn.

(1) The ring R0[T/g] := R0[f1/g, · · · , fn/g] is adic with an ideal of definition IR0[T/g].

(2) The ringR[1/g] is naturally a Huber ring with a pair of definition (R0[T/g], IR0[T/g]).

Proof. Let us consider the topology on R[1/g] with a neighborhood basis at 0 given by
the powers J := IR0[T/g]. It suffices to show that the multiplication on R[1/g] is continuous.
Take an arbitrary intger n > 0. We only need to find an integer m > 0 with g−1Jm ⊆ Jn as
the multiplication on R is continuous.

Fix an integer i > 0 with Ii ⊆ TR and choose a finite set S ⊆ R such that TS contains
generators of Ii over R0. There exists an integer j > 0 with SIj ⊆ In by the continuity of
the multiplication on R. Hence we set m = i+ j and find

g−1Im = g−1Ii+j ⊆ g−1TSIj ⊆ g−1TIn ⊆ Jn,

thereby establishing the desired assertion. □

Definition 3.1.11. Let R be a Huber ring with a pair of definition (R0, I) and (T, g) be a
rational pair for R.

(1) The localization of (R0, I) with respect to (T, g) is the pair (R0[T/g], IR0[T/g]) given
by Proposition 3.1.10.

(2) The localization of R with respect to (T, g), denoted by R(T/g), is the Huber
ring R[1/g] with a pair of definition (R0[T/g], IR0[T/g]).

Example 3.1.12. Let L be a nonarchimedean field and (T, g) be a rational pair for L.

(1) If OL contains f/g for each f ∈ T , the localization L(T/g) is the field L with its
valuation topology; indeed, for every element m in the maximal ideal, the localization
of (OL,mOL) is (OL,mOL).

(2) If OL does not contain f/g for some f ∈ T , the localization L(T/g) is the field L
with the trivial topology; indeed, for every element m in the maximal ideal, the
localization of (OL,mOL) is (L,L).
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Definition 3.1.13. Let R be a topological ring.

(1) A subset S of R is bounded if for every open neighborhood U of 0 there exists an
open neighborhood V of 0 with V S ⊆ U .

(2) An element r ∈ R is power-bounded if its powers form a bounded subset of R.

Example 3.1.14. Let us describe the power-bounded elements for some Huber rings.

(1) For a ring R with the discrete topology, every element in R is power-bounded; indeed,
every subset of R is bounded as the zero ideal is open.

(2) For a nonarchimedean field L, the power-bounded elements in L are precisely the
elements in the valuation ring OL; indeed, a subset of L is bounded if and only if its
image under the valuation is bounded.

Definition 3.1.15. A Huber pair is a pair (R,R+) consisting of a Huber ring R and its
integrally closed open subring R+ such that all elements in R+ are power-bounded.

Example 3.1.16. Below are Huber pairs given by Example 3.1.14.

(1) Every ring R with the discrete topology yields a Huber pair (R,R).

(2) Every nonarchimedean field L yields a Huber pair (L,OL).

Definition 3.1.17. Let (R,R+) be a Huber pair.

(1) The adic spectrum of (R,R+) is the set

Spa(R,R+) :=
{
x ∈ Cont(R) : |f(x)| ≤ 1 for each f ∈ R+

}
with the topology generated by subsets of the form

U(f/g) :=
{
x ∈ Spa(R,R+) : |f(x)| ≤ |g(x)| ≠ 0

}
for some f, g ∈ R.

(2) Given a rational pair (T, g) for R, the associated rational subset of Spa(R,R+) is

U(T/g) :=
{
x ∈ Spa(R,R+) : |f(x)| ≤ |g(x)| ≠ 0 for each f ∈ T

}
.

Remark. Huber [Hub94] shows that the topological space Spa(R,R+) is spectral.

Example 3.1.18. Given a nonarchimedean field L, we assert that Spa(L,OL) consists of a
unique point given by the valuation ν on L. Let w be a continuous valuation on L whose
equivalence class lies in Spa(L,OL). We note that OL lies in the ring

Ow := { c ∈ L : w(c) ≤ 1 } .
If Ow contains an element c /∈ OL, we find Ow ⊇ OL[c] = L and deduce that w is trivial,
which is impossible since the zero ideal is not open in L. Hence we must have Ow = OL. Now
we see that w is equivalent to ν via the isomorphism

w(L×) ∼= L×/O×
w = L×/O×

L
∼= ν(L×),

thereby completing the proof.

Definition 3.1.19. Given two Huber pairs (R,R+) and (Q,Q+), a morphism from (R,R+)
to (Q,Q+) is a continuous ring homomorphism h : R! Q with h(R+) ⊆ Q+.

Lemma 3.1.20. For Huber pairs (R,R+) and (Q,Q+), every morphism h : (R,R+)! (Q,Q+)
naturally induces a continuous map η : Spa(Q,Q+)! Spa(R,R+).

Proof. Take an arbitrary point x ∈ Spa(Q,Q+) and choose its representative v. The
equivalence class of the continuous valuation v ◦ h lies in Spa(R,R+). Moreover, this equiv-
alence class belongs to U(f/g) for some f, g ∈ R if and only if x belongs to U(h(f)/h(g)).
Therefore we establish the desired assertion. □
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In order to describe additional structures on the adic spectrum of a Huber pair, we state
the following crucial result without a proof.

Proposition 3.1.21. Let (R,R+) be a Huber pair and write S := Spa(R,R+).

(1) The rational subsets of S form a basis of open sets in S.

(2) Every rational subset U of S naturally gives rise a Huber pair (OS(U),O+
S (U)) and

a morphism hU : (R,R+)! (OS(U),O+
S (U)) with the following properties:

(i) Given a rational pair (T, g) for R with U = U(T/g), the Huber ring OS(U) is
canonically isomorphic to the completion of the localization R(T/g).

(ii) The ring O+
S (U) admits an identity

O+
S (U) = { f ∈ OS(W) : |f(U)| ≤ 1 for each x ∈ W } .

(iii) The map Spa(OS(U),O+
S (U))! S induced by hU is a homeomorphism onto U .

(iv) A morphism of Huber pairs (R,R+)! (Q,Q+) with Q being complete uniquely
factors through (OS(U),O+

S (U)) if the map Spa(Q,Q+)! S factors through U .

Remark. Curious readers can find a proof of Proposition 3.1.21 in the original article of
Huber [Hub94, Proposition 1.3] or the survey article of Wedhorn [Wed19, Proposition 8.2].

Definition 3.1.22. Let (R,R+) be a Huber pair and write S := Spa(R,R+).

(1) Given a rational subset U of S, its affinoid Huber pair is the pair (OS(U),O+
S (U))

constructed in Proposition 3.1.21.

(2) The structure presheaf on S is the presheaf OS of topological rings with

OS(W) = lim −
U⊆W

U rational

OS(U) for every open W ⊆ S.

(3) The pair (R,R+) is sheafy if OS is a sheaf of topological rings.

Remark. We can also define the presheaf O+
S of topological rings with

O+
S (W) = lim −

U⊆W
U rational

O+
S (U) for every open W ⊆ S.

If (R,R+) is sheafy, O+
S is a sheaf by Proposition 3.1.21.

Example 3.1.23. We present sheafy Huber pairs given by a result of Huber [Hub94].

(1) Every Huber pair (R,R+) for a ring R with the discrete topology is sheafy.

(2) Every Huber pair (R,R+) for a complete Huber ring R with a noetherian ring of
definition is sheafy.

Definition 3.1.24. A locally valued ringed space is a topological space S with a sheaf OS of
topological rings and an element vx ∈ Cont(OS,x) for each x ∈ S.

Proposition 3.1.25. Given a sheafy Huber pair (R,R+), its adic spectrum S is naturally a
locally valued ringed space.

Proof. The presheaf OS is a sheaf as (R,R+) is sheafy. Moreover, by Proposition 3.1.21,
every x ∈ S yields an element vU ∈ Cont(OS(U)) for each rational subset U of S with x ∈ U
and consequently gives rise to an element vx ∈ Cont(OS,x). □

Remark. It turns out that every stalk of OS is a local ring.

Definition 3.1.26. An adic space is a locally valued ringed space which admits an open
cover by adic spectra of sheafy Huber pairs.
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3.2. The adic Fargues-Fontaine curve

Throughout this subsection, we let F be an algebraically closed perfectoid field of char-
acteristic p and denote by Y the set of equivalence classes of untilts of F in characteristic 0.
In addition, we write mF for the maximal ideal of OF and |mF | for the image of mF \ { 0 } in
the value group of F .

Proposition 3.2.1. The topological ring Ainf yields a Huber pair (Ainf , Ainf).

Proof. The ring Ainf is adic and Huber; indeed, for every nonzero ϖ ∈ mF , it admits an
ideal of definition generated by p and [ϖ]. We see that every subset of Ainf is bounded and
consequently establish the desired assertion. □

Lemma 3.2.2. Given a nonzero element ϖ ∈ mF , a valuation v on Ainf with v([ϖ]) = 0
satisfies the equality v([m]) = 0 for every m ∈ mF .

Proof. The assertion is straightforward to verify by observing that every m ∈ mF yields
an integer n ≥ 1 with mn ∈ ϖOF . □

Definition 3.2.3. The adic punctured disk of untilts is the set

Y = YF := { x ∈ Spa(Ainf , Ainf) : |p[ϖ](x)| ≠ 0 }
where we fix a nonzero element ϖ ∈ mF .

Remark. Lemma 3.2.2 shows that Y does not depend on the choice of ϖ.

Proposition 3.2.4. Let C be an untilt of F in characteristic 0.

(1) The nonarchimedean field C yields a Huber pair (C,OC).

(2) There exists a natural continuous map θadC : Spa(C,OC) ! Spa(Ainf , Ainf) induced
by the Fontaine map θC .

Proof. Since statement (1) is evident by Example 3.1.16, we only need to establish
statement (2). It is straightforward to verify that the map θC : Ainf ↠ OC is continuous.
Therefore the composition of θC with the embedding OC ↪! C yields a morphism of Huber
pairs (Ainf , Ainf)! (C,OC). Now the desired assertion follows from Lemma 3.1.20. □

Definition 3.2.5. For an untilt C of F in characteristic 0, we refer to the map θadC constructed
in Proposition 3.2.4 as the adic Fontaine map of C.

Proposition 3.2.6. There exists a natural embedding Y ↪! Y which sends each y ∈ Y with
a representative C to the image of θadC .

Proof. For each untilt C of F in characteristic 0, we apply Example 3.1.18 to see that
the image of the map θadC : Spa(C,OC)! Spa(Ainf , Ainf) is a point in Y; indeed, it admits a
representative vC with vC(f) = |θC(f)|C for every f ∈ Ainf . If two untilts C and C ′ of F in
characteristic 0 are equivalent, it is straightforward to verify that vC and vC′ are equivalent.
Conversely, if the valuations vC and vC′ for untilts C and C ′ of F in characteristic 0 are
equivalent, Theorem 1.1.27 in Chapter IV implies that C and C ′ are equivalent. Therefore
we obtain the desired assertion. □

Remark. Similarly, there exists a natural embedding (0, 1) ↪! Y which sends each ρ ∈ (0, 1)
to the equivalence class of the Gauss ρ-norm on Ainf . Moreover, the image of this map is
disjoint from the image of the embedding Y ↪! Y.

Definition 3.2.7. Given an element y ∈ Y , its associated classical point on Y is the image
of y under the embedding Y ↪! Y given by Proposition 3.2.6.
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Lemma 3.2.8. Two elements c1, c2 ∈ OF with |c1| ≤ |c2| satisfy the inequality

|[c1](x)| ≤ |[c2](x)| for every x ∈ Spa(Ainf , Ainf) (3.1)

with equality precisely when we have |c1| = |c2|.

Proof. Since c1c
−1
2 lies in OF , the inequality (3.1) follows from the identity

|[c1](x)| =
∣∣[c1c−1

2 ](x)
∣∣ |[c2](x)| .

If we have |c1| = |c2|, we find |[c1](x)| ≥ |[c2](x)| by the relation c−1
1 c2 ∈ OF and thus see

that the inequality (3.1) is an equality. If we have |c1| < |c2|, we note that [c−1
1 c2] ∈ Ainf is

topologically nilpotent and in turn use Lemma 3.1.6 to obtain the relation
∣∣[c1c−1

2 ](x)
∣∣ < 1,

which in particular implies that the inequality (3.1) is strict. Therefore we establish the
desired assertion. □

Definition 3.2.9. Given elements a, b ∈ |mF |, the adic [a, b]-annulus of untilts is

Y[a,b] := { x ∈ Y : |[ϖa](x)| ≤ |p(x)| ≤ |[ϖb](x)| }
where we fix elements ϖa, ϖb ∈ mF with |ϖa| = a and |ϖb| = b.

Remark. Lemma 3.2.8 implies that Y[a,b] does not depend on the choice of ϖa and ϖb.

Proposition 3.2.10. Let a, b be elements in |mF |.
(1) If a and b satisfy the inequality a > b, the set Y[a,b] is empty.

(2) For each a′, b′ ∈ |mF | with [a, b] ⊆ [a′, b′], we have Y[a,b] ⊆ Y[a′,b′].

(3) For each a′, b′ ∈ |mF | with [a, b] and [a′, b′] being disjoint, Y[a,b] and Y[a′,b′] are disjoint.

Proof. The assertions are straightforward to verify by Lemma 3.2.8. □

Remark. If a and b are arbitrary elements in the interval (0, 1), Proposition 3.2.10 allows us to
extend Definition 3.2.9 by setting Y[a,b] as the intersection of the sets Y[a′,b′] with a′, b′ ∈ |mF |
and [a, b] ⊆ [a′, b′].

Proposition 3.2.11. Given an element y ∈ Y[a,b] for some a, b ∈ |mF |, its associated classical
point on Y lies in Y[a,b].

Proof. Choose a representative C of y. The classical point associated to y admits a
representative vC with vC(f) = |θC(f)|C for every f ∈ Ainf . Hence we deduce the assertion
by observing the identities vC(p) = |y| and vC([ϖ]) = |ϖ| for every ϖ ∈ mF . □

Remark. Similarly, for each ρ ∈ [a, b] the equivalence class of the Gauss ρ-norm on Ainf

yields a point in Y[a,b].

Proposition 3.2.12. The set Y admits an identity

Y =
⋃

a,b∈|mF |

Y[a,b].

Proof. Take an arbitrary point x ∈ Y and choose a nonzero element ϖ ∈ mF . Since
both p and [ϖ] are topologically nilpotent in Ainf , we apply Lemma 3.1.6 to obtain the
inequalities |p(x)| < 1 and |[ϖ](x)| < 1. Hence we find integers i, j > 0 with∣∣[ϖi](x)

∣∣ ≤ |p(x)| ≤
∣∣∣[ϖ1/pj ](x)

∣∣∣
and in turn deduce that x lies in Y

[|ϖ|i,|ϖ|1/pj ]
. Now the desired assertion is evident. □



214 V. ADDITIONAL TOPICS

Let us now invoke the following technical result without a proof.

Theorem 3.2.13 (Kedlaya-Liu [KL15]). Let a, b be elements in |mF |. For every integrally
closed open subring B+

[a,b] of B[a,b], the pair (B[a,b], B
+
[a,b]) is a sheafy Huber pair.

Proposition 3.2.14. Let a, b be elements in |mF |.
(1) Y[a,b] is a rational subset of S := Spa(Ainf , Ainf).

(2) Y[a,b] is naturally an adic space with a canonical isomorphism OS(Y[a,b]) ∼= B[a,b].

Proof. Let us begin with statement (1). Take ϖa, ϖb ∈ mF with |ϖa| = a and |ϖb| = b.
We note that Y[a,b] admits an identification

Y[a,b] =
{
x ∈ Spa(Ainf , Ainf) : |[ϖaϖb](x)| ,

∣∣p2(x)
∣∣ ≤ |[ϖb]p(x)| ≠ 0

}
.

Since the set T :=
{

[ϖaϖb], p
2
}

generates an open ideal inAinf , we deduce that Y[a,b] coincides
with the rational subset U(T/[ϖb]p) of S = Spa(Ainf , Ainf) as desired.

It remains to prove statement (2). In light of Theorem 3.2.13, it suffices to estabish a nat-
ural isomorphism OS(Y[a,b]) ∼= B[a,b]. Proposition 3.1.21 shows that OS(Y[a,b]) is canonically
isomorphic to the completion of Ainf(T/[ϖb]p). Since Ainf is adic with an ideal of definition
generated by p and [ϖa], we may identify Ainf(T/[ϖb]p) as the ring Ainf [1/p, 1/[ϖb]] with the
p-adic topology. By Lemma 3.1.9 in Chapter IV, it is enough to prove the identity

Ainf [[ϖa]/p, p/[ϖb]] = { f ∈ Ainf [1/p, 1/[ϖb]] : |f |a ≤ 1 and |f |b ≤ 1 } .
Every f ∈ Ainf [[ϖa]/p, p/[ϖb]] evidently satisfies the inequalities |f |a ≤ 1 and |f |b ≤ 1.
Hence we only need to show that every f ∈ Ainf [1/p, 1/[ϖb]] with |f |a ≤ 1 and |f |b ≤ 1
lies in Ainf [[ϖa]/p, p/[ϖb]]. By Proposition 1.2.3 in Chapter IV, we may write f =

∑
[cn]pn

with cn ∈ F and take an integer m > 0 with ϖm
b cn ∈ OF for each n ∈ Z. We find∑

n≥m
[cn]pn = (p/[ϖb])

m
∑
n≥0

[ϖm
b cn+m]pn ∈ Ainf [p/[ϖb]].

Meanwhile, as we have the inequalities

|cn| |ϖa|n ≤ |f |a ≤ 1 and |cn| |ϖb|n ≤ |f |b ≤ 1 for each n ∈ Z,
we obtain the relation∑

n<m

[cn]pn =
∑
n<0

[cnϖ
n
a ] · ([ϖa]/p)

−n +
∑

0≤n<m
[cnϖ

n
b ] · (p/[ϖb])

n ∈ Ainf [[ϖa]/p, p/[ϖb]].

Now the desired assertion is evident. □

Remark. We state two additional facts about the adic space Y[a,b] and the Huber ring B[a,b],
proved by Kedlaya [Ked05, Ked16] and Fargues-Fontaine [FF18].

(1) The space Y[a,b] is noetherian.

(2) The ring B[a,b] is a principal ideal domain and gives rise to a natural bijectoin between
the maximal ideals of B[a,b] and the classical points on Y[a,b].

Proposition 3.2.15. The set Y is open in S := Spa(Ainf , Ainf) and is naturally an adic space
with a canonical isomorphism OY(Y) ∼= B.

Proof. Since every rational subset of S = Spa(Ainf , Ainf) is open, the assertion follows
from Proposition 3.2.10, Proposition 3.2.12 and Proposition 3.2.14. □

Remark. For each y ∈ Y , we can use Proposition 3.2.15 to identify B+
dR(y) with the com-

pleted local ring at the associated classical point.
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Proposition 3.2.16. There exists a canonical homeomorphism ϕ : Y ! Y induced by the
Frobenius automorphism of Ainf .

Proof. The Frobenius automorphism φinf on Ainf is a topological automorphism, as eas-
ily seen by the relations φinf(p) = p and φinf([ϖ]) = [ϖp]) for each ϖ ∈ mF . Hence φinf yields
an automorphism of the Huber pair (Ainf , Ainf) and in turn gives rise to a homeomorphism
φad
inf : Spa(Ainf , Ainf) ! Spa(Ainf , Ainf) by Lemma 3.1.20. Now we observe that φad

inf restricts
to a homeomorphism ϕ : Y ! Y, thereby completing the proof. □

Definition 3.2.17. We refer to the homeomorphism ϕ constructed in Proposition 3.2.16 as
the Frobenius action on Y and define the adic Fargues-Fontaine curve to be the set

X = XF := Y/ϕZ.
Remark. It is not hard to see that the Frobenius action on Y restricts to the Frobenius
action on Y via the embedding Y ↪! Y given by Proposition 3.2.6.

Proposition 3.2.18. For every a, b ∈ |mF |, the Frobenius action ϕ on Y naturally induces a
homeomorphism Y[ap,bp] ! Y[a,b] and a sheaf isomorphism OY[ap,bp]

∼= OY[a,b]
.

Proof. It is straightforward to verify that ϕ maps Y[ap,bp] homeomorphically onto Y[a,b].
Moreover, since Y[a,b] and Y[ap,bp] are rational subset of S := Spa(Ainf , Ainf) with canonical
isomorphisms OS(Y[a,b]) ∼= B[a,b] and OS(Y[ap,bp]) ∼= B[ap,bp] as noted in Proposition 3.2.14,
we apply Proposition 1.2.18 in Chapter IV to see that ϕ induces a natural isomorphism

(OS(Y[a,b]),O+
S (Y[a,b])) ∼= (OS(Y[ap,bp]),O+

S (Y[ap,bp]))

and thus gives rise to an identification OY[ap,bp]
∼= OY[a,b]

. □

Remark. Moreover, we can use Proposition 3.2.15 to get a natural isomorphism OY ∼= ϕ∗OY
whose induced map on the global sections coincides with the Frobenius automorphism of B.

Proposition 3.2.19. The set X is naturally an adic space.

Proof. Choose an element r ∈ |mF | and a rational number q with 1/p < q < 1. For
every n ∈ Z, we have rp

n
, rqp

n ∈ |mF | as F is algebraically closed. Let us set

Vn := Y[rpn ,rqpn ] and Wn := Y
[rqpn ,rpn−1 ]

for each n ∈ Z.

It is not difficult to see that each x ∈ Y lies in Vn or Wn for some n ∈ Z. In addition, we
find ϕ(Vn) = Vn−1 and ϕ(Wn) = Wn−1 for each n ∈ Z by Proposition 3.2.18. Since the
sets Vn and Wn for every n ∈ Z are open adic spaces in Y by Proposition 3.2.14, we deduce
from Proposition 3.2.10 that the action of ϕ on Y is properly discontinuous and consequently
identify X as a quotient space of Y with an open cover given by the adic spaces V0 and W0.
Moreover, we apply Proposition 3.2.18 to obtain a sheaf OX on X by gluing OV0 and OW0 .
Now the desired assertion is evident. □

Remark. A fundamental result of Kedlaya-Liu [KL15] yields a natural morphism of locally
ringed spaces X ! X which induces an equivalence of categories

{ vector bundles on X } ∼
−! { vector bundles on X } .

This equivalence is an analogue of the celebrated GAGA theorem by Serre [Ser56] and pro-
vides powerful means to study vector bundles on the Fargues-Fontaine curve using the modern
machinery in p-adic geometry developed by Scholze [Sch12, Sch18]. For example, the work
of Birkbeck-Feng-Hansen-Hong-Li-Wang-Ye [BFH+22] and Hong [Hon21, Hon23, Hon25]
employs this equivalence to classify vector bundles which arise as subsheaves, quotients, or
extensions of given vector bundles on the Fargues-Fontaine curve.
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Exercises

1. Given a p-adic field K with residue field k, show that the kernel of the extended logarithm

map log : (C♭K)× ! B+
dR is isomorphic to k

×
.

2. Let K be a p-adic field with residue field k.

(1) For every (φ,N)-module D over K0 = W (k)[1/p], prove that ND is nilpotent.

Hint. Take an integer i > 0 with N i
D(D) = N i+1

D (D) and prove that N i
D(D) is

naturally a (φ,N)-submodule of D with a bijective monodromy operator.

(2) For every weakly admissible filtered (φ,N)-module D over K with a unique
Hodge-Tate weight, prove that ND vanishes.

Hint. If ND is nonzero, show that ND(D) is naturally a filtered (φ,N)-submodule
of D with deg(ND(D)) < deg(D) and deg•(ND(D)) = deg•(D).

3. Let us consider the basis vectors e1 := (1, 0) and e2 := (0, 1) of Q⊕2
p .

(1) For every λ ∈ Zp and c ∈ Qp with λ ̸= 0, show that there exists a unique normally
weighted filtered (φ,N)-module Dmon

λ,c over Qp of rank 2 with

φDmon
λ,c

=

(
λ 0
0 pλ

)
, NDmon

λ,c
=

(
0 1
0 0

)
, H(Dmon

λ,c ) = Qp(ce1 + e2).

(2) Show that a filtered (φ,N)-module D over Qp of rank 2 with ND ̸= 0 is weakly
admissible if and only if it admits an isomorphism

D ≃ Dmon
λ,c ⊗Qp Dst(Qp(n))

for some λ ∈ Zp, c ∈ Qp, n ∈ Z with λ ̸= 0.

Hint. Represent ND by a triangular matrix under some Qp-basis for D and apply
the relation ND ◦ φD = pφD ◦ND to show that φD has two distinct Qp-eigenvalues.

Remark. We can combine the second part with results from Chapter III to obtain a complete
classification for weakly admissible filtered (φ,N)-modules over Qp of rank 2.

4. Let K be a finite extension of Qp.

(1) Show that every extension of Qp by Qp(1) is semistable.

Hint. Adapt Example 1.2.6 using the isomorphism H1(ΓK ,Qp(1)) ∼= Qp ⊗Zp K̂
×

given by Kummer theory, where K̂× denotes the p-adic completion of the abelian
group K×.

(2) Show that every nonsplit extension of Qp(1) by Qp is not semistable.

Remark. The second part and Theorem 1.2.25 together imply that every nonsplit extension
of Qp(1) by Qp is not de Rham.

5. Given a p-adic fieldK, verify Theorem 1.2.25 for one-dimensional p-adic ΓK-representations.
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6. For a p-adic field K with residue field k, show that every semilinear Γk-module M over K̂un

admits a natural isomorphism

M ∼= MΓk ⊗K K̂un.

7. Let E be a perfect field of characteristic p and denote by φ the Frobenius automorphism
on E := W (E)[1/p].

(1) Given integrally p-adic ΓE-representations M and M ′, establish a canonical isomor-
phism of φ-modules

Dint(M ⊗Zp M
′) ∼= Dint(M) ⊗OE

Dint(M
′).

(2) Given a free integrally p-adic ΓE-representation M with dual M∨, establish a canon-
ical perfect pairing of φ-modules

Dint(M) ⊗OE
Dint(M

∨) −! OE .

(3) Given a torsion integrally p-adic ΓE-representation M with Pontryagin dual M∧,
establish a canonical perfect pairing

Dint(M) ⊗OE
Dint(M

∧) −! E /OE

which is compatible with the φ-endomorphisms.

8. Let E be a perfect field of characteristic p and denote by φ the Frobenius automorphism
on E := W (E)[1/p].

(1) For every étale φ-module D over E , show that φlin
D is an isomorphism.

(2) Find a φ-module D over E which is not étale with φlin
D being an isomorphism.

9. Let φ denote the Frobenius automorphism on EQp .

(1) For every c ∈ F×
p , prove that there exists a unique (φ,Γ∞)-module Dun

c over EQp of
rank 1 with φDun

c
= cφ and the trivial Γ∞-action.

(2) Prove that every (φ,Γ∞)-module D over EQp of rank 1 admits an isomorphism

D ≃ Dun
c ⊗Fp EQp(n)

for some unique c ∈ F×
p and n ∈ Z with 0 ≤ n ≤ p− 2.

Hint. The field EQp is isomorphic to the t-adic completion Fp((t1/p
∞

)) of Fp(t1/p
∞

),

where t1/p
∞

denotes the set of p-power roots of the variable t, with the Γ∞-action

given by the relation γ(t) = (1 + t)χQp (γ) for every γ ∈ Γ∞.

Remark. The second part and Theorem 2.2.14 together imply that there exist precisely
(p− 1)2 isomorphism classes of 1-dimensional mod-p ΓQp-representations, which we can also
deduce from the class field theory.

10. Let E denote the field k((t)) for a perfect field k of characteristic p.

(1) Show that the p-adic completion C(E) of W (k)((t)) is a complete discrete valuation
ring with residue field E and uniformizer p.

(2) Show that the Frobenius endomorphism on E lifts to an endomorphism on C(E).
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11. In this exercise, we study the topological space Spa(Z,Z) with the discrete topology on
the ring Z.

(1) Find a representative for each point on Spa(Z,Z).

(2) Find the closure of each point on Spa(Z,Z).

(3) Show that the image of the natural map Spa(Q,Q) ! Spa(Z,Z) induced by the
embedding Z ↪! Q is homeomorphic to Spec (Z).

12. Let (R,R+) be a Huber pair.

(1) Prove that there exists a natural continuous map Spa(R,R+) ! Spec (R) which
sends each x ∈ Spa(R,R+) with a representative v to v−1(0).

(2) If R is discrete, prove that (R,R+) is sheafy.

Hint. Prove that the structure presheaf on Spa(R,R+) agrees with the pullback of
the structure sheaf on Spec (R) along the map Spa(R,R+)! Spec (R).

Remark. If R is discrete with R = R+, it is not hard to see that the fibers of the natural
map Spa(R,R)! Spec (R) are homeomorphic to Riemann-Zariski spaces.

13. Let F be an algebraically closed perfectoid field of characteristic p.

(1) Given an untilt C of F in characteristic 0, show that the Fontaine map θC induces
a natural continuous map Spa(OC ,OC)! Spa(Ainf , Ainf) with closed image.

Hint. Show that the image of the map contains an element x ∈ Spa(Ainf , Ainf) if
and only if x vanishes on ker(θC).

(2) Show that every classical point on Y = YF is closed.

Hint. Identify every classical point on Y as the preimage of Y under the continuous
map Spa(OC ,OC)! Spa(Ainf , Ainf) for some untilt C of F in characteristic 0.

14. Let F be an algebraically closed perfectoid field of characteristic p.

(1) Show that there exists a canonical embedding (0, 1) ↪! Y = YF which sends each
ρ ∈ (0, 1) to the equivalence class of the Gauss ρ-norm on Ainf = Ainf(F ).

(2) Show that the image of the embedding (0, 1) ↪! Y is disjoint from the set of classical
points on Y.

(3) Given two elements a, b in the value group of F with a, b < 1, show that the embed-
ding (0, 1) ↪! Y restricts to an embedding [a, b] ↪! Y[a,b].

15. Let F be an algebraically closed perfectoid field of characteristic p.

(1) Prove that the Frobenius action ϕ on Y = YF restricts to the Frobenius action on
the set Y = YF of equivalence classes of untilts of F in characteristic 0.

(2) Prove that Y admits a natural isomorphism OY ∼= ϕ∗OY whose induced map on the
global sections coincides with the Frobenius automorphism on B = BF .

(3) Prove that X = XF admits a canonical isomorphism OX (X ) ∼= Qp.
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Astérisque, to appear.
[FW79a] Jean-Marc Fontaine and Jean-Pierre Wintenberger, Extensions algébriques et corps des normes des
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