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CHAPTER 1

Introduction

1. A first glimpse of p-adic Hodge theory

Our goal in this section is to give a brief introduction to p-adic Hodge theory. By nature,
p-adic Hodge theory admits two different perspectives, namely the arithmetic one and the
geometric one. We illustrate some key ideas of p-adic Hodge theory from each perspective
and discuss some fundamental results.

1.1. The arithmetic perspective

A central object in algebraic number theory is the absolute Galois group I'g = Gal(Q/Q).
Indeed, I'g contains virtually all arithmetic information about the field Q (and its finite
extensions, called number fields). However, since I'g is an extremely sophisticated object, we
usually study it via the natural injective group homomorphism I'g, < I'g induced by the
canonical embedding Q — Q,, for each prime p. A general principle is that we can deduce
much information about I'gp from knowledge about I'g,, for each prime p.

The group I'g, is still quite complicated but turns out to be much more manageable than
the group I'g is. The main objective of p-adic Hodge theory, from the arithmetic perspective,
is to understand I'g, via continuous representations I'g, — GL,(Q,), called p-adic Galois
representations, where I'g, and GL,(Qj) are respectively endowed with the profinite topology
and the p-adic topology. Such representations are particularly interesting as they encode two
different kinds of structures on @Q,, namely the algebraic ones from the group I'gp, and the
analytic ones from the p-adic topology.

In this subsection, we present a primary example that shows why p-adic Galois represen-
tations are important for carrying out the strategy outlined in the first paragraph and how
we study such representations. Let E be an elliptic curve over Q, which refers to a projective
curve defined by a polynomial equation

y? =23 +ar+b with a,b € Q and 4a® + 27b* # 0. (1.1)
Elliptic curves play a fundamental role in modern number theory, as highlighted by the proof of
Fermat’s last theorem. Elliptic curves have a remarkable property that their points (including

the point at infinity) naturally form an abelian group. Hence for each positive integer n and
a (Q-algebra R, we can define

En|(R):={P € E(R):nP =0}

where O denotes the point at infinity identified as the zero element in E. We fix a prime /¢
and define the ¢-adic Tate module of E by

Ty(E) := lim E[¢°)(Q)
where the transition maps send each P € E[(**1](Q) to £P € E[¢*](Q). It is a standard fact
that Ty(FE) is a free Zy-module of rank 2, thereby admitting an isomorphism

T,(E) ~ 72.
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Moreover, the tautological action of 'y on Q naturally induces a continuous action on Ty(E)
and in turn gives rise to a continuous representation of I'g on

Vi(E) = Ty(E) ®z, Q¢ ~ @}
called the (-adic rational Tate module of E. The action of I'g on Ty(F) and V;(E) contains
much information about the elliptic curve FE, as suggested by the following fact:

THEOREM 1.1.1 (Faltings [Fal83]). Given two elliptic curves E; and E3 over Q, there exist
natural isomorphisms

HOH](El, EQ) Rz Zz = Homp@ (Tg(E1), Tg(EQ)),
Hom(E, E2) ®z Q¢ = Homr, (Ve(E1), Ve(E?2)).

In particular, a homomorphism between F; and F» is uniquely determined by the induced
map on the Tate modules as I'g-representations.

(1.2)

Remark. By a result of Tate [Tat66], an analogous statement holds for elliptic curves over
F, with p # ¢. Both Theorem and the result of Tate [Tat66] are special cases of
the Tate conjecture which relates subvarieties of a given algebraic variety X over a field k
to representations of I'y = Gal(k/k) on vector spaces over Q that naturally arise from X
(similar to the ¢-adic rational Tate module an elliptic curve). For elliptic curves over Q,, we
get injective maps instead of isomorphisms in .

However, the action of I'g on Ty(E) and V,(E) is difficult to understand due to the com-
plexity of the group I'p. Following the strategy outlined at the beginning of this subsection,
we study the action of I'g, on Ty(FE) and V;(E) for each prime p via the natural injection
I'g, — T'g. In fact, we have an identification

Ty(E) = lim B[*)(Q,) ~ Z7,

endowed with a continuous action of I'g, naturally induced by the tautological action on @p.
We assume that E has good reduction at p. For p > 3, our assumption concretely means
that in the polynomial equation we have a, b € Z, with 4a +27b% not divisible by p. The
assumption is not very restrictive; indeed, it is a standard fact that E has good reduction at
almost all primes (i.e., all but finitely many primes). A main consequence of our assumption
is that £ admits mod p reduction, denoted by E, which is an elliptic curve over F » With points
given by the mod p solutions of . We have the /¢-adic Tate module of E defined by

Ty(E) := lim E[°)(F,),
which turns out to be a free module over Z, (but not necessarily of rank 2) with a contin-

uous action of I'r, = Gal(F,/F,) naturally induced by the tautological action on F,, and
consequently obtain a continuous representation of I'r, on the ¢-adic rational Tate module

Vi(E) = Ty(E) ®z, Q.

For p # /, we can explicitly describe the action of I'g, on Ty(E) and V;(E) through the ac-
tion of I'g, on Ty(E) and V;(E). In fact, if we regard Ty(E) and V;(E) as I'g,-representations
via the natural surjection I'g, — Gal(Q,"/Qp) = I'p,, where Q" denotes the maximal un-
ramified extension of @, we have isomorphisms

T(E)~Ty(E) and Vy(E)=~Vy(E)

as I'g,-representations. Hence we only need to understand T;(E) and V;(E) as (continuous)
['p,-representations. The group I'p, is topologically generated by the Frobenius automor-

phism which maps each element in F, to its p-th power. It turns out that the Frobenius
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automorphism acts on Ty(E) and V,(E) with characteristic polynomial x2 — a,z + p, where
we set a, := p+ 1 — #E(F,). In summary, we can specify the action of g, on Ty(E) and
Ve(E) by the following properties:

(i) The action is continuous and factors through the natural surjection I'g, — I's,.

(ii) The Frobenius automorphism of F,, which topologically generates I'r,, acts with
trace a, = p+ 1 — #E(F,) and determinant p.

We refer to a I'g,-representation with property as an unramified representation, moti-
vated by the natural identification I'y, = Gal(Q,"/Qp). Since the (-adic Tate module T;(E)
is unramified, it loses much information about the topology on I'g,; indeed, the topology on
['r, is very simple (being generated by one element, namely the Frobenius automorphism)
compared to the topology on I'g,. Intuitively, for p # ¢ the topologies on I'g, and Q, do not
get along with each other very well, thereby forcing the continuous action of I'g, on Ty(E) to
be simple. It is worthwhile to mention that our discussion here explains one direction of the
following important criterion:

THEOREM 1.1.2 (Néron [Nér64], Ogg [Ogg67|, Shafarevich). An elliptic curve E over Q has
good reduction at p if and only if Ty(E) is unramified for a prime ¢ # p.

Let us now set p = ¢. We have entered the realm of p-adic Hodge theory, as V,(E) is
a p-adic Galois representation by construction. In stark contrast to our discussion in the
previous two paragraphs, we have the following facts:

(1) The (rational) Tate modules for E and E are never isomorphic; indeed, T,(F) is
isomorphic to either Z, or 0 whereas T),(E) is always isomorphic to ZIQ,.

(2) T,(E) and V,(E) turn out to be never unramified; in other words, the action of
I'g, on T,(E) and V,(£) always has a nontrivial contribution from the kernel of the
surjection I'g, — ', called the inertia group of Q, and denoted by Ig,.

The second fact indicates that the topologies on I'g, and Q, do not clash and thus allow
T,(E) to carry a large amount of topological information. A side effect is that, as the first

fact shows, it is impossible to describe T},(E) solely based on T}, (E).

We still wish to understand 7},(E) as a I'g,-representation using the mod p reduction E.
Following Tate [Tat66] and Grothendieck [Gro71l, (Gro74], we regard E as a curve over Z,
and consider the functors defined by

Ep®) =lmEp] and E[p™] = lim B},

called the p-divisible groups of E and E, where the transition maps are the natural inclusions.
For the elliptic curve E, the p-divisible group E[p*°] and the Tate module T),(E) are equivalent
objects in the sense that we can determine one from the other. On the other hand, for the
mod p reduction E, the p-divisible group E[p™] contains a lot of information that the Tate
module T),(E) does not; for example, E[p™] never vanishes while T),(E) often does (as noted
in the previous paragraph). Hence the p-divisible groups serve as refinements of the p-adic
Tate modules which do not lose too much information under mod p reduction.

A remarkable fact is that we can describe p-divisible groups in terms of linear algebraic
objects. A Dieudonné module over Z, refers to a finite free Z,-module D equipped with an
endomorphism ¢p, called the Frobenius endomorphism, such that pp(D) contains pD. A
Honda system over Z,, is a Dieudonné module D over Z, together with a submodule Fil' (D)
such that ¢p induces a natural isomorphism Fil'(D)/pFil}(D) = D/p(D).
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THEOREM 1.1.3 (Dieudonné [Die55|, Fontaine [Fon77]). Given an elliptic curve E over Q
with good reduction at p, we have the following statements:

(1) The mod p reduction E of E functorially gives rise to a Dieudonné module D(E)
over Zj of rank 2, which uniquely determines the isomorphism class of E[p™].

(2) For p > 2, the elliptic curve E functorially gives rise to a Honda system over Z, with

underlying Dieudonné module D(E), which uniquely determines the isomorphism
class of E[p™].

Remark. Let us make some remarks regarding Theorem [1.1.3

(1) The results of Dieudonné [Die55] and Fontaine [Fon77] indeed yield anti-equivalences
of categories

{ p-divisible groups over F, } <=~ { Dieudonné modules over Z, }
{ p-divisible groups over Z, } «— { Honda systems over Z, }

where the second anti-equivalence holds only for p > 2. For p = 2, the second
anti-equivalence holds after taking an appropriate subcategory on each side.

(2) The first statement, proved by Dieudonné [Die55], was the main motivation for Tate
[Tat66] and Grothendieck |[Gro71), [Gro74| to study p-divisible groups in relation
to the Tate modules, as it suggests that E[p>] behaves much as T,(E) for p # /.
The work of Tate [Tat66] and Grothendieck [Gro71), [Gro74] eventually inspired
the proof of the second statement by Fontaine [Fon77| in an attempt to describe

E[p™] via D(E) together with some “lifting data”.

(3) Our description of Dieudonné modules is potentially misleading. In general, for
a Dieudonné module D the endomorphism ¢p should be Frobenius-semilinear in
an appropriate sense. For Dieudonné modules over Z,, however, the Frobenius-
semilinearity simply means linearity as the Frobenius automorphism is trivial on the

residue field [Fp,.

Hence for p > 2 we can determine the isomorphism class of T,(E) as a I'g,-representation
by the Honda system associated to E with underlying Dieudonné module D(E). Intuitively,
once we fix an element o € I'g, that lifts the Frobenius automorphism in I'r,, the Honda
system encodes the actions of Ig, and o on T),(E) respectively by Fil}(D(E)) and en ) For
p = 2, we can still associate a Honda system to E and show that it contains much information

about T, (F), although in general it does not determine the isomorphism class of T),(FE).

If we instead want to study the p-adic Galois representation on V,(E), we replace the
Dieudonné module D(E) by D(E) ®z, Q,, called an isocrystal over Qp, which is a finite
dimensional vector space over Q, equipped with a (Frobenius-semilinear) automorphism. The
Honda system associated to E yields the isocrystal D(E) ®z, Qp with the filtration given by
the subspace Fil'(D(E)) ®z, Qp, called a filtered isocrystal over Q,. Now Theorem m
implies for p > 2 that the filtered isocrystal associated to E determines the isomorphism class
of V,(E) as a p-adic Galois representation, which turns out to apply also for p = 2.

We have thus transferred the study of T),(£) and V,(E) as I'g,-representations to the
study of certain linear algebraic objects, such as Dieudonné modules and isocrystals. In fact,
a main theme of p-adic Hodge theory is to construct a dictionary that relates p-adic Galois
representations to various linear algebraic objects. Our discussion here illustrates a prototype
for such a dictionary.
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1.2. The geometric perspective

Our discussion in shows how we can study elliptic curves over Q via their Tate
modules as I'g-representations. It is natural to ask whether we can similarly study other
algebraic varieties. Let X be a smooth proper variety over Q. For each Q-algebra R, we
write Xg for the base change of X to R. Given an integer n > 0 and a prime ¢, we have the
étale cohomology group HQ(X@, Q¢) which is a finite dimensional vector space over Qy with
a continuous action of I'g. As a special case, for an elliptic curve E over Q we have a natural
identification

Vi(E)Y = Hy (Eg, Qo)
as I'g-representations, where Vy(E)Y denotes the dual representation of Vy(E). Following
the strategy outlined in for each prime p we study the action of I'g, on HQ(X@, Q)
via the natural injection I'g, < I'g; in other words, we study the étale cohomology group
H&(X@p,(@g) as a representation of I'g,. For p # /¢, the I'g,-representation HQ(X@Z),Q[)
tends to be simple; indeed, it is unramified for all but finitely many p # ¢, as we have already
seen for the rational Tate modules of an elliptic curve in For p = £, on the other hand,
H&(X@p,(@p) as a p-adic Galois representation turns out to carry interesting information

about the geometry of X. The main objective of p-adic Hodge theory, from the geometric
perspective, is to extract information about the geometric structure of an algebraic variety
from the p-adic étale cohomology groups.

In this subsection, we illustrate how the classical Hodge theory inspires fundamental
results in p-adic Hodge theory which relates the p-adic étale cohomology groups of an algebraic
variety over Q,, (or its finite extension) to other cohomology groups. Let us consider an elliptic
curve E over Q. We may identify E(C) as a complex torus via an isomorphism

E(C)~C/(Z®Zt) for some nonreal 7 € C.
Let o and S respectively denote the loops on E(C) induced by the line segments on C con-

necting 0 to 1 and 7, as illustrated in the following figure:

Im

T 1+7

— =

We have an isomorphism
H(E(C),Z) ~Z & Z,
with a basis given by the homotopy classes of o and 3, and in turn find
H'(E(C),C) = Hom(H;(E(C),C))~Ca®C (1.3)
by Poincaré duality. Moreover, since F(C) has genus 1, there exists an isomorphism
HY(E¢,Qp.) ~C
with a basis given by dz. Hence we obtain an isomorphism

H°(Ec, Qp,) ® HY(Ec, Q) — H'(E(C),C)
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sending dz and dz respectively to [dz = (1,7) and [dz = (1,7) via the isomorphism (L.3).
It is not hard to see that this isomorphism is canonical. In fact, it is a special case of the
Hodge decomposition given by the following theorem:

THEOREM 1.2.1. For a smooth proper variety X over C, there exists a canonical isomorphism

H™(X(C),Q) ®q C = Hir(X/C) = P H'(X, %)
i+j=n

with Hi(X, ) = HI (X, Q).

Theorem admits analogues for the p-adic étale cohomology of an algebraic variety
over Q. Let C;, denote the p-adic completion of Q,, called the field of p-adic complex numbers.
The field C,, is complete and algebraically closed, just as the field C is. Since the tautological
action of I'g, on Q, is continuous, it uniquely extends to an action on C,. For a p-adic
analogue of the complex conjugate, we consider the p-adic cyclotomic character

x:Tq, — Aut(Zy) = Z;
given by the I'g,-action on the group
Tp(ppoe) := lim prpe (@) ~ lim Z/p"Z = Ly,

where v (@p) denotes the group of p-th roots of unity in @p, and write C,(n) for C, with
['g,-action twisted by x" in the sense that each v € I'g, acts on C,(n) as x(v)"y. For an
elliptic curve E over @, with good reduction, the work of Tate [Tat67] yields a canonical
isomorphism

which is compatlble with FQp—actlons. In fact, this 1somorphlsm is a special case of the
Hodge-Tate decomposition given by the following theorem:

THEOREM 1.2.2 (Faltings [Fal88]). For a smooth proper variety X over Q,, there exists a
canonical isomorphism

HE(Xg,, Q) ®g, Cp = P H(X, % q,) ®q, Cp(—) (1.4)
i+j=n
which is compatible with I'g,-actions.

Let us take the Hodge-Tate period ring Byt := @ Cp(n) and write the isomorphism ([1.4))

neZ
as a I'g,-equivariant isomorphism of graded algebras

Hgt(X@pan) ®q, Bur = ( GB HZ X/Q )) ®q, Bur- (1.5)
i+j=n

A result of Tate [Tat67] and Sen [Sen80] establishes an identification BII;(%” = Qp and in turn
yields an isomorphism of graded Q,-algebras

r ~
(Hi(Xg, Q) ®g, Bur) @ = P H(X, % g )-
i+j=n
In particular, we can compute the Hodge numbers of X from H, Q(X@ ,Qp).
P

Theorem is, however, not a complete analogue of Theorem [1.2.1| as it does not give
a comparison isomorphism which directly relate the étale cohomology and the de Rham co-
homology. Fontaine [Fon82|] formulated a conjecture that such a comparison isomorphism
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exists as a refinement of the isomorphism (1.5)), inspired by the fact that the de Rham co-
homology group HZ,(X/Qp) has a natural filtration { Fil™ (HJ(X/Qp)) }m€Z7 called the
Hodge filtration, with its graded vector space gr (H} (X/Qy)) yielding a natural isomorphism

g (M3 (X/Q,) = @) HI(X, %),
i+j=n
A key ingredient of the conjecture is the de Rham period ring Bgqr which Fontaine [Fon82]
constructed as a Q,-algebra with the following properties:

r
(i) Bgr carries a natural action of I'g, with B dgp =Qp.
(ii) Bqr admits a natural filtration { Fil"(Bgr) },,cz with Bur as its graded algebra.

Fontaine’s conjecture is now a theorem, commonly referred to as the p-adic de Rham com-
parison theorem, which we state as follows:

THEOREM 1.2.3 (Faltings [Fal89]). For a smooth proper variety X over Q,, there exists a
canonical isomorphism

Hg(Xg,» Qp) @, Bar = Hir(X/Qp) ©q, Bar (1.6)
which is compatible with I'g,-actions and filtrations.
Remark. The filtration on the right side is the convolution filtration given by
Fil™ (Hir (X/Qp) ®q, Bar) == @ Fil' (Hir(X/Qp)) ®q, Fi¥/(Bar)  for every m € Z.
i+j=m
Theorem [1.2.3] yields Theorem as a formal consequence; indeed, we obtain the iso-

morphism (1.5]) from the isomorphism ((1.6) by passing to the associated graded vector spaces.
In addition, Theorem [1.2.3| induces a natural isomorphism

(HE(Xg, Qp) ©g, Bar)' * = Hi(X/Qp),
thereby allowing us to recover Hl; (X/Q)) from Hgt(X@p, Qp). Therefore Theoremm (with
Theorem as its consequence) indicates that the p-adic étale cohomology of an algebraic
variety over @, behaves much as the singular cohomology of an algebraic variety over C does.
Let us now assume that X has good reduction over Q,. Intuitively, our assumption
means that we may regard X as a smooth scheme over Z, and thus allows us to take its

mod p reduction X. Motivated by our discussion in we wish to understand the p-adic
Galois representation HQ(X@ ,Qp) using X. We consider the crystalline cohomology group
D

H!. (X/Z,) which is a Dieudonné module over Z, with a natural isomorphism

ngis(X/Zp) ®Zp Qp = HcTILR(X/Qp)
and a canonical filtration { Fil"™ (H2, (X /Z,)) Jmeg induced by the Hodge filtration on
HR (X /Qg). For an elliptic curve E with good reduction over Q,, we may naturally iden-
tify HY i (E/Zy) ®7, Q, with the filtered isocrystal associated to E, which in turn determines
H} (Eg »Qp) = V,(E)" by our discussion in For the general case, Grothendieck [Gro71]
P

(X /Zyp)®7z,Q, as afiltered isocrystal determines H, &(Xg » Qp)
'y

as a p-adic Galois representation in a functorial way; indeed, his conjecture predicts that there

exists a fully faithful functor D on a certain category of p-adic Galois representations with

D(H3(Xg,, Q) = Hi(X/2,) €2, Q.

We refer to the functor D as the Grothendieck mysterious functor.

proposed a conjecture that H [,
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Fontaine [Fon82, [Fon83| reformulated the conjecture of Grothendieck [Gro71] in terms
of a comparison isomorphism between the étale cohomology and the crystalline cohomol-
ogy. His idea was to refine the de Rham comparison isomorphism ([1.6) by constructing the
crystalline period ring Beris, which is a Qp-subalgebra of Bgr with the following properties:
B

(i) Beis carries a natural T’ Q,-action with B " = Qp, induced by the action on Bgg.

(ii) Beris admits a natural filtration { Fil"(Beis) },,cz given by the filtration on Bgg.

(iii) Beris contains the maximal unramified extension Q" of Qp with a canonical extension
of the Frobenius automorphism on Qp", called the Frobenius endomorphism.

Fontaine’s conjecture is now a theorem, commonly referred to as the crystalline comparison
theorem, which we state as follows:

THEOREM 1.2.4 (Faltings [Fal89]). For a smooth proper variety X over Q, with mod p
reduction X, there exists a canonical isomorphism

H&(X@pv @p) ®Qp Beris = Hgis(Y/Zp) ®Zp Beris (1-7)
which is compatible with I'g,-actions, filtrations, and Frobenius endomorphisms.

Remark. As in Theorem the right side carries the convolution filtration given by

Fil"™ (H} (X /Zy) @z, Bexis) == €D Fil' (Hio(X/Zp)) @z, Fi¥ (Beris) — for every m € Z.

i+j=m

Under the assumption that X has good reduction, we can obtain the de Rham comparison
isomorphism from the crystalline comparison isomorphism by tensoring with Bygr
and forgetting the Frobenius endomorphisms. Moreover, Theorem yields a natural
isomorphism

Tg, ~ -
(Hgt(X@pv Qp) ®Q, Bcris) Q o~ eris (X /Zp) ®z, Qp,
thereby suggesting that the mysterious functor D takes the form
D(V) = (V @q, Beris)" %

for every p-adic Galois representation V. It turns out, by the work of Fontaine [Fon94b],
that the functor D is fully faithful on a suitable category of p-adic Galois representations with

values taken in the category of filtered isocrystals. In fact, H} (X /Zy) ®z, Q, determines
Hg (Xg »Qp) by an identification
P

n ~ n Y =1 : n (v
Hét(X@p7 Qp) = (Hcris(X/Zp) ®Zp BCI“iS)cp N Fllo ( cris(X/Zp) ®Zp BCYiS) (18)

where we denote by ¢ the natural Frobenius action on H”. (X /Z,) ®z, Beris induced by the
Frobenius endomorphisms on H;, (X/ Zp) and Beyis.

As our discussion demonstrates, a main theme in p-adic Hodge theory is to establish a
comparison isomorphism that relates p-adic étale cohomology groups to cohomology groups
of a different kind. In addition to the theorems presented in this subsection, there are many
results of a similar flavor, notably by the work of Tsuji [Tsu99|, Scholze [Sch13|, and
Bhatt-Morrow-Scholze [BMS18, BMS19|. Let us also mention that there are other ap-
proaches for the comparison theorems presented in this subsection, in particular by the work
of Fontaine-Messing [FM87], Niziol [Niz98, [Niz08], and Beilinson [Beil2, Beil3].
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2. Machinery of p-adic Hodge theory

Our main objective for this section is to present some central tools for p-adic Hodge theory.
We demonstrate how these tools provide systemic ways to study p-adic Galois representations
and related objects. In addition, we illustrate some of their key properties and applications.

2.1. Period rings and their associated functors

In this subsection, we describe a connection between the two main themes of p-adic Hodge
theory provided by some linear algebraic functors. These functors originate in the work of
Fontaine [Fon79, Fon82, [Fon83), [Fon94al] which proposes a uniform approach for the p-adic
comparison theorems in an attempt to resolve the conjecture of Grothendieck [Gro71] on the
mysterious functor. We write Repr(FQp) for the category of p-adic Galois representations
and Vectg, for the category of vector spaces over Q,. Let B be a p-adic period ring, such as

Bur, Bar or Beris, which is a Q-algebra carrying a natural I'g,-action with Blo = Qp. We
define the functor Dp : Repg, (P'g,) — Vectg, by setting
Dp(V) := (V ®q, B)Y'%  for each V e Repg, (T'g,)

and say that V' € Repg, (g, ) is B-admissible if the natural I'g,-equivariant map

ay - DB(V) ®Qp B — (V ®Qp B) ®Qp B=V ®Qp (B ®Qp B) —V ®Qp B
is an isomorphism. We enhance the functor Dp by incorporating additional structures on B,
as demonstrated by the following examples:

(1) Dy (V) foreach V e Repg, (Pg,) carries a grading naturally induced by the grading
on Byr.

(2) Dpyr(V) for each V' € Repg, (I'g,) carries a filtration naturally induced by the
filtration on Byg.

(3) DB, (V) foreach V € Repg, (I'g,) carries a Frobenius endomorphism and a filtration
naturally induced by the ones on Beys.

For every smooth proper variety X over Q,, we may state the p-adic comparison theorems
from as follows:

(1) HE (X@p, Qp) is Bpr-admissible with a natural isomorphism
DBy (HQ(X@Z), Qp)) = @ Hi(X7 ij/@p)
i+j=n
which is compatible with the gradings on both sides.
(2) Hi(Xg ,Qp) is Bar-admissible with a natural isomorphism
P
Dy (He (Xg,» Qp)) = Hir (X/Qp)
which is compatible with the filtrations on both sides.
(3) If X admits mod p reduction X, then H} (Xg »Qp) is Beris-admissible with a natural
p
isomorphism
Dp...(Hg(Xg,, Q) = Hesio(X/Zy) ©z, Qp
which is compatible with the Frobenius endomorphisms and filtrations on both sides.

Moreover, the notion of B.js-admissibility yields a p-adic analogue of Theorem [1.1.2

THEOREM 2.1.1 (Coleman-Iovita [CI99], Breuil [Bre00]). An elliptic curve E over Q has
good reduction at p if and only if V,,(E) is Beyis-admissible.
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Let us denote by Repgp (P'g,) the category of B-admissible representations. The work of
Fontaine [Fon82, [Fon83| yields a hierarchy of p-adic Galois representations given by

Repg(Tg,) & Repg™(Tg,) & Repg™ (Tg, )
with the associated functors Satlsfymg the following relations:

e Dp,.(V) for each V € Repg;‘R(FQp) is naturally isomorphic to the graded vector
space of Dp . (V).

e Dp,, (V) for each V' € Rep(g;ris(f‘@p) is naturally isomorphic to Dp_. (V) (after

cris

forgetting the Frobenius endomorphism).

This hierarchy realizes relations between various cohomology groups for a smooth proper
variety X over @, as presented in §.2]and summarized in the following statements:

e The Hodge-Tate decomposition ([1.5)) follows from the de Rham comparison isomor-
phism ([1.6]) by passing to the associated graded space via the identification

gr (Har (X/Qp)) @ HZ X, QJX/Q )-
i+j=n
where gr (Hj (X/Qp)) denote the graded vector space of Hi (X/Q,).

e If X has good reduction, the de Rham comparision isomorphism (1.6 follows from the
crystalline comparison isomorphism (1.7) by tensoring with Bggr via the identification

CI‘lS(X/Z ) ®Zp @P = H(’ELR(X/QP)

We wish to understand how the category Repgp(FQp) behaves, especially in conjunction
with the functor Dp. A general formalism developed by Fontaine [Fon94b| shows that
Rep(gp (I'g,) and Dp have the following properties:

(i) Dp is exact and faithful on Rep(gp (Tg,)-
(ii) Repgp (P'g,) is closed under taking subquotients.
(iii) Repg (I'g,) is closed under tensor products, with a natural identification
Dp(V ®q, W) = Dp(V) ®q, Dp(W) for any V,W ¢ Repg (Tg,)-
(iv) RepQ (I'g,) is closed under taking duals, with a natural identification
Dp(VY) = Dg(V)¥ for every V € Repgp (Tg,)
where VV and Dp (V)" respectively denote the duals of V' and Dg (V).

Moreover, Dp_. and Repg;“s (Ig,) have a remarkable property given by the following result:

cris

THEOREM 2.1.2 (Fontaine [Fon94b]). The functor Dp_ is fully faithful on Repgzris (Tg,)-

Our discussion in this subsection indicates that period rings and their associated functors
provide a general framework for the two main themes in p-adic Hodge theory. From the
arithmetic perspective, they provide dictionaries for classifying and studying p-adic Galois
representations in terms of linear algebraic objects. From the geometric perspective, they
allow us to uniformly formulate p-adic comparison theorems and to systemically detect geo-
metric properties of an algebraic variety over QQ, from its p-adic étale cohomology. Therefore
period rings and their associated functors are essential for studying p-adic Hodge theory via
the interplay between the arithmetic and geometric perspectives.
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2.2. The Fargues-Fontaine curve and its vector bundles

In this subsection, we provide a brief introduction to a remarkable geometric object called
the Fargues-Fontaine curve, which plays a fundamental role in modern p-adic Hodge theory.
We exhibit its key properties in comparison to the complex projective line P(lc. In addition,
we describe how it provides a geometric framework for studying p-adic Galois representations
via its vector bundles (i.e., locally free sheaves of finite rank).

Let us recall that IP’}C has the following properties:

(i) It is noetherian, connected, and regular of dimension 1.

)
(ii) Its Picard group Pic(P}) is canonically isomorphic to Z.
(iii) It has arithmetic genus 0 in the sense that H' (P, Op1 ) vanishes.
)

(iv) It admits a closed point oo, namely the point at infinity, with natural isomorphisms
PL — oo = Spec (Clz]) and  Opy , = C[[7"]]
where (I)/P(lj’\oo denotes the completed local ring at co.

Property is essentially a geometric formulation of the natural exact sequence
0 — C — C[z] — C((z71)/C[[z71]] — 0. (2.1)

Intuitively, this exact sequence indicates that we can construct IF’}C by gluing the complex
affine line Al = Spec (C[z]) to the infinitesimal disk at co, given by Spec (C[[z7']]), along the
punctured infinitesimal disk at oo, given by Spec (C((z71))).

The construction of the Fargues-Fontaine curve stems from a remarkable discovery of
Fontaine [Fon94al that the exact sequence admits an analogue for p-adic period rings.
By construction, the de Rham period ring Bggr is a discretely valued complete field with
residue field C,. We write B;R for the valuation ring of Bgr and B, := B?=! for the ring of

cris
p-invariants in Bg,is, where ¢ denotes the Frobenius endomorphism on Byis.

THEOREM 2.2.1 (Fontaine [Fon94al). There exists a natural exact sequence
0 — Q, — B, — Bar/Biz — 0. (2.2)

The exact sequences and have the following similarities:
(1) C[[z""]] and Bj; are both complete discrete valuation rings, with fraction fields
respectively given by C((z7!)) and Bgg.
(2) C[z] and B, are both principal ideal domains.
The second similarity is another surprising discovery of Fontaine, primarily based on the work

of Berger [Ber08|. The similarities of the exact sequences (2.1)) and (2.2)) inspire the construc-
tion of the Fargues-Fontaine curve X by gluing Spec (B.) and Spec (B ) along Spec (Bgr)-

THEOREM 2.2.2 (Fargues-Fontaine [FF18]). The Fargues-Fontaine curve X is a Q,-scheme
with the following properties:

(i) It is noetherian, connected and regular of dimension 1.
(ii) Its Picard group Pic(X) is canonically isomorphic to Z.

(iii) Tt has arithmetic genus 0 in the sense that H'(X, Ox) vanishes.
(iv) It admits a closed point co with natural isomorphisms

X — oo = Spec (Be) and @; ~ B:{R

where (Q/X?O denotes the completed local ring at oco.
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For an explicit description of the Fargues-Fontaine curve, we have a natural isomorphism
X 2 Proj (P) for a graded ring
P.=BM

n>0

where we set B{") = {f € Be: voo(f) > —n } with v denoting the valuation on Bggr. For
comparison, we have the identification P& = Proj (C[zo, zﬂ) and an isomorphism

Z(), 21 @ C
n>0

where we set C[2](™) := { f € C[2] : voo(f) > —n } = { f € C[z] : deg(f) < n } with vy denot-
ing the valuation on C((z7!)). The graded rings P and C|zg, z1] have an important common
feature of being generated in degree 1 (i.e., being generated by elements in BY and C[z)M).

However, unlike PC, the Fargues-Fontaine curve is not an algebraic variety The main
issue is that it is not of finite type over the base field Q,. In fact, Theorem 2| shows that
the residue field at oo is C,, and thus is not a finite extension of Qp

The work of Fargues-Fontaine [FF18] reveals a tidy connection between the category
Buny of vector bundles on X and the category ¢—Modg, of isocrystals over Q,, given by an
essentially surjective functor

& p—Modg, — Bunx .

The key fact is that we can produce a vector bundle V on X by gluing a vector bundle V, on
Spec (Be) to a vector bundle Vo on Spec (Bjr) along Spec (Bgr); in other words, we obtain
a vector bundle on X from a pair (M, M JR) consisting of a free B.-module M, of finite rank
and a BJR—lattice M (;FR in M, ®p, Bar- The functor £ sends each isocrystal D over Q, to
the vector bundle obtained from ((D ®q, Beris)?~"', D ®q, Biy), where ¢ denotes the natural
Frobenius action on D ®q, Beris induced by the Frobenius endomorphisms on D and Beyis.

On the category MFap of filtered isocrystals over QQ,, we have another functor
F: MF@ — Buny
§2)

which sends each filtered isocrystal D over Q, with filtration { Fil"(D) }, ., to the vector
bundle obtained from the pair ((D ®q, Beris)?~!, Fil’(D ®q, Bar)) with

Fil’(D @, Bar) = D Fil"(D) ®q, Fil " (Bar)-
neZ
The vector bundle F(D) for each D € MF“O carries a natural action of I'g, induced by the
['g,-action on Bgg, as the ring B. and the ﬁltratlon on Bggr turn out to be stable under the

[g,-action on Bgr. The functor F allows us to study filtered isocrystals and p-adic Galois
representations via vector bundles on X, as indicated by the following facts:

(1) There exists a natural I'g,-equivariant isomorphism
V= H(X, F(Dg,,(V))) for every V € Repge™(Tg,).

2) Every D € MF{ lies in the essential image of Dp_. if and only if F(D) is trivial.
Qp

cris

It is worthwhile to mention that applications of the Fargues-Fontaine curve reach far
beyond p-adic Hodge theory. In fact, the seminal work of Fargues-Scholze [FS21] shows
that the Fargues-Fontaine curve provides powerful geometric tools for studying ¢-adic Galois
representations in relation to algebraic groups. The book of Scholze-Weinstein [SW20] is a
wonderful introductory reference for the theoretical foundations of these applications.
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Exercises
1. Let E be the projective curve over Q given by the equation y? = z°® + .
(1) Show that F is an elliptic curve over Q with good reduction at all odd primes.

(2) Give an explicit description of the group law and the I'g-action on E[2](Q).

(3) Give an explicit description of the group law and the I'p -action on E[2](F5), where
E denotes the mod-5 reduction of E.

2. Let M be a 2 x 2 matrix over Zj,.

(1) When M has all entries in pZ,, prove that there exists a Dieudonné module D
over Z, of rank 2 with ¢p represented by M if and only if we have det(M) ¢ p3Z,.

(2) When M has an entry in Z,, prove that there exists a Dieudonné module D over Z,
of rank 2 with ¢p represented by M if and only if we have det(M) ¢ p?Z,.

Hint. Consider the Smith normal form of M.

3. In this exercise, we provide a simple analogy between the complex conjugation and the
p-adic cyclotomic character.

(1) Show that the complex conjugation naturally induces a character
X :Tr — Aut(R) 2 R*
with 7(¢) = ¢XO) for every v € T'g and ¢ € i, Where fio denotes the group of roots
of unity in C.

(2) Show that the p-adic cyclotomic character x yields the relation v(¢) = ¢X() for every
v € I'g, and ¢ € ppee, where ji00 denotes the group of p-power roots of unity in Q,,.

4. Let B be a p-adic period ring and n : I'g, — Q, be a continuous character such that the
induced p-adic Galois representation is B-admissible.

(1) Prove that there exists an element b € B with v(b) = n(y)~'b for every v € I'g, .
(2) If n is not trivial, prove that b is transcendental over Q.

Hint. Take an element v € I'g, with n(y) # 1. If b satisfies a polynomial equation
of degree d over QQ,, we can apply the action of v to see that b satisfies a polynomial
equation of degree d — 1 over Q.

5. Let A and B be subrings of a valued field C' with valuation ring O¢ and an exact sequence
0—A— B— C/Oc—0.
(1) If A is a field, show that the valuation of each f € B is nonnegative.
(2) For every f,g € B with g # 0, show that there exist elements a,b € B with
f=ag+b and —v(b) <-v(g),
where v denotes the valuation on C.

Remark. This exercise and Theorem together imply that B, admits an almost Euclidean
function given by the valuation of Byg.






CHAPTER II

Foundations of p-adic Hodge theory

1. Finite flat group schemes

In this section, we develop basic theory of finite flat group schemes and discuss some of
its applications to arithmetic geometry. Our primary reference for this section is the article of
Tate [Tat97]. Throughout our discussion, all rings are commutative unless specified otherwise.

1.1. Basic definitions and properties
We begin with the notion of group schemes over a base scheme S. We usually take S to

be affine and denote the base ring by R.
Definition 1.1.1. A group scheme over S, or an S-group, is an S-scheme G with maps

e m: G xg G — G, called the multiplication,

e ¢: S5 — (G, called the unit section,

e i: (G — (G, called the inverse,
which satisfy the group axioms given by the following commutative diagrams:

(a) associativity diagram

GxsGxsgG —"" L aysq

fdm lm

G xsG o G
(b) identity diagrams
G xgS = G Sxg@G = G
m / & /
GXSG GXSG

(c) inverse diagram
(iid

)
G —GxgG
(id,7)
| I
S ——— G
Remark. In other words, S-groups are group objects in the category of S-schemes.

LEMMA 1.1.2. A scheme G over S is a group scheme if and only if it defines a functor from
the category of S-schemes to the category of groups sending each S-scheme T to G(T).

PRrROOF. The assertion is evident by Yoneda’s lemma. O

19
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Definition 1.1.3. Let f : G — H be an S-scheme morphism between S-groups G and H.
(1) We say that f is a homomorphism if the induced map fr : G(T) — H(T') for each
S-scheme T is a group homomorphism.

(2) If f is a homomorphism, we define its kernel to be the functor ker(f) which maps
each S-scheme T to the kernel of the induced map fr: G(T) — H(T).

Example 1.1.4. Given an S-group G and an integer n, the multiplication by n on G is the
homomorphism [n]g : G — G given by the n-th power map on G(T') for each S-scheme T'.

Remark. The homomorphisms [—1]g and [1]g respectively coincide with the inverse map
and the identity map of G.

LEMMA 1.1.5. Given an S-group homomorphism f : G — H, its kernel is an S-group and is
naturally isomorphic to the fiber of f over the unit section of H.

PRrROOF. The assertion is straightforward to verify by Lemma [1.1.2 O

Definition 1.1.6. Let G = Spec (A) be an affine R-group.

(1) Tts comultiplication is the map p: A — A ®pg A induced by the multiplication.
(2) Its counit is the map € : A — R induced by the unit section.
(3) Its coinverse is the map ¢ : A — A induced by the inverse.

Example 1.1.7. We present some important examples of affine R-groups.

(1) The additive R-group is the R-scheme G, := Spec (R[t]) with the natural additive
group structure on G,(B) = B for each R-algebra B. Its comultiplication y, counit e,
and coinverse ¢ are the R-algebra homomorphisms with

pt) =t 14+1@t, €t)=0, t)=—t
(2) The multiplicative R-group is the R-scheme G, := Spec (R[t,t~!]) with the natural

multiplicative group structure on G,,(B) = B* for each R-algebra B. Its comulti-
plication pu, counit €, and coinverse ¢ are the R-algebra homomorphisms with
pt)=tot, et)=1, ot)=t"

(3) The n-th roots of unity for n > 1 is the R-scheme p, := Spec (R[t]/(t" — 1)) with
the natural multiplicative group structure on u,(B) ={b € B :b" =1} for each R-
algebra B. We can regard p,, as a closed R-subgroup of G,, via the natural surjection
R[t,t7'] — R[t]/(#" — 1) with the induced comultiplication, counit, and coinverse.

(4) If R has characteristic p, the Frobenius kernel is the R-scheme oy, := Spec (R[t]/t?)
with the natural additive group structure on oy (B) = {b€ B : b’ =0} for each R-
algebra B. We can regard o, as a closed R-subgroup of G, via the natural surjection
R[t] — RJt]/(t?) with the induced comultiplication, counit, and coinverse.

(5) Given an abstract group M, the constant R-group associated to M is the R-scheme

M = H Spec (R) = Spec (A) for A := H R with the natural group structure

meM meM
induced by M on M (B) for each R-algebra B, regarded as the set of locally constant

functions from Spec (B) to M. If we identify A and A ®p A respectively as the rings
of R-valued functions on M and M x M, we can describe the comultiplication u,
counit €, and coinverse ¢ by the equalities

p(f)(m,m’) = f(mm'), e(f) = f(a),  o(f)(m) = f(m™")
for each f € A and m,m’ € M, where 1,; denotes the identity element of M.
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LEMMA 1.1.8. Let G = Spec (A) be an affine R-group. Its comultiplication y, counit €, and
coinverse ¢ fit into the following commutative diagrams:

(a) coassociativity diagram

ARrARQr A & ARQrA

aci| [»

AR A g A
(b) coidentity diagrams
A®rR = A R®Rr A « = A
k / % /
A®rA A®rA
(c) coinverse diagram
1®id

A % A®RrA
| i
R+———— A
PRrROOF. The assertion is evident by definition. O

Definition 1.1.9. Given an affine R-group G = Spec (A), we define its augmentation ideal
to be the kernel of its counit ¢ : A — R.

LEMMA 1.1.10. For an affine R-group G = Spec (A) with augmentation ideal I, there exists
a canonical R-module isomorphism A= R I.
PROOF. The assertion follows from the observation that the structure morphism R — A
splits the short exact sequence
0—I—A—R—0
where € denotes the counit of G. O
ProposiTIiON 1.1.11. Let G be an affine R-group.

(1) The unit section of G is a closed embedding.
(2) The kernel of an R-group homomorphism f : H — G is a closed R-subgroup of H.

PROOF. Let us write G = Spec (A) and denote its augmentation ideal by I. The first
statement is evident as we naturally identify the unit section e of G with the closed embed-
ding Spec (A/I) — Spec(A). The second statement follows from the first statement after
identifying ker(f) with the fiber of f over e as noted in Lemma m O

Remark. Proposition [1.1.11] may fail for an R-group G which is not affine. In fact, the unit
section of GG is a closed embedding if and only if G is separated over R.

Example 1.1.12. Given an affine R-group G, its n-torsion subgroup Gn| := ker([n]q) for
each integer n is a closed R-subgroup of G by Proposition [I.1.11

Remark. We have a natural identification p, = G,,[n| for each integer n > 1.
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Let us now introduce the objects of main interest for this section. For the rest of this
section, we assume that R is noetherian unless stated otherwise.

Definition 1.1.13. Let G = Spec (A) be an affine group scheme over R.

(1) We say that G is commutative if it yields the commutative diagram

G xpG M=) oG

S A

where m denotes the multiplication of G.

(2) We say that G is finite flat of order n if it is commutative with A being locally free
of rank n over R.

LEMMA 1.1.14. Let G = Spec (A) be an affine group scheme over R.

(1) G is commutative if and only if G(B) is commutative for each R-algebra B.

(2) G is finite flat if and only if it is commutative with its structure morphism to Spec (R)
being finite flat.

PRrROOF. The first assertion is an immediate consequence of Lemma [1.1.2] The second
assertion follows from a general fact stated in the Stacks Project [Stal, Tag 02KB]. O

Example 1.1.15. Some group schemes introduced in Example are finite flat, as easily
seen by their affine descriptions.

(1) The n-th roots of unity u, is finite flat of order n.
(2) If R is has characteristic p, the R-group o, is finite flat of order p.

(3) For an abelian group M of order n, the constant R-group M is finite flat of order n.

PROPOSITION 1.1.16. For an abelian scheme A of dimension g over R, its n-torsion subgroup
A[n] = ker([n]4) is a finite flat R-group of order n?9.

PrROOF. Since all fibers of A are abelian varieties of dimension g, the assertion follows
from a standard fact about abelian varieties stated in the Stacks Project [Stal Tag 03RP]. O

Many basic properties of finite abelian groups extend to finite flat group schemes. Here
we state two fundamental theorems without a proof.

THEOREM 1.1.17 (Deligne). Given a finite flat R-group G of order n, the homomorphism [n]g
annihilates G in the sense that it factors through the unit section of G.

Remark. Curious reader can find Deligne’s proof of Theorem [1.1.17]in the lecture notes of
Stix [Sti, §3.3]. It is unknown whether Theorem [1.1.17) holds without the commutativity
assumption on G.

THEOREM 1.1.18 (Grothendieck [Gro60]). Let G be a finite flat R-group of order n with a
finite flat closed R-subgroup H of order m.

(1) There exists a unique R-group G/H which fits into a short exact sequence
0—H—G— G/H— 0.
(2) The R-group G/H is finite flat of order n/m.

Definition 1.1.19. Given a finite flat R-group G with a finite flat closed R-subgroup H, we
refer to the R-group G/H in Theorem [1.1.18|as the quotient group scheme of G by H.
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1.2. Cartier duality

In this subsection, we discuss a duality for finite flat R-groups. Given an R-module M,
we write M"Y for its dual module. For an R-linear map f, we denote its dual map by fV.

LEMMA 1.2.1. Let B be an R-algebra.

(1) Given an R-group G, the B-scheme Gp is naturally a B-group.
(2) Given a finite flat R-group G of order n, the B-group Gp is finite flat of order n.

(3) Given a short exact sequence of finite flat R-groups
0—G —G—G" —0,
the base change to B yields a short exact sequence
0— (G")p — Gp — (G")p — 0.
PROOF. The assertions are straightforward to verify by Lemma [1.1.2] Lemma[1.1.14] and
a standard fact about finite flat morphisms stated in the Stacks project [Stal, Tag 02KD|. O

Definition 1.2.2. Given a finite flat R-group G, its Cartier dual GV is the group-valued
functor on the category of R-algebras with

GY(B) = Homp.g1p(Gp, (Gy)p)  for each R-algebra B
where the group structure comes from the multiplication map on (G,,)p.
LEMMA 1.2.3. Given a finite flat R-group G with [n|g = 0, we have

GY(B) 2 Homp gp(Gp, (1tn)g)  for each R-algebra B.

PROOF. The assertion follows immediately from the identification p,, = Gy,[n]. O

THEOREM 1.2.4 (Cartier duality). Let G = Spec (A) be a finite flat R-group of order n with
comultiplication p, counit €, and coinverse ¢. For the R-algebra A, we write s : R — A for its
structure morphism and my : A ® g A — A for its ring multiplication map.

(1) AY is an R-algebra with structure morphism € and ring multiplication map p".

(2) GV is an R-group which admits a natural identification GV = Spec (A") with comul-
tiplication m, counit s, and coinverse ¢".

(3) GV is finite flat of order n.

(4) There exists a canonical R-group isomorphism G = (GV)V.

PROOF. Let us consider the natural identifications
RV=R and (A®RA)V >~ AV ®RAV.

The map " fits into associativity and commutativity diagrams induced by the corresponding
diagrams for the multiplication on G. In addition, we have commutative diagrams

AY Qr R = AY R®RAV = » AV

im % em %

A\/ ®RA\/ A\/ ®RA\/

induced by the identity diagrams for G. Hence we deduce statement
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Let us now consider statement It is straightforward to verify that GV := Spec (A"Y)
is an R-group with comultiplication m}, counit s, and coinverse ¢¥. Let B be an arbitrary
R-algebra. In light of Lemma [1.1.2] we wish to establish a canonical isomorphism

GY(B) =~ GY(B). (1.1)

Let pup, €, and tp respectively denote the comultiplication, counit, and coinverse of
Gp = Spec (Ap). By the affine description of G,, given in Example we find

GY(B) = Homp g,(Gp, (Gm)p) = { f € Hompag(B[t,t™"], Ap) : pp(f(1)) = f(t) @ f(1) }

where the identity pp(f(t)) = f(t) ® f(t) comes from compatibility with comultiplications.
Since we have the canonical isomorphism Homp e (B[t,t 7], Ag) = A} which sends each
f € Homp 14 (B[t,t71], Ap) to f( ), we obtain a natural identification

G'(B)={uecAf :ppu) =u®u}. (1.2)
Meanwhile, as AY, is a B—algebra by statement |(1)| ., we have
Gv (B) = HomR_alg(AV, B) = HOHIB_a]g(A%, B) (13)

Let us denote the ring multiplication map on B by mp and the identity map on B by idp.
By definition, Homp a14(A};, B) is the group of B-module homomorphisms AY, — B through
which p}; and €}, are respectively compatible with mp and idp. Taking B-duals, we identify
this group with the group of B-module homomorphisms B — Ap through which m}, and
id}; are respectively compatible with pup and eg. Since we have the canonical isomorphism
Homp a15(B, Ap) = A} which sends each f € Homp_a4(B, Ap) to f( ), we find

Homp.ag(Af, B) 2 {uec Af : pp(u) =u®u, ep(u)=1}. (1.4)

Moreover, the group scheme axioms for Gp yields the relation (EB ® idp) o up = idp and
consequently implies that every u € A% with p1p(u) = u®u must satisfy the identity ep(u) = 1.
Hence the isomorphisms ([1.3]) and . 1.4]) together yield a natural identification

Gv ={uecAf:puplu)=u®u}. (1.5)

Now we establish the desired 1somorphlsm by the identifications ((1.2)) and (|1.5]), thereby
completing the proof of statement

It remains to prove statements |(3)] - and |(4)| . Since GV is commutative by Lemma
and the commutativity of G,, we deduce statement [(3)] from statement [(2)] by observing that
AV is locally free of rank n over R. In addition, we apply statemen and |(2)] - to see
that the canonical R-module isomorphism A 2 (Av) is indeed an R-algebra isomorphism
which respects comultiplications, counits, and coinverses on both sides, thereby establishing
statement g

PropoOSITION 1.2.5. Given a finite flat R-group G and an R-algebra B, there exists a natural
B-group isomorphism GV xg B = (G xg B)".

PROOF. It is evident that GV xg B and (G xg B)Y are naturally isomorphic as group-
valued functors. Lemma and Theorem together imply that these functors are
indeed finite flat B-groups and thus yield the desired assertion. O

Definition 1.2.6. Given a homomorphism f : G — H of finite flat R-groups, we refer to the
induced homomorphism fV : G¥ — H" as the dual homomorphism of f.

Example 1.2.7. Given a finite flat R-group G, we have [n]% = [n]gv for every integer n > 0;
indeed, [n]{ maps each f € GY(B) = HomB_grp(GB,( m)B) for an arbitrary R-algebra B to

foln ]GB = [nlav (f).
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PROPOSITION 1.2.8. For every positive integer n, we have (Z/nZ)" = u, and p,, = 7Z/nZ.

PROOF. Let us set A := H R and write e; for the element of A whose only nonzero
1€L/nZ
entry is 1 in the component corresponding to i. As explained in Example we have
Z/nZ = Spec (A) with comultiplication p, counit €, and coinverse ¢ given by the relations

1 fori=0
i) = E v & ey, i) = . ) i) = €e—i.
ples) v+w:i€ c (e:) {0 otherwise e =e

Let my : AQr A — A and s : R — A respectively denote the ring multiplication map and
structure morphism of A. We have the dual basis (f;) of AV with

1 fori=j,
files) = {0 otherwise.

Theorem [1.2.4] yields a natural identification (Z/nZ)" = Spec (A¥) with comultiplication m,
v

counit sY, and coinverse ¥, where A" is an R-algebra with structure morphism €" and ring
multiplication map p¥. The maps p, €¥, mY, sV, and ¢V are determined by the identities

1 (fi ® ;) = fivgs €)= fo, ma(fi)=fi®fi, s'(fi)=1, '(fi)=f
Hence the map AV — R[t]/(t" — 1) sending each f; to ¢! induces an R-group isomorphism

(Z/nZ)" = p, by Example and in turn yields an R-group isomorphism pu,! = Z/nZ by
Theorem [1.2.4 O

ProrosITION 1.2.9. If R has characteristic p, the R-group «, is self-dual.

PROOF. As explained in Example we have a;, = Spec (A) for A := R[t]/(t?) with
comultiplication u, counit €, and coinverse ¢ given by the relations

; i 4 1 fori=0 : -
#) = Rt e(th) = .Ut = (—b)
He UJ%,::Z- <U) () {0 otherwise dt) = (=)

Let my : AQr A — A and s : R — A respectively denote the ring multiplication map and
structure morphism of A. We have the dual basis (f;) of AY with

. 1 fori=j
filt)) = .
0 otherwise.
Theorem yields a canonical identification o, = Spec (AY) with comultiplication m},
counit sV, and coinverse ¢V, where AV is an R-algebra with structure morphism €" and ring
multiplication map p¥. The maps p, €, mY, sV, and ¢V are determined by the identities
1+
p(fi® f5) = < i )f“rj» e’(1) =0,

V. N V. N 1 fOI”L':O V; N (1Y
mA(fz)—v—%:ifv®fwv S (fz)_{o otherwise V(fi) = (1) fi

Hence the map AV — A sending each f; to t*/i! yields an R-group isomorphism a;,/ =, O

Remark. When R has characteristic p, we have an R-scheme isomorphism 1, ~ o, given by
the ring isomorphism R[t]/(tP) ~ R[t]/(t’ — 1) sending ¢ to t + 1. Propositions and

together show that p, and «a; are not isomorphic as group schemes.
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PROPOSITION 1.2.10. Given an abelian scheme A over R with dual abelian scheme AV, we
have a natural isomorphism A[n]Y = AY[n] for every positive integer n.

PROOF. The homomorphism [n] 4 is surjective by a standard fact about abelian varieties
stated in the Stacks Project [Stal Tag 03RP]. Hence we have a short exact sequence

0— A — A 40
which gives rise to a long exact sequence

0 — Hom(A, G,n) ™5 Hom (A, Gr) — Hom(A[n], G) — Ext' (A, Gu) 15 Ext! (A, Grn).

In addition, we have natural identifications
Hom(A, Gr) =0, Hom(A[n],Gm) = An]",  Ext'(A,Gn) =AY

by definition of Cartier duals and some general fact about abelian varieties stated in the notes
of Milne [Mil, §9]. Therefore we obtain an exact sequence

0— An]Y — 4¥ L gv
which yields the desired isomorphism A[n]Y = AY[n]. O
Example 1.2.11. If R = k is a field, every elliptic curve E over k£ admits a natural isomor-

phism FE[n]Y 2 E[n| for each integer n > 1 by Proposition [1.2.10| and a standard fact that
elliptic curves are self-dual as stated in the notes of Milne [Mil, §9].

LEMMA 1.2.12. Given a closed embedding f : H — G of finite flat R-groups, there exists a
canonical isomorphism ker(fY) = (G/H)".

PROOF. Let B be an arbitrary R-algebra and fp : Hg — Gp denote the homomorphism
induced by f. Theorem [1.1.18] and Lemma together yield a canonical isomorphism
Gp/Hp = (G/H)p. Hence we obtain an identification

ker(f*)(B) = { g € Homp g (G, (Gm)p) 1 g0 f5 =0}
= {g c HOl’nB_grp(GB, (Gm)B) : HB C ker(g) }
> Homp.gep(G/Hp (Gun) ) = Hom ey (G/H) 5, (Gon) 5) = (G/H)(B),

thereby establishing the desired assertion. O

PRrOPOSITION 1.2.13. Given a short exact sequence of finite flat R-groups
Q—>G/—>G—>G//—>Q,
the Cartier duality gives rise to a short exact sequence

Q—>G”\/—>Gv—>G/v—>Q.

PROOF. Let f and g respectively denote the maps G’ — G and G — G” in the given
short exact sequence. It is straightforward to verify the injectivity of gV by the surjectivity
of g. In addition, Lemma yields a canonical isomorphism ker(fV) = G”V. Therefore
it remains to establish the surjectivity of fV. Since GV is a finite flat closed R-subgroup
of GV by Proposition [1.1.11] and Theorem we obtain the quotient R-group GV/G"Y
by Theorem [1.1.18] Now f" factors through a homomorphism GV/G"Y — G'Y, whose dual
coincides with the isomorphism ker(g) = G’ induced by f under the identifications

GV =G and  (GY/G") = ker((g")") = ker(g)

given by Theorem and Lemma [1.2.12] Hence we deduce that fV is surjective as desired,
thereby completing the proof. O



https://stacks.math.columbia.edu/tag/03RP
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1.3. Finite étale group schemes
In this subsection, we introduce finite étale group schemes and discuss their properties.

Definition 1.3.1. We say that an affine R-group G = Spec (A) is finite étale if it is finite
flat with 4,r = 0, where 24,z denotes the module of relative differentials.

LEMMA 1.3.2. Let G = Spec (A) be a commutative affine R-group.

(1) G is finite étale if and only if its structure morphism to Spec (R) is finite étale.
(2) When R = k is a field, G is finite étale if and only if there exists a k-algebra

n
isomorphism A ~ H k; where each k; is a finite separable extension of k.
i=1

PRrROOF. The first assertion is an immediate consequence of Lemma [1.1.14] The second
assertion follows from the first assertion by a standard fact about étale morphisms stated in
the Stacks project [Sta, Tag 00U3]. O

LEMMA 1.3.3. Given a finite étale R-group G and an R-algebra B, the B-scheme Gp is a
finite étale B-group.

PROOF. The assertion follows from Lemma/[l.2.1] Lemma and a standard fact that a
base change of an étale morphism is étale as stated in the Stacks project [Stal Tag 02GO|. O

PRrROPOSITION 1.3.4. Assume that R is a henselian local ring with perfect residue field k.
(1) There exists an equivalence of categories
{ finite étale R-groups } — { finite abelian groups with a continuous I'j-action }

which sends each finite étale R-group G to G(k).
(2) If a finite étale R-group G has order n, the abelian group G(k) also has order n.

PROOF. Let us first consider statement By some standard facts about finite étale
morphisms stated in the Stacks project [Sta, Tag 09ZS and Tag 0BQS|, there exists an
equivalence of categories

{ finite étale R-schemes } — { finite sets with a continuous I';-action }

which maps each R-scheme T to T'(k). Hence we obtain the desired equivalence by passing
to the corresponding categories of commutative group objects.

For statement we write G = Spec (A) for some locally free R-algebra A of rank n. By
m

Lemma [1.3.2] and Lemma |1.3.3] there exists a k-algebra isomorphism A ®g k =~ H k; where

each k; is a finite separable extension of k. Hence we find =
G(k) = HomR_alg(A,E) = Hompg alg(A ®r k, k) ~ HomR_alg(ﬁ ki k) = ﬁ Homy, (k;, k)
i=1 i=1
and in turn deduce that the order of G(k) is
S disny (1) = dim (A @ ) =,
thereby completing the proof.Z B O

Remark. Primary examples of henselian local rings are complete local rings and fields.


https://stacks.math.columbia.edu/tag/00U3
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PROPOSITION 1.3.5. Let G' = Spec (A) be a finite flat R-group with augmentation ideal I.
(1) There exist natural isomorphisms
I/PorA=Qyr and I/I°=Qupr®4 A/l
(2) G is étale if and only if we have I = I2.

PRrROOF. Let us consider a commutative diagram

GxpG W=D a G

where A and e respectively denote the diagonal morphism and the unit section of G. The
horizontal map is an R-scheme isomorphism whose inverse sends each (g,h) € G xp G
to (g,h1g) € G xr G. Hence we obtain a commutative diagram

ARrA +—F—— A®rA

a®b% %»—»a 5

where € denotes the counit of G. The horizontal map induces an isomorphism between the
kernels of the two downward maps. Let J denote the kernel of the left downward map. Under
the canonical decomposition

A®RA§A®RR@A®RI
given by Lemma [I.T.10, we identify the kernel of the right downward map with A ® I and
consequently obtain a natural isomorphism J = A ®g I. Now we have
Qa/p = J/ P2 (AQp D) /(AR D)* = (A®rD)/(A®rI*) =2 A®g (I/1%),
where the first identification comes from a standard fact about relative differentials stated in
the Stacks project [Sta, Tag 00RW], and thus find
Qajr©a (A/T) = ((I/1?) @r A) @4 A/T = (I/T*) ®r A/T = (I/I?) @g R=1/T7,

thereby establishing statement Statement immediately follows from statement 0

Remark. Let us sketch a slightly different proof of Proposition which provides some
geometric intuition behind our argument. The R-group G induces a natural action on the
R-module Qg/spec (r) = Qa/r by translations. Let wy,/g denote the R-module of invariant
elements in 24,z under this action. It is not hard to show by adapting our argument that
there exist canonical isomorphisms

WA/R®RAgQA/R and WA/RgQA/R@)AA/I'

The first isomorphism says that we can get every element in {24, by multiplying a global
section on G to an invariant element, while the second isomorphism implies that we can
determine every invariant element in {24, by its pullback along the unit section. Meanwhile,
since we have the conormal exact sequence

0—I/I* — Qup®aA/] — Qpp — 0

given by a standard fact stated in the Stacks project [Sta, Tag 06AA|, we obtain the iden-
tification I/1? = Qa/r ®a A/I by observing that Qp/p vanishes. Now we find wy,p = ~ J/I?
and consequently establish the desired assertions.


https://stacks.math.columbia.edu/tag/00RW
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PROPOSITION 1.3.6. Every finite flat constant group scheme is étale.

PROOF. Let M be a finite abelian group with identity element denoted by 0. We denote
by I the augment ideal of M. By the affine description in Example we have

M%Spec(HR) and I=]][R.

€M ieM

i#£0
Hence we obtain the identity I = I? and in turn deduce from Proposition that M is
étale as desired. O

PrOPOSITION 1.3.7. Assume that R = k is an algebraically closed field.

(1) Every finite étale k-groups is a constant group scheme.
(2) Given a prime p, the k-group Z/pZ is a unique finite étale k-group of order p.

PRrROOF. Proposition yields an equivalence of categories
{ finite étale k-groups } — { finite abelian groups }

which sends each finite étale k-group G to G(k). Meanwhile, for every finite abelian group M,
the constant group scheme M admits a natural isomorphism M (k) = M by Example
Hence we establish the desired assertions by Proposition and the fact that Z/pZ is a
unique group of order p. O

PrOPOSITION 1.3.8. A finite flat R-group G is étale if and only if the (scheme theoretic)
image of the unit section is open.

PrRoOOF. We write G = Spec (A) for some locally free R-algebra A of finite rank. In
addition, we denote by I the augmentation ideal of G. The (scheme theoretic) image of the
unit section is the closed subscheme Spec (A/I) of Spec (A).

Let us first assume that G is étale. Proposition shows that I/I? vanishes. Hence
by Nakayama’s lemma there exists an element a € A with a — 1 € I and af = 0. We obtain
the equality a? = a(a — 1) + a = a, which means that a is idempotent. Let us consider the
localization map A — A,, which is surjective as we have

i:b—a:b—a:é for each b € A and n > 1.

av  a"l a1
Its kernel consists of elements b € A with a"b = 0 for some n > 1, or equivalently ab = 0.
We see that the kernel contains I by the identity al = 0, while every element b in the kernel
satisfies the relation

b=—(a—1b+ab=—(a—1)be .

Hence the localization map A — A, has I as its kernel and yields an isomorphism A/I = A,.
We deduce that the closed embedding Spec (A4/I) < Spec (A) is open.

For the converse, we now assume that the embedding Spec (A/I) < Spec(A) is open.
Since open embeddings are flat as stated in the Stacks project [Stal Tag 0250], the ring
homomorphism A — A/I must be flat. Therefore we obtain a short exact sequence

O—>I®AA/I—>A®AA/I—>A/I®AA/I—>O7
which in turn yields a short exact sequence
0— I/I? — AJT — AJT — 0

with the third arrow being the identity map. We see that I/I? vanishes and in turn deduce
from Proposition that G is étale as desired. Il


https://stacks.math.columbia.edu/tag/0250
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THEOREM 1.3.9. A finite flat R-group G with order invertible in R must be étale.

PROOF. Let us write G = Spec (A) for some locally free R-algebra A of finite rank. The
group axioms for G yield commutative diagrams

Spec(R) ——— G G —4 g
(e,e)l / (id, e)u (e,id)
G XR G G XR G

where m and e respectively denote the multiplication map and unit section of G. These
diagrams are equivalent to the commutative diagrams

Re—— A Ave—9d 4
e®eT / ld®EWe®1d/ (16)
ARpr A A®prA

where 1 and € respectively denotes the comultiplication and counit of G. Let us denote the
augmentation ideal of G by I and take an arbitrary element t € I. We have u(t) € ker(e ® €)
by the diagram (|1.6)). Moreover, under the decomposition

AR A2 (R@rR)® (I ®rR)® (Rerl)d (I ®gI)
given by Lemma [1.1.10] we obtain a natural identification
ker(e®@e) = (I@rR)® (ROrI)® (I ®rI)

and thus find p(t) €a®1+1® b+ I @g I for some a,b € I. Now the diagram ((1.6)) implies
that a and b are both equal to ¢, thereby yielding the relation

pt) et@1+10t+I1@g1. (1.7)

We assert that [n]g for each n > 1 induces multiplication by n on I/I%. Let [n]s: A — A
denote the R-algebra homomorphism induced by [n]g. We have commutative diagrams

[nle

G————M G A+— A
([n—l}gjd)l / [n_l}A@)idT /
GxrG ARrA

and thus apply the relation to find [n]a(t) € [n—1]a(t)+t+I%. Since [1]4 is the identity
map on A, a simple induction yields the relation [n]4(t) € nt + I? for each n > 1. Hence we
obtain the desired assertion as ¢ is an arbitrary element in I.

Let us denote the order of G' by m. Theorem shows that [m]q factors through the
unit section of G, which implies that the induced map on §2 4, factors through Qg ,r = 0. We
find that [m]g induces a zero map on I/1? = Q4 ®4 A/I by Proposition m Meanwhile,
[m] ¢ induces the multiplication by m on I/I?, which is an isomorphism as m is invertible in R.
Hence we deduce that I/I? vanishes, thereby completing the proof by Proposition m O

Remark. Theorem [1.3.9|is the only result which relies on Theorem in our discussion.
If R is a field, it is possible to prove Theorem without using Theorem

COROLLARY 1.3.10. Every finite flat group scheme over a field of characteristic 0 is étale.
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1.4. The connected-étale sequence

Throughout this subsection, we assume that R is a henselian local ring and denote its
residue field by k. Our main goal for this subsection is to discuss a fundamental theorem that
every finite flat R-group naturally arises as an extension of an étale R-group by a connected
R-group.

LEMMA 1.4.1. A finite flat R-scheme is étale if and only if its special fiber is étale.

PRrROOF. The assertion immediately follows from some standard facts about étale mor-
phisms stated in the Stacks project [Stal, Tag 02GO, Tag 02GM, and Tag 00U3]. O

Remark. Our proof shows that Lemma does not require R to be henselian.

LEMMA 1.4.2. A finite R-scheme T is connected if and only if it satisfies the following equiv-
alent conditions:

(i) T is a spectrum of a henselian local finite R-algebra.

(ii) The action of I'y, on T'(k) is transitive.

PROOF. Let us write 7' = Spec (B) for some finite R-algebra B. By a general fact about
henselian local rings stated in the Stacks project [Sta, Tag 04GH]|, we have

n
B~ HBi
i=1

where each B; is a henselian local finite R-algebra. Since the spectrum of a local ring is
connected, each T; := Spec (B;) corresponds to a connected component of 7. Hence T is
connected if and only if it satisfies condition

We denote the residue field of each B; by k;. Via the isomorphism
T(k) = Hompg aig(B, k) ~ H Homy, (k;, k),
i=1

we identify each Homyg(k;, k) as an orbit under the action of I'y on T'(k). Therefore T is
connected if and only if it satisfies condition O

Remark. When £k is algebraically closed, a finite R-scheme T is connected if and only if
T'(k) is a singleton by Lemma [1.4.2]

LEMMA 1.4.3. A finite R-scheme is connected if and only if its special fiber is connected.

ProOOF. The assertion is evident by Lemma [1.4.2 O

Remark. Lemma [1.4.3]is a special case of a general fact that for every proper R-scheme T
there exists a natural bijection between the connected components of T' and the connected
components of T}, as stated in SGA 4 1/2, Exp. 1, Proposition 4.2.1.

LEMMA 1.4.4. Connected components of a finite flat R-scheme T are finite flat over R.

PROOF. Let T° be a connected component of T'. The closed embedding T° <« T is finite
flat by general facts stated in the Stacks project [Stal, Tag 035C, Tag 04PX]|. Hence T° is
finite flat over R by a standard fact that the composition of finite flat morphisms is finite flat
as stated in the Stacks project [Stal, Tag 01WK| Tag 01U7]. O

Remark. Our proof shows that Lemma|[I.4.4 holds without any assumption on the base ring.
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Definition 1.4.5. Given an R-group G, its identity component G° is the connected compo-
nent of the unit section.

LEMMA 1.4.6. For a finite flat R-group G, we have G°(k) = 0.

PROOF. Let us write G = Spec(A) for some locally free R-algebra A of finite rank.
By Lemma and Lemma we have G° = Spec (A°) for some henselian local finite
R-algebra A°. Since the unit section factors through G°, it induces a surjective ring homo-
morphism A° — R. We denote its kernel by I° and obtain an isomorphism A°/I° = R, which
induces an isomorphism between the residue fields of A° and R. Hence we find

G°(k) = Homp a1g(A°, k) = Homy (k, k) =0
as desired. ]

PROPOSITION 1.4.7. A finite flat R-group G is connected if and only if we have G(k) = 0.

ProOOF. If G(k) is trivial, G is connected by Lemma Conversely, if G is connected,

we have G = G° and thus find G(k) = 0 by Lemma O

Example 1.4.8. Let us present some primary examples of connected R-groups.
(1) If k has characteristic p, the R-group p,» for each integer v > 1 is connected by
Proposition
(2) If R has characteristic p, the R-group «, is connected by Proposition m

THEOREM 1.4.9. Let G be a finite flat R-group. The identity component G° is naturally a
finite flat closed R-subgroup of G such that the quotient G := G /G° is étale.

PROOF. Let us first prove that G° is a finite flat closed R-subgroup of G. Since we have
(G° xr G°)(k) = G°(k) x G°(k) = 0 by Lemma the scheme G° xpr G° is connected
by Lemma Hence the image of G° xr G° under the multiplication map lies in G° for
being a connected subscheme of G which contains the unit section. Similarly, the image of
G° under the inverse map lies in G°. Therefore G° is an R-subgroup of G, which is evidently
closed by construction. Moreover, G° is finite flat by Lemma [l.1.14] and Lemma [1.4.4

We now consider the finite flat R-group G¢ = G/G° given by Theorem Its unit
section G°/G° has an open image as G° is open in G by the noetherian hypothesis on R.
Hence we deduce from Proposition that G¢' is étale, thereby completing the proof. [

Definition 1.4.10. Given a finite flat R-group G, we refer to the short exact sequence
Q—)GO—>G—>Gét—>Q
given by Theorem [[.4.9] as the connected-étale sequence of G.

Example 1.4.11. Let us describe the connected-étale sequence of p,, for each integer n > 1.
If k& has characteristic 0, Corollary [1.3.10] and Lemma together imply that pu, is étale,
thereby yielding the connected-étale sequence

0— 0 — pin -5 1, — 0.
Let us henceforth assume that k£ has characteristic p. We may write n = p¥m for some positive
integers v and m such that m is not divisible by p. Then we have a short exact sequence
0 [p"]
0 — ppr — pin, — o, — 0. (1.8)

The R-group p,» is connected as noted in Example Moreover, since i, has order m
by Example [1.1.15] it is étale as easily seen by Theorem and Lemma Hence the
exact sequence (|1.8)) is indeed the connected-étale sequence of .
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PROPOSITION 1.4.12. Let G be a finite flat R-group.

(1) The natural surjection G — G induces a canonical isomorphism G(k) = G*(k).
(2) G is étale if and only if we have G° = 0.

PROOF. The first statement is evident by Lemma and Theorem Since the
(scheme theoretic) image of the unit section is closed as noted in Proposition [1.1.11} it is open
if and only if it coincides with its connected component G°. Therefore the second statement
follows from Proposition [1.3.8 U
PROPOSITION 1.4.13. Let f: G — H be a homomorphism of finite flat R-groups.

(1) If G is connected, f factors through the embedding H® — H.
(2) If H is étale, f factors through the surjection G — G**.
(3) f naturally induces homomorphisms f°: G° — H® and f¢ : G¢* — H®,

PRrROOF. The first statement is evident since the image of G is a connected R-subgroup
of H. The second statement follows from the fact that the image of G° lies in H® by the
first statement and thus is trivial by Proposition The last statement is an immediate
consequence of the previous two statements. O
PROPOSITION 1.4.14. Let G, G’, and G” be finite flat R-groups with a short exact sequence

0—G —G—G" —0.
(1) The given exact sequence induces short exact sequences
Q _ (G/)o _ GO _ (G//)o SN 97
0— (G/)ét _ Gét _ (G//)ét — 0.
(2) G is connected if and only if both G’ and G” are connected.
(3) G is étale if and only if both G’ and G” are étale.

PrROOF. Theorem and Proposition together yield a commutative diagram

0 0 0
0 —— (C;)C’ 5’ (G\’()ét ——0
0 5" sy G S Get » 0
0—— (G G" ) (G\’;)ét — 0
0 0 0

where the rows are exact. Since the middle column is exact, Proposition [1.4.12] implies that
the right column is exact on the level of k-points. We deduce from Proposition that
the right column is exact and consequently find by the snake lemma (or the nine lemma)
that the left column is exact as well, thereby establishing statement Statement is
an immediate consequence of Proposition Statement follows from statement |(1)| by
Proposition [1.4.12 Il
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PROPOSITION 1.4.15. Assume that R = k is a perfect field. For every finite flat k-group G,
the connected-étale sequence canonically splits.

PROOF. Let G™Y denote the reduction of G. If we write G = Spec (A) for some finite
dimensional k-algebra A, we have G™ = Spec (Ad) for A™d := A/n where n denotes the

nilradical of A. We wish to prove that the homomorphism G — G¢* admits a canonical section
induced by the closed embedding G™? — G.

We assert that G™4 is a k-subgroup of G. The scheme G**4 x;, G™4 is reduced by a general
fact that the product of two reduced schemes over a perfect field is reduced as noted in the
Stacks project [Stal, Tag 035Z]. Hence the image of G*¢ x;, G™4 under the multiplication map
lies in G™4 by a standard fact stated in the Stacks project [Stal, Tag 0356|. Similarly, the
image of G™Y under the inverse map lies in G™4. In addition, the unit section of G factors
through G™4 as k is reduced. Therefore G™4 is a k-subgroup of G as desired.

Let us now prove that G is finite étale. By construction, the affine ring A4 of G*d is

a finite dimensional k-algebra. Hence we deduce from some general facts stated in the Stacks
project [Stal Tag 00J6 and Tag 00JB] that there exists a k-algebra isomorphism

n
Ared ~ Aged
-
where each Afd is a finite dimensional local k-algebra with a unique prime ideal. In fact, since
Ared is reduced, each A;’ed is a finite field extension of k, which is separable as k is perfect.
Now Lemma implies that G*4 is finite étale as desired.

It remains to show that the homomorphism G™¢ — G — G¢ is an isomorphism. The
embedding G*? < G induces an isomorphism G™4 (k) = G (k) as k is reduced. Moreover, the
surjection G — G induces an isomorphism G(k) = G*(k) as noted in Proposition
Therefore the homomorphism G™ < G — G¢ yields an isomorphism G™4(k) = G (k)

which is clearly I';-equivariant. Since G™ and G are both finite étale, we establish the
desired assertion by Proposition O

Example 1.4.16. We say that an elliptic curve E over F,, is ordinary if E[p](F,) is isomorphic
to Z/pZ. We assert that every ordinary elliptic curve E over F, yields an isomorphism

Elp| ~ p, x Z/pZ.

Let us consider the connected-étale sequence

7

0 — E[p]° — Elp] — E[p]" — 0. (1.9)

We have E[p]*(F,) ~ E[p|(F,) ~ Z/pZ by Proposition [1.4.12|and thus find E[p]* ~ Z/pZ by
Proposition m Therefore the exact sequence (|1.9)) induces a dual exact sequence

0 — (2/pZ)" — Elp]" — (E[p]°)" —0

by Proposition [1.2.13| where the second arrow is a closed embedding by Proposition [1.1.11
Now we apply Proposition [1.2.8] and Example [1.2.11] to identify the map (Z/pZ)" — El[p]"

with a closed embedding 1, — FE[p], which in turn gives rise to a closed embedding y, — E/[p]°

by Proposition|1.4.13|and Example Moreover, as Example|l.1.15and Proposition|1.1.16
show that E[p]®® ~ Z/pZ and E[p] respectively have order p and p?, Theorem [1.1.18 implies

that E[p]° has order p?/p = p. Since p, also has order p by Example [1.1.15] the closed
embedding p, < E[p|® is indeed an isomorphism by Theorem |I.1.18, Hence we obtain the
desired isomorphism by Proposition [1.4.15



https://stacks.math.columbia.edu/tag/035Z
https://stacks.math.columbia.edu/tag/0356
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1.5. The Frobenius morphism

For this subsection, we assume that R = k is a field of characteristic p and write o for the
Frobenius endomorphism of k. We introduce and study homomorphisms of finite flat k-groups
induced by o.

Definition 1.5.1. Let 7' = Spec (B) be an affine k-scheme and r be a positive integer.
(1) The p"-Frobenius twists of B and T are respectively
BP) .= B@y,rk and T®) =T x4, k = Spec (BP),
where the factor k in the products has ¢" as structure morphism.

(2) The relative p”"-Frobenius of B is the k-algebra homomorphism @E;] : B¥) — B
which maps each b® ¢ € B®) =B Rk, k toc- " € B.

(3) The relative p"-Frobenius of T is the morphism QDL;] : T — T®) induced by @Eg.

(4) For r = 1, we often refer to ¢p := gog] and o7 = ga[%] as the Frobenii of B and T.
Remark. We can similarly define the Frobenius twists and relative Frobenii for all k-schemes.
LEMMA 1.5.2. Let T' = Spec (B) be an affine k-scheme and r be a positive integer.

(1) The Frobenius twists satisfy recursive relations

B — (B(pr))(p) and T® = (T(pT))(p).

(2) The relative Frobenii satisfy recursive relations

+1 +1
i = oppen  and @I = pren 0 ol
PRrROOF. The assertions are evident by definition. O
PROPOSITION 1.5.3. Let T'= Spec (B) be a k-variety with B = k[t1,--- ,t,]/(f1,--- , fm) for
some polynomials f1,--- , f;, in n variables. Fix a positive integer r.

(1) There exists a canonical k-algebra isomorphism
B®) gty o ]/ (P £
with fi(p ") obtained from fi by raising each coeflicient to the p"-th power.
(2) The homomorphism cp[g maps each t; € BP") to ¢ "eB.
(3) For a k-point on 7T that represents a common root (ci,---,¢,) of fi, -+, fm, its

image under g@%ﬂ represents the common root (c?lf, e ,cﬁr) of fl(pr), e ,fy(,fr).

PROOF. Statement follows from the fact that under the canonical identification
klty, - ,tn]®) = k[t1,--- ,t,], the natural map k[t1,--- ,t,] — k[t1, - ,t,]®") raises the

coefficients of each polynomial to their p"-th powers. Statement follows immediately from
statement Statement is a straightforward consequence of statement O

PROPOSITION 1.5.4. Given an affine k-scheme T' = Spec (B) and a positive integer r, the
morphism goi}n] induces a natural bijection T'(k) = T®") (k).

PROOF. Let Froby : T' — T denote the morphism induced by the p-th power map on B.

Under the natural bijection T®") (k) = T(k) x (Spec (k)) (k) = T(k) given by the fact that
(Spec (k)) (k) is a singleton, goi}ﬂ] maps each t € T'(k) to Frobl(¢) by construction. Hence we

establish the desired assertion by observing that Frob!. induces a bijection T'(k) = T'(k). O



36 II. FOUNDATIONS OF p-ADIC HODGE THEORY

Definition 1.5.5. Given a morphism f : T — U of affine k-schemes and a positive integer 7,
we refer to the induced morphism f®") : T®") — U®") as the p"-Frobenius twist of f.
Example 1.5.6. Given an arbitrary affine k-scheme 7" = Spec (B), we show the equality

() =l

for any positive integers » and s. For r = 1 and s = 1, since we have a commutative diagram
(»)
70 EI5 70?) — Spec (k)

L1

7, 7o) » Spec (k)

where each square is cartesian, we find (p7)® = @) by observing that the morphism
T® — 7 2L, 7P given by the left square induces the p-th power map on B®. For
r=1and s > 2, we have (p7)®") = ((@T)(p571))(p) and thus proceed by induction to find
(cpT)(pS) = Qpps). Finally, for r > 2 and s > 2, we have

(90[%])(1)5) = (‘PT@T—I) © 903271})@5) = (SOT@T—l))(pS) °© (W[%ﬂil])(ps)

by Lemma [I.5.2] and thus proceed by induction to obtain the desired equality.
LEmMA 1.5.7. Let T and U be affine k-schemes. Take a positive integer r.
(1) There exists a natural isomorphism (7" x U)®") = T®") x, U®") which canonically
identifies cp[(ZleU) with gol_,f] Xk @EE}.
(2) Every k-scheme morphism f: T — U gives rises to a commutative diagram

[r]
T 1 7"

f ®")
l [r] lf
U®)

Yu
where all maps are k-scheme morphisms.

PROOF. The assertions are straightforward to verify using properties of fiber products. [

ProPOSITION 1.5.8. Let G be an affine k-group and r be a positive integer.
(1) The p"-Frobenius twist GP") is naturally an affine k-group.
(2) The relative p"-Frobenius cp[g is a k-group homomorphism.
(3) If G is finite flat, G(*") is finite flat with a natural isomorphism (G(pr))v =~ (GV)P"),
PROOF. As we have G?) = G X or k, statements and are evident by Lemma
and Proposition Statements is a straightforward consequence of Lemma g

LEMMA 1.5.9. Let f: G — H be a homomorphism of affine k-groups.
(1) The p"-Frobenius twist f®") is a k-group homomorphism for each r > 1.
(2) If f is a closed embedding, f (?") is also a closed embedding for each r > 1.
(3) If f is an isomorphism, f (P") is also an isomorphism for each r > 1.

PRrROOF. The first statement is striaghtforward to verify by Lemma [1.5.7] The remaining
statements are evident by the construction of the Frobenius twists via base changes. O
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Definition 1.5.10. Let G be a finite flat k-group and r be a positive integer.

(1) We define the p"-Verschiebung to be 1/)[5] = (cp[gv)v, regarded as a homomorphism
from G@) = (G¥)®))" to G 2 (GY)V.
(2) For r =1, we often refer to g := wm @l as the Verschiebung of G.
ProprosITION 1.5.11. We identify the Frobenius and Verschiebung of «;,, uy, M as follows:
(1) For oy, we have @q, = 0 and 9, = 0.
(2) For pp, we have ¢, = 0 and v, = id, .
(3) For Z/pZ, we have @gz,7 = idz,z and 17,7 = 0.
PROOF. Let us begin with the Frobenii. We use the affine descriptions in Example
For oy, we find a,(;,p ) o ap and ¢, = 0 by Proposition For f1,,, we similarly find ug,p ) o Hp
and ¢, = 0. Let us now consider Z/pZ. We write A := H k for its affine ring and e; for

€L/ P
the element of A whose only nonzero entry is 1 in the component corresponding to i. Since
the A-algebra A®) admits a natural identification

AV = (] k) orok= ] Gerck)= ] k=4,

i€Z/pT i€Z/pL i€Z/pL
for each a = Z c;e; € A with ¢; € k we find
i€Z/pL
vala) =pa Z cei | = Z valcie;) = Z ciel = Z ce; = a.
i€Z/pl €L/pL €L/pL i€Z/pZ

Hence ¢z,,7 coincides with the identity map. Now that we have the desired identifications of

the Frobenii, we deduce the identifications for the Verschiebungs from the results on Cartier
duals such as Proposition and Proposition [1.2.9 O

LEMMA 1.5.12. Given a finite flat k-group G, we have ¢[Gr+1] = wg] o Yy for each r > 1.

PRrROOF. The assertion is evident by Lemma [1.5.2] O

LEMMA 1.5.13. Let G and H be finite flat k-group schemes. Take a positive integer r.

(1) There exists a natural isomorphism (G x H)®") 2= G®") x, H®") which canonically
identifies ¢£ngH) with 1/1[ r] X ks gogq]

(2) Every homorphism f: G — H of finite flat k-groups induces commutative diagrams

[r]
a _fS, an) e e

fJ, J’f(zﬂ fl lf(pr)
[r]

H 2H go) JH (o)
where all maps are k-group homomorphisms.

PROOF. By Lemma [T fiber products of finite flat k-groups are finite flat k-groups.
Hence the assertions follow from Lemma Proposition 8l and Lemma [1.5.9 Il
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PROPOSITION 1.5.14. Let G = Spec (A) be a finite flat k-group. We denote the symmetric
group of order p by &,, which acts on A®? by permuting factors of pure tensors.

(1) There exists a k-algebra homomorphism v : (A®?)® — AP with the following
properties:
(i) For each a € A, we have v(a®?) =a® 1.

(ii) For each pure tensor in A®P with unequal factors, the sum of elements in its
S,p-orbit maps to 0 under ~.

(2) The k-algebra homomorphism 14 induced by ¢ fits into a commutative diagram
pa

e T

AT (A% 3 4

J

A®P
with the map A — A®P induced by the comultiplication of G.

PRrROOF. Let us work with the natural k-algebra isomorphisms
v
A (A, (Sym? AY)Y = (A%)®, A0 = (1)),

given by Theorem Proposition and the fact that SymP(AY) is the k-algebra of
S,-covariants for (AY)®P. Since k has characteristic p, we have (f; + f2)®F = 1®p + fg)p in
SymP(AY) for any f1, fo € AY. Therefore there exists a unique k-algebra homomorphism
0 : (AV)P) — SymP AV which maps each f ®c € (AY)P) = AV @4, k to ¢+ f®P € SymP AV,
Let us take v to be the dual of . In addition, we identify each a € A with its image ¢, under
the isomorphism A = (4Y)Y. For each a € A and f ® c € (AY)P) = AV @4, k, we have

@) (f @) = (ea)*(c- fF) = ¢ f(a)f = (ea @ 1)(f @)
where the last equality follows from the identity f(a)®c =1®(c- f(a)?) in A®y k. Moreover,
given a pure tensor ®a; € A®P with unequal factors, we denote its S-stabilizer by S and find

7< ) ®a7<i>><f®c>= ) <®eaf<i>)<c~f®p>=c > If@) =0

7€6,/8 i=1 7€6,/8 \i=1 €6,/ i=1
for each f ® c € (AV)?) = AV @y, k, where the last equality follows from the fact that the
number of elements in &,/ is divisible by p. Therefore we establish statement
Let us now consider statement By construction, ¢ 4v fits into a commutative diagram

Pav

— . T

(AV)@) —— Sym” A ——3 A
T ®fi = [lav fi
( AV )®P
where [] v denotes the ring multiplication on AY. Theorem implies that the dual of
the map (AY)®? — AY in the diagram coincides with the map A — A®P induced by the

comultiplication of G. Since we have ¢4 = ¢4, by construction, we obtain the diagram in
statement by dualizing the above diagram, thereby completing the proof. O
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PRroOPOSITION 1.5.15. Every finite flat k-group G yields the identities
¢[CT;] o go[g] =[p'l¢ and go[é] ) zﬂ[g] = [p"]qw  for each integer r > 1.

PROOF. An inductive argument based on Lemma [I.5.2] and Lemma shows that it
suffices to establish the desired identities for r = 1. Let us write G = Spec (A) for some
finite dimensional k-algebra A. In addition, we let ¢4 denote the k-algebra homomorphism
induced by ¥ and &, denote the symmetric group of order p. Proposition yields a
commutative diagram

Pa

/@p\» »)

V. N —

\ \[ J‘PA
®Xa; — HA a;
7

A®P A

with the diagonal map A — A®P and the bottom horizontal map A®P — A respectively
induced by the comultiplication of G' and the multiplication of A. Therefore we have a
commutative diagram

G 4 ve G®)

e,
g1-gp(g1,.9p)

pr (g""vg)Hg G

and in turn find ¥¢ o ¢ = [p]g. Moreover, we have 4,0(61;) = ¢a as noted in Example m

and thus obtain a commutative diagram

aw) P o aw?)
¢GJ iwc(ﬂ)

by Lemma [1.5.13] Since we have established the identity g o pc = [p]g for an arbitrary
finite flat k-group G, we find vg 0 Yg = Vaw) © Paw = [Plaw as desired, thereby completing
the proof. O

Remark. Let us briefly discuss the Verschiebung for a general affine k-group G = Spec (A)
which is not necessarily finite flat. Our proof of Proposition readily shows that state-
ment holds for an arbitrary k-algebra A. In addition, the associativity axiom for G
implies that the k-algebra homomorphism A — A®P induced by the comultiplication of G
factors through the embedding (A®P)®» < A®P. Therefore there exists a unique k-algebra
homomorphism 14 : A — A® which fits into the diagram in statement We define the
Verschiebung of G to be the k-scheme morphism ¢ : G®) — G induced by 4. It is not hard
to verify that 14 is compatible with the comultiplications, which means that g is a k-group
homomorphism. Moreover, for each integer » > 1 we inductively define the k-group homo-
morphism wg} by the recursive relation in Lemmam It turns out that Lemma|l.5.13|and
Proposition [I.5.15] hold for general affine k-groups; indeed, we can establish Lemma iS [3

by a straightforward argument on affine rings and in turn deduce Proposition [1.5.15| by the
same proof. In addition, we can suitably adjust our argument in Example to obtain the

identity (w[Gr])(ps) = w[(;r]uﬁ) for any positive integers r and s.
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LEMMA 1.5.16. Let G = Spec (A) be a finite flat k-group.
(1) The Frobenius ¢¢ is an isomorphism if and only if it is injective.

(2) If G is connected, A is an artinian local k-algebra with its maximal ideal given by
the augmentation ideal of G.

PROOF. Since G and G are of the same order by construction, statement follows
from Proposition and Theorem If G is connected, A is an artinian local ring by
Lemma Lemma and a general fact that every finite dimensional algebra over a
field is artinian as noted in the Stacks project [Stal, Tag 00J6]. Hence we deduce statement
by observing that the augmentation ideal I of G is a maximal ideal as we have A/T 2 k. O

PROPOSITION 1.5.17. Let G = Spec (A) be a finite flat k-group.
[r]

(1) G is connected if and only if . vanishes for some integer > 1.
(2) G is étale if and only if ¢ is an isomorphism.

PROOF. Let us begin with statement |[(1)l If go[(";] vanishes for some r > 1, we find by

Proposition that G(k) is trivial and thus deduce from Proposition that G is con-
nected. For the converse, we now assume that G is connected. Its augmentation ideal I is
nilpotent by Lemma [1.5.16| and a standard fact stated in the Stacks project [Stal Tag 00J8];

in particular, there exists an integer » > 1 with t*" = 0 for all ¢t € I. Therefore @Z} factors
through the surjection A®") = AQ®p ork — (A/I) ®} or k induced by the unit section of G,
We deduce that gp[é] vanishes and in turn establish statement m

It remains to prove statement Let us assume that (¢ is an isomorphism. It is not hard
to see that pgo is an isomorphism, for example by Lemma [1.5.7] and Lemma [1.5.16] Hence

[r]

Example [1.5.6) and Lemma [1.5.9| together imply that ¢ Go)r) = gogo is an isomorphism for
each r > 1. Now a simple induction based on Lemma shows that o, is an isomorphism

for each r > 1. Since gog]o vanishes for some r > 1 by statement we find that G° is trivial

and consequently deduce from Proposition that G is étale.

We now assume for the converse that G is étale. It is not hard to see by Lemma [1.5.7] that
Prer(pe) Vanishes. Hence statement implies that ker(pg) is connected, which means that
ker(pg) lies in G°. Since G° is trivial by Proposition we find that ker(yg) is trivial
and in turn deduce from Lemma that g is an isomorphism. O

Remark. Proposition yields similar criteria for GV to be connected or étale in terms
of the Verschiebungs.

Example 1.5.18. Let E be an ordinary elliptic curve over Fp. We assert that there exists an
isomorphism ker(¢pp,) =~ p. Example shows that we have E[p]° ~ p,. Lemma
and Proposition together imply that ker(¢pp,)) is connected and thus lies in E[p]® >~ p,.
On the other hand, ker(¢gp,) contains E[p]° =~ pu, as ¢, vanishes by Proposition
Therefore we have ker(¢g,) = E[p]® ~ p, as desired.

Remark. As noted after Definition [1.5.1] we can define the relative Frobenii for general k-
schemes, including abelian k-varieties. Moreover, since abelian varieties admit a notion of
duality, we can define their relative Verschiebungs as in Definition It turns out that
most results that in this subsection remain valid for abelian varieties. In particular, for an
ordinary elliptic curve E over F,, we find ker(pg) C E[p] by the identity @b[ET] o cpg] =[p'E
and in turn obtain an isomorphsim ker(¢g) ~ p, from Example
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PROPOSITION 1.5.19. Let G = Spec (A) be a finite flat k-group with augmentation ideal I.

(1) For each integer r > 1, there exists a natural isomorphism
ker(¢l) = Spec (4/1¢7)

where IP") denotes the ideal generated by the p"-th powers of elements in 1.
(2) If pg vanishes, the order of G is p? where d denotes the dimension of I/I% over k.

PROOF. Let us denote by e the unit section of GG, which we naturally identify with the
closed embedding Spec (A/I) — Spec(A). The unit section of G®) is e®")  induced by
natural surjection A®") = A Qk,or k = (A/I) @k k. Hence statement . follows from the

identification of ker(gp[é]) as the fiber of gp[é] over eP"),

It remains to establish statement We chooose ai,---,aq € I whose images in I/I?
form a basis over k. Since G is connected by Proposition [1.5.17, we note by Lemma [1.5.16]
that A is a local ring with maximal ideal I and in turn deduce from Nakayama’s lemma that
ai, -+ ,aq generate I. Therefore statement yields an isomorphism A = A/(al,--- ,a:s).
Let us take the k-algebra homomorphism

A:k[tla"' atd] —>Ag‘4/(a11)> ,CLZ)
which maps each t; to a;. It is not hard to see by Lemma that \ is surjective, which
means that X\ yields an isomorphism
k[tl, cee ,td]/ker()\) ~ A.

Hence 24/, admits an isomorphism

QA/k:@A dt/ ST oA-df

f€ker(X)
by a standard fact about differentials stated in the Stacks project [Stal Tag 00RU]. Since €24y,

is a free A-module of rank d by Proposition |1.3.5 we see that Z A-df is zero and in turn
feker(X)

find that ker(\) is stable under partial derivatives. If ker()) is not a subset of (t,--- ),
we take a nonzero element f € ker(\)\(],--- ,t}) with minimal degree and observe that its
partial derivatives yield elements in ker(A ) which contradicts the minimality for f. Now we
must have ker(A) = (¢],--- ,¢}), as ker(\) evidently contains (t},--- ,t}), and consequently
deduce that A ~ k[ty,--- ,td]/(tjlo, -+, th) is free of dimension p? over k, thereby establishing
statement U

ProprosITION 1.5.20. If a finite flat k-group G is connected, its order is a power of p.

PROOF. Let us denote the order of G by n. Since the assertion is trivial for n = 1, we
henceforth assume the inequality n > 1 and proceed by induction on n. It is evident by
Proposition that G is not étale. Hence Lemma and Proposition together
imply that ker(p¢) is not trivial. In addition, as Proposition [1.1.11] implies that ker(¢¢) is a
closed k-subgroup of G, we apply Proposition[1.4.14] to see that both ker(¢¢) and G/ ker(¢¢)
are connected. Let us write n; and ngy respectively for the orders of ker(pg) and G/ ker(pq).
By Theorem we have n = nino. If g does not vanish, we find that both n; and no are
less than n and thus are powers of p by the induction hypothesis, which in particular implies
that n is a power of p. If g vanishes, Proposition shows that n is a power of p. Hence
we establish the desired assertion. O


https://stacks.math.columbia.edu/tag/00RU
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PROPOSITION 1.5.21. Given a finite flat k-group G = Spec (A) with unit section e, its tangent

space at e admits a canonical isomorphism ¢q . = Homy g, (G, Gg).

PRrROOF. Let us write I for the augmentation ideal of G and regard the unit section e
as a k-point of G via the natural closed embedding Spec (k) = Spec(A/I) — Spec(A).
The tangent space tg, is by definition canonically isomorphic to the kernel of the natural
homomorphism G(k[t]/(t?)) — G(k), which we naturally identify with the group of k-algebra
homomorphisms A — k[t]/(t?) whose composition with the map k[t]/(t?) — k equals the
counit € of G. Since we can uniquely write every k-linear map A — k[t]/(¢?) in the form
fo +tf1 with fo, fi € AY = Homy_poa(4, k), we find

tae 2 { f € Homyaig(A, k[t]/(t?)) : f = e+ tg with g€ A }
~{ge A :e+tg € Homyag(A, k[t]/ () }.
For each g € A, we have e +tg € Homy aig(4, k[t]/(t?)) if and only if it satisfies the identities
€(ab) +tg(ab) = (e(a) +tg(a)) (e(b) +tg(b)) and €(1)+tg(l)=1 foreacha, be A,
which are equivalent to the identities
g(ab) = €(a)g(b) + €(b)g(a) and ¢(1)=0 foreacha, be A

by the fact that € is an k-algebra homomorphism. We observe that the second identity is
redundant as it follows from the first identity for a = b = 1. In addition, the first identity is
equivalent to the commutative diagram

A—9 s k~keLk

ma
€RQg+9gRe

A®kA

where my4 denotes the ring multiplication map on A. We dualize this diagram under the
identification A = Homy.mod(4, k) = Homy med(k, AY) and find mY%(9) = g®@1+1®g.
Therefore we obtain a natural isomorphsim
tge={geA :mylg)=g@1+1®g}.
Meanwhile, by Example and Theorem we find
Homk—grp(GvaGa) = { fe Homk—alg(k[t]v AV) : m\//!(f(t)) = f(t) ®1+1® f(t) }

where the identity mY{(f(t)) = f(t) ® 1 + 1 ® f(t) comes from compatibility with comultipli-
cations. Since we have the canonical isomorphism Homy.a1s(k[t], AY) = AY which sends each
[ € Homy,_aig(k[t], AY) to f(t), we obtain a natural identification

Homy grp (GY,Go) = {ge A :my(9) =9g®1+1®g}.
Therefore we deduce the desired assertion, thereby completing the proof. O

PROPOSITION 1.5.22. A finite flat k-group G is étale if and only if Homy, g, (G, G,) vanishes.

PROOF. Let us write G = Spec (A) for some finite dimensional k-algebra A. We denote
the augmentation ideal of G by I and regard the unit section e as a k-point of G via the closed
embedding Spec (k) = Spec (A/I) — Spec (A). The tangent space tg . is naturally isomorphic
to the dual of I/I? by a general fact stated in the Stacks project [Stal Tag 0B2E|. Therefore,
by Proposition G is étale if and only if {g . vanishes. Now the desired assertion follows

from Proposition [1.5.21 U
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THEOREM 1.5.23. Assume that k is algebraically closed.

(1) Every simple finite flat k-group is either étale or connected.
(2) The simple finite étale k-groups are Z/¢7Z where ¢ ranges over all prime numbers.

(3) The simple connected finite flat k-groups are p, and o,.

PROOF. Statement is straightforward to verify by Theorem Statement fol-
lows from Proposition [1.3.6] Proposition [1.3.7, and the fact that the simple abelian groups
are precisely the cyclic groups of prime order. Hence it remains to prove statement

The k-groups 1, and «, are indeed connected as noted in Example[T.4.8] Moreover, they
are of order p by construction and thus are simple by Theorem We wish to show that
they are the only simple connected finite flat k-groups.

Let G be a simple connected finite flat k-group. Theorem and Proposition [1.2.13
together imply that GV is simple. Hence GV is either étale or connected by statement @

We consider the case where GV is étale. Statemeyields an isomorphism G ~ Z/{Z
for some prime ¢. Hence GG has order ¢ by Example and Theorem On the other
hand, the order of G is a power of p as noted in Proposition We thus find ¢ = p and
in turn obtain an isomorphism G ~ p, by Proposition m

Let us now consider the case where GV is connected. It is evident by Proposition
that neither G nor GV is étale. Theorem [1.2.4and Proposition together yield a nonzero
k-group homomorphism f : G — G,, which is indeed a closed embedding as G is simple.
Moreover, Lemma and Proposition together imply that ker(¢g) is not trivial,
which means that ¢ vanishes as G is simple. Therefore f must factor through ker(y¢g, ),
which is isomorphic to «, as easily seen by Example and Proposition Since a, is
simple, we deduce that f induces an isomorphism G ~ «,. O

Remark. In the category of finite flat group schemes, the image of a homomorphism is a
scheme theoretic image and thus is closed in the target; in particular, subobjects of a finite
flat k-group scheme is a closed k-subgroup.

Example 1.5.24. We say that an elliptic curve E over F,, is supersingular if E[p](F,) is trivial.
We assert that every supersingular elliptic curve E over F,, yields a short exact sequence

0—ap — Efp] — o — 0.

Example [1.1.15] and Theorem [1.5.23] together show that the order of everi simple finite flat

F,-group is a prime. Since E[p] has order p? as noted in Proposition [1.1.16} it is not simple
and thus admits a nonzero proper closed IF,,-subgroup H. Let us consider the exact sequence

Proposition [I.2.13] and Example [I.2.1] together yield a short exact sequence
00— (E[p}/H)v — Elp| — HY — 0.

We note by Proposition that E[p| is connected and in turn find by Proposition
that H, E[p|/H, H", (E[p]/H)" are all connected. Moreover, we see that both H and E|[p|/H
are simple as they have order p by Theorem Now Proposition[1.2.8]and Theorem
together imply that both H and E[p]/H are isomorphic to a,, thereby yielding the desired
assertion.

Remark. It turns out that the Fy-subgroup H ~ a, coincides with ker(ogp).
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2. p-divisible groups

In this section, we introduce p-divisible groups and discuss their fundamental properties.
The primary references for this section are the book of Demazure [Dem72] and the article of
Tate [Tat67]. Throughout this section, we let R denote a noetherian base ring.

2.1. Basic definitions and properties

In this subsection, we define p-divisible groups and describe their basic properties inherited
from properties of finite flat group schemes.

Definition 2.1.1. A p-divisible group of height h over R is an ind-scheme G = lim G, with
v>0
the following properties:

(i) Each G, is a finite flat R-group of order p*".
(ii) Each transition map i, : G, — G441 fits into a short exact sequence

Q Gv & G'L;Jrl ﬂ> Gerl-

Example 2.1.2. We present some important examples of p-divisible groups.
(1) The R-group 0 is a p-divisible group of height 0 over R via the identification 0 = lim 0.

(2) The constant p-divisible group over R is Qp/Z, := lim Z/p"Z with natural inclusions.
It is a p-divisible group of height 1 over R.

(3) The p-power roots of unity over R is fipe = lim e with natural inclusions. It is a
p-divisible group of height 1 over R.

(4) Every abelian scheme A of dimension g over R gives rises to a p-divisible group
A[p>] := lim A[p*] of height 2¢ over R by Proposition [1.1.16

Remark. When R has characteristic p, we have a finite flat R-group a,» := Spec (R[t]/t*") for
each integer v > 1 with the natural additive group structure on o, (B) = { beB:bvw =0 }
for each R-algebra B. However, the ind-scheme h_II}l ape over R with natural inclusions is not
a p-divisible group as [p|,» vanishes for each v > 1.

Definition 2.1.3. Let G = hL>nGU and H = li_n)le be p-divisible groups over R.

(1) An ind-scheme morphism f = (f,) from G to H is a homomorphism if each f, is an
R-group homomorphism.

(2) The kernel of a homomorphism f = (fy) from G to H is ker(f) := limker(f,).

Example 2.1.4. Given a p-divisible group G = lii>nGU over R and an integer n, the multi-
plication by n on G is the homomorphism [n]g := ([n]g,)-

LEMMA 2.1.5. Let B be an R-algebra.
(1) Given a p-divisible group G = lim G, of height  over R, the base change to B yields
a p-divisible group Gp = lim (Gy) g of height h over B.
(2) Given a short exact sequence of p-divisible groups over R
0—G —G—G" —0,
the base change to B yields a short exact sequence of p-divisible groups

0— (G"Yp — Gg — (G")g — 0.

PROOF. The assertions are straightforward to verify by Lemma [[.2.1] O
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LEMMA 2.1.6. Every p-divisible group G = lim G, over R yields R-group homomorphisms
o Gy = Gygw and Jy o @ Gypw — Gy for each v, w > 1 with the following properties:
(i) The map 4,4, induces a canonical isomorphism G, = G4 [p*].

(ii) There exists a commutative diagram

("]
Gv-i—w ’ Gv+w
jm /’w,v
Gu
(iii) There exists a short exact sequence
iv,w j'u,w
0 G, > Gytw > Gy > 0.

PROOF. Let us write i, : G, — G441 for the transition map. For each v, w > 1, the map
ty+w—1 induces a natural isomorphism

Gotw [pv] = Gytw [pv+w_1] N Gotw [pv] = Gypw—1 N Gotw [PU] = Gutw-1 [pv]
Hence we set iy, 4 := ty4w—10 - 01, and establish property |(i)| by induction on w. Moreover,
as the image of [p¥|q, ., lies in Gyyu[p*] by the fact that [p"**]q, ., vanishes, property
implies that there exists a unique map jyw : Got+w — Gw With property

It remains to verify property The map i,,, is a closed embedding as easily seen by
Proposition |1.1.11} Meanwhile, properties |(i)| and together yield an identification

ker(jv,w) - Gv—i—w[pv] = Gv~

Hence j, ., gives rise to a closed embedding Gy4v/Gy — Gy, which is indeed an isomorphism
by Theorem|1.1.18as both G4, /G, and Gy, have order p*. We deduce that j, ,, is surjective
and in turn establish property O

PRrROPOSITION 2.1.7. Given p-divisible groups G = lim Gy, and H = lim i, over R, there exists

a natural identification
Hom(G, H) = lim Hompg g, (Go, Ho).

ProOOF. We note that every R-group homomorphism G,4+1 — H,41 for each v > 1 natu-
rally induces an R-group homomorphism G, — H, and in turn obtain an injective map
lim Hom g grp (G, Hy) < Hom(G, H).

Moreover, for every homomorphism f = (f,) from G to H, we deduce from Lemma that
the image of each f, lies in H, as [p']¢, vanishes. Hence we establish the desired assertion. [

PropoOSITION 2.1.8. Let G = h_n>le be a p-divisible group over R.

(1) There exists a canonical identification G, = ker([p"]q) for each v > 1.

(2) The homomorphism [p]q is surjective.

PROOF. Given an integer v > 1, we obtain a natural isomorphism ker([p’]a,,) = G, for
each w > v by Lemma and thus establish statement In addition, we deduce from
Lemma that the map [p|g, , factors through a surjection Gyq1 — G, for each v > 1
and consequently establish statement O

Remark. Statement shows that the kernel of a homomorphism between two p-divisible
groups is not necessarily a p-divisible group. For statement we may define the surjectivity
of [p|¢ in terms of fpqc sheaves over R.
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PROPOSITION 2.1.9. Let G = h_II)lGU be a p-divisible group of height h over R.

(1) The ind-scheme G := lim G with transition maps induced by [p]g is a p-divisible
group of height h over R.
(2) There exists a canonical isomorphism G = (G¥)V.

PrROOF. Lemma [2.1.6| yields a commutative diagram

G
o
(p"]

\

jvzjl,v
Gv+1 4 G'L;Jrl

0 > Gy

G > 0
where the horizontal arrows form an exact sequence. Hence we obtain an exact sequence

0—aY gy, gy

v+1 v+1
by Example and Proposition [1.2.13] Now the desired assertions immediately follow from
Theorem [1.2.4 O

Definition 2.1.10. Given a p-divisible group G over R, we refer to the p-divisible group G
in Proposition as the Cartier dual of G.

Remark. Some authors refer to GV as the Serre dual of G.

Example 2.1.11. Let us record the Cartier duals of p-divisible groups from Example
(1) The Cartier dual of 0 is evidently 0 by definition.
(2) We have (Q,/Zy)" = pipee and pyeo = Qp/Z, by Proposition m
(3) Given an abelian scheme A over R, we have A[p>]¥ = AY[p*] by Proposition [1.2.10
where A" denotes the dual abelian scheme of A.
ProOPOSITION 2.1.12. Assume that R is a henselian local ring with residue field k. Let
G = lim G, be a p-divisible group over R.
jisininiy
(1) There exists a natural exact sequence of p-divisible groups
0—G —G—G"—0 (2.1)
with G° = lim G% and G* = lim G¢'.
— =

(2) If R = k is a perfect field, the exact sequence ([2.1]) canonically splits.

PROOF. Since the order of G is a power of p, we deduce from Theorem [1.1.18| that
the R-groups G and G‘%t respectively have order p"° and phet for some integers h° and h¢t.
Meanwhile, as Lemma yields a natural isomorphism G,.1/G, = G; for each v > 1, we
find G, /Gy = G and G<', | /G = G{* by Proposition [1.4.14] A simple induction based on
Theorem [1.1.18 shows that the R-groups G° and G respectively have order p**° and p”het.
In addition, Proposition yields short exact sequences

0— G, — G Ll Gypr and 00— Gqé]t - Git+1 Ll Gqéjt+1-
Therefore G° = lim G2 and G* = lim G are p-divisible groups over R. Now the desired
—
assertions are evident by Proposition and Proposition [1.4.15 Il

Remark. Proposition(2.1.12/implies an interesting fact that for a p-divisible group G = lim G,
over a henselian local ring R each G, being connected or étale is equivalent to (G; being
connected or étale.
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Definition 2.1.13. Let G = h_II)lGU be a p-divisible group over R.

(1) We say that G is connected if each G, is connected.

(2) We say that G is étale if each G, is étale.

(3) If R is a henselian local ring, we refer to the p-divisible groups G° and G¢* in Propo-
sition [2.1.12| respectively as the connected part and the étale part of G.

Example 2.1.14. Below are essential examples of étale or connected p-divisible groups.

(1) The constant p-divisible group Q,/Z, is étale by Proposition m

(2) If R is a henselian local ring with residue field of characteristic p, the p-power roots
of unity pip~ is connected by Example

Definition 2.1.15. Assume that R = k is a field of characteristic p. Let G = h_r)nGv be a
p-divisible group over k and r be a positive integer.

(1) The p"-Frobenius twist of G is G®") := h_I)nGS,pT) with transition maps given by the
p"-Frobenius twists of the transition maps for G.

(2) We define the p"-Frobenius of G to be gog] = (go[gv) and the p”-Verschiebung of G
to be zb[GT] = (w[Gﬂv)
(1]

(3) For r = 1, we often refer to g := 5 and g := @Dg] respectively as the Frobenius
and the Verschiebung of G.

PROPOSITION 2.1.16. Assume that R = k is a field of characteristic p. Let G be a p-divisible
group of height h over k and r be a positive integer.

(1) The ind-scheme GP") is a p-divisible group of height h over k.

(2) The maps <pg] and w[Gr] are homomorphisms of p-divisible groups.

(3) We have ;) o g = [p')c and o) o g =[] g
PRrROOF. The assertions are direct consequences of Proposition Lemma [1.5.13] and

Proposition [I.5.15 O
Definition 2.1.17. If R = k is a field, for a p-divisible group G = li_I)nGU over k we define

its Tate module to be T)(G) := lim G, (k) with transition maps induced by [plc-

PROPOSITION 2.1.18. If R = k is a field, for a p-divisible group G = lim G, over k the Tate
module T},(G) is naturally a finite free Z,-module with a continuous I'x-action.

PROOF. The assertion is evident as each G (k) is a finite free module over Z/p*Z and
carries a canonical continuous I'j-action. O

ProrosiTION 2.1.19. If R = k is a perfect field of characteristic not equal to p, there exists
an equivalence of categories

{ p-divisible groups over k } — { finite free Z,-modules with a continuous I'y-action }

which sends each p-divisible group G over k to T,(G).

PRrROOF. Let G = liL>nGU be a p-divisible group over k. Since all finite flat k-groups of
p-power order are étale by Theorem [1.3.9] it is not hard to deduce from Proposition that
the functor is fully faithful. Moreover, given a finite free Zy,-module M with a continuous
['k-action, Proposition yields a finite étale k-group G, with G, (k) = M/(p®) for each
integer v > 1 and in turn provides a p-divisible group G = lim G, with T,(G) = M. Therefore
we deduce that the functor is an equivalence as desired. O
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2.2. Serre-Tate equivalence for connected p-divisible groups

In this subsection, we introduce formal group laws and explore their relations to p-divisible
groups. Throughout this subsection, we assume that R is a complete reduced noetherian local
ring with residue field k of characteristic p. We often denote the ring R([[¢1, - - , t4]] of power
series in d variables by 7, or simply by o if the context clearly specifies d. We work with
the canonical identifications @ re = R[[T,U]] and #@ray@py = R[[T,U, V]], where
we write T := (t1,- -+ ,tq), U := (u1, -+ ,uq), and V := (v1,- -+ ,vq).

LEMMA 2.2.1. An R-algebra homomorphism f : R[[t1, - ,ty]] — R[[u1,- -, up]] is continu-
ous if and only if each f(¢;) lies in the ideal & := (uq, -, up).

PROOF. The map f is continuous if and only if there exists an integer v with f(t}) € &
for each i = 1,--- ,n. Hence the assertion follows from our assumption that R is reduced. [

Definition 2.2.2. A formag\gmup law of dimension d over R is a continuous R-algebra
homomorphism p : o7y — 3® gy such that ®(T,U) := (u(t;)) satisfies the following axioms:
(a) associativity axiom ®(7',®(U,V)) = ®(®(T,U),V),
(b) unit section axiom ®(7,0) =71 = ®(0,7),
(¢) commutativity axiom ®(T,U) = ®(U,T).
Example 2.2.3. We present two primary examples of one-dimensional formal group laws.

(1) The additive formal group law over R is the continuous R-algebra homomorphism
ug: : R[] — R[[t, u]] with pg-(t) =1+ u.

(2) The multiplicative formal group law over R is the continuous R-algebra homomor-
phism pg~: R[[t] — R[[t, u]] with pg~(t) = (1 +1)(1+u) — 1.

LEMMA 2.2.4. Let p: &/ — @/ Qg4 be a formal group law of dimension d over R represented
by ®(T,U) := (u(ti)). We have a d-tuple =Z(17") = (Z;(T")) of power series in d variables with
O(T,Z(T)) = 0 = B(E(T), T).

PROOF. By the commutativity axiom for pu, it suffices to construct a d-tuple Z(7") with
®(T,Z(T)) = 0. Let us consider the ideal .# := (t1,---,tq) of &/. We have a natural

identification S ®.F = (t1,--- ,tq,u1, - ,uq). For each R-module M, we regard M*? as the
set of d-tuples whose entries all lie in M. We wish to present the desired d-tuple as a limit

—_

=(T) = Jlirrolo P;(T) where each Pj(T') is a d-tuple of polynomials with

Pi(T) € Pj_1(T) + (#9)*¢ and &(P;(T),T) € (F7H1)*2,

The unit section axiom for u yields the relation

O(T,U)eTHU + (FR5)%)*1. (2.2)

Let us set P(T") := —T and inductively construct P;(T") for each j > 1. By the relation
®(P;_1(T),T) € (#9)*4 there exists a d-tuple A;(T) € (#£7)*? with

Aj(T) € =(P;_1(T),T) + (F7H)*2, (2.3)

For Pj(T) := Pj_1(T) + Aj(T), we have P;(T) € P;j_1(T) + (.#7)*?¢ and find
®(Py(T),T) = ®(Pj—1(T) + Aj(T), T) € ®(Pj—1(T),T) + Aj(T) + (F7H1) " = (F7H1)
by the relations and (2.3)). Therefore we obtain a desired d-tuple =(T). g

Remark. Lemma shows that the inverse axiom is automatic for formal group laws.
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LEMMA 2.2.5. Let p : & — &/ @p</ be a formal group law of dimension d over R.

(1) The formal group law p yields commutative diagrams

o N R -~ (EA — AZE -~
o » S OpA ABpd — 2V AR pad

| b TN A

ASpd — SRR AR

(2) The R-algebra map €: o/ — R with €(¢;) = 0 fits into commutative diagrams

od —9 g~ s JORR od —9 s~ REpo
A Qg ADpod

(3) There exists an R-algebra map ¢ : &/ — & that fits into a commutative diagram

od —B s ARp

Jﬁ id@bﬂb@id

R—— &

PRrROOF. Statements and are evident by the axioms for p. Statement is a

reformulation of Lemma 2.2.4] O

Remark. We can extend the notion of R-groups to define formal R-groups as group objects
in the category of formal R-schemes. Lemma shows that every formal group law p of
dimension d over R corresponds to a unique a formal R-group ¥, = Spf(%/) with comultipli-
cation pu, counit €, and coinverse ¢.

Definition 2.2.6. Let p and v be formal group laws over R.

(1) A homomorphism from p to v is a continuous R-algebra map 0 : @y — </; with a
commutative diagram

&Zfd/ —Z dd’@RbQ{d’

le le@e
Ay —L s Ay® gty

where d and d’ respectively denotes the dimensions of p and v.

(2) A homomorphism 0 : @y — o from p and v is finite flat if <7; becomes a free
module of finite rank over &7y via 6.

Remark. The map 6 goes from the power series ring for v to the power series ring for u so
that it corresponds to a formal R-group homomorphism ¥,, — ¢, . If we consider the tuples
O(T,U) = (u(ts)), ¥(T,U) := (v(t)), and Z(T) := (0(t;)), the commutative diagram for ¢
is equivalent to the identity W(=(7),2(U)) = 2(®(1,T)).

Example 2.2.7. Let p be a formal group law of dimension d over R. For each integer n > 1,
the multiplication by n on p is the homomorphism [n], : & — & inductively defined by the
relations [1], = idy and [n], = ([n — 1],&®id) o p.

Remark. The map [n], induces the multiplication by n on the formal R-group ¥,,.
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Definition 2.2.8. Let y: &/ — &/®@p/ be a formal group law of dimension d over R.
(1) We refer to the ideal .# := (t1,--- ,t4) in &7 as the augmentation ideal of p.
(2) We say that p is p-divisible if the homomorphism [p], : &/ — 7 is finite flat.

Remark. The ideal .# is the kernel of the counit € : &/ — R for the formal R-group ¢,,. Hence
our definition here is comparable to the definition of augmentation ideal for affine R-groups.

Example 2.2.9. Let us consider the formal group laws introduced in Example
(1) The additive formal group law pg; is not p-divisible; indeed, [p]#@; satisfies the
identity [p] ne. (t) = pt and thus is not finite flat for inducing a zero map on &7 ®p k.
(2) The multiplicative formal group law pg— is p-divisible; indeed, [p] ng satisfies the
identity [p]u@\n (t) = (1 4+t)? — 1 and thus is finite flat.

PROPOSITION 2.2.10. Let p: @/ — &/ @pr</ be a p-divisible formal group law of dimension d
over R with augmentation ideal .#. We write A, := </ /[p"],(#) for each v > 1.

(1) Each u[p¥] := Spec (A4,) is naturally a connected finite flat R-group.

(2) The ind-scheme p[p>] := lim p[p"] is a connected p-divisible group over R.

PROOF. Let us take € and ¢ as in Lemma [2.2.5] For each v > 1, we have
Ay =[Pl (I) 2 A ]I @ [pr), = Ry pv), ¥
and thus find that p[p¥] = Spec (4,) is naturally an R-group with comultiplication 1®u, counit
1 ® €, and coinverse 1 ® ¢. If we take a basis of & over [p|,(4/) given by fi,---, fr € &,
a simple induction yields a basis of &/ over [p’],(<) for each v > 1 given by elements of
the form [p*~],.(fi, 1) [Plu(fir) fig With (ig, -+ ,iy—1) € (Z/rZ)" and consequently implies
that p[p¥] is finite flat of order ¥ over R. Moreover, since R is a local ring, both & and

A, = o /[p’]u(F) are local rings as well. We deduce that p[p"] is connected and in turn
establish statement

Let us now consider statement Lemma and Proposition |1.5.20| together imply
that p[p] has order p” for some integer h. Therefore our discussion in the previous paragraph

shows that each u[p¥] has order p*". Furthermore, the R-algebra homomorphism
Ay = [[p)u(F) — [p]() /"] (F)

induced by [p], is an isomorphism for being a surjective map between two free R-algebras of
the same rank. Hence we obtain a surjective ring homomorphism

Avi1 = [P () = [plu(@) /0" (F) = Ao,

which induces an embedding i, : p[p®] < p[p®T!]. Since it is evident by construction that
i, identifies u[p?] with the kernel of [p’] on u[p**!], we conclude that pu[p™>] := lim pu[p"] is a
connected p-divisible group of height h over R, thereby completing the proof. O

Remark. We can alternatively deduce statement from statement by the identifidcation
plp®] = 9, [p"] for each v > 1.

Definition 2.2.11. Given a p-divisible formal group law p over R, we define its associated
connected p-divisible group over R to be u[p™] as constructed in Proposition [2.2.10

Example 2.2.12. The multiplicative formal group law P is p-divisible as explained in

Example For each v > 1, we have [p],  (t) = (1 +)P" —1 and thus find piz—[p"] = e

by Example Hence we obtain a natural identification pz— [P>°] = pipee.
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Our main objective for this subsection is to prove a theorem of Serre and Tate that the
association described in Proposition [2.2.10| defines an equivalence between the category of
p-divisible formal group laws and the category of connected p-divisible groups.

LEMMA 2.2.13. Let p : &/ — &/Qp/ be a formal group law of dimension d over R with
augmentation ideal .#. For each integer n > 1, we have

[n]u(ti) ent; + 72

PROOF. Let us take d-tuples ®(T,U) := (u(t;)) and Z,(T") := ([n]u(t;)) for each n > 1.
Given an R-module M, we regard M *¢ as the set of d-tuples whose entries all lie in M. Under
the natural identification S ®. = (t1,--- ,tg, u1,- -+ ,uq), we find

(T, U) e T+U + (F8.9)%)*
by the unit section axiom for . Hence the identity [n], = ([n — 1],®id) o u yield the relation
EZn(T) = ®(Z,_1(T),T) € Ep_ i (T) + T + (F2)*4.
Since we have Z1(T) = T by definition, we proceed by induction to find =, (T) € nT + (#2)*?
for each n > 1, thereby completing the proof. ]

Remark. The proof of Theorem [1.3.9] yields an analogous relation for finite flat R-groups.

LEMMA 2.2.14. Given a p-divisible formal group law p : & — &/ &g/ of dimension d over R
with augmentation ideal .#, there exists a natural topological R-algebra isomorphism

o = lim A,
where we write A, := o7 /[p"],(F) for each v > 1.

PROOF. Since R is a local ring, &/ and A, are also local rings for each v > 1. Moreover,
each A, is a free R-algebra of finite rank as noted in Proposition Let us write m
for the maximal ideal of R and MM := m« 4+ £ for the maximal ideal of &/. We have
[pl(F) CpI + .92 CMI by Lemmaand thus find [p¥],(.#) € MY.7 for each v > 1.
Hence for each i, v > 1 we have [p¥], (%) +mle/ C MY for some w > 1. Meanwhile, for each
i, v > 1 we find MY C [p¥],(F) +mie/ for some w' > 1 as o /([p¥],(F) +mie/) = A,/mA,
is local artinian. Now we obtain a topological R-algebra isomorphism

o = im .o/ /MY = lim o /([p*],(F) + m'e/) = lim A, /m* A, = lim A,
w 1,0 .8 v
where the last identification comes from an observation that each A, is m-adically complete
by a general fact stated in the Stacks project [Stal Tag 031B]. O

LEMMA 2.2.15. Given p-divisible formal group laws p and v over R, there exists a natural
identification
Hom(y, v) = Hom(p[p™], v[p™]).

PROOF. Let us write d and d’ respectively for the dimensions of p and v. In addition, we
set Ay := 2/ [p"|u(A,) and By, = oy /[p*],(H,) for each v > 1, where .7, and .7, respectively
denote the augmentation ideals of i and v. Proposition shows that u[p¥] := Spec (4,)
and v[p’] := Spec (B,) are connected finite flat R-groups. Since we have ; = lim 4, and
“y = lim B, by Lemma we apply Proposition m to obtain a natural identification

Hom(y, v) = lim Homy, 4, (By, Ay) = lim Homp. g (u[p*], v[p*]) = Hom (u[p™], v[p™])

where Hom,, ,,,(By, Ay) denotes the set of R-algebra maps B, — A, compatible with the
comultiplications p, on p[p¥] and v, on v[p"]. O
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PROPOSITION 2.2.16. Let G = lii>nGv be a connected p-divisible group over R.

(1) There exists a topological k-algebra isomorphism
im(A, ®g k) ~ k[[t1,- -+ ,ta]] for some d >0
where A, denotes the affine ring of G,.

(2) The special fiber G := G xp k is a p-divisible group over k such that ker(¢g) is a
finite flat k-group of order p?.

ProoF. It is evident by Lemma that G is a p-divisible group over k. Let us write
G, =Gy Xp k and H, := ker(go[g) for each v > 1. Proposition [2.1.8| and Proposition [2.1.16
together imply that each H, is a closed k-subgroup of G[p’] = G,. Moreover, each G, is

connected by Lemma |1.4.3| and thus is a k-subgroup of ker(go[g]) = H,, for some w > 1 by

Proposition |1.5.17, Now we write H, = Spec (B,) for each v > 1 and obtain a topological
k-algebra isomorphism

liLnAv ®rk ~lim B,. (2.4)

We denote the augmentation ideal of H, by J, and set J := lim J,,. Since each H, is
connected, as easily seen by Proposition its affine ring B, is a local k-algebra with

maximal ideal J, by Lemma|l1.5.16| In addition, we have H; = ker(yp,) by Lemma and

thus apply Proposition [1.5.19] to obtain an isomorphism B; = B,/ Jép ) where Jl(,p ) denotes
the ideal generated by the p-th powers of elements in J,. Now we find J; = J,/ qup ) and in
turn get an identification Jy/J? = J,/J2. Let us take by,--- ,by € J whose images in J; /J?
form a k-basis. Nakayama’s lemma implies that J, admits generators given by the images
of by, -+, by and consequently yields a surjective k-algebra homomorphism k[ty,- - ,t4] - B
which sends each ¢; to the image of b; in B,. Furthermore, as SOEZ}I]U vanishes by Lemma |1.5.7
this map induces a surjective k-algebra homomorphism

Xo Kt ta /(8 th) = B,
by Proposition [1.5.19] Hence we obtain a continuous k-algebra homomorphism
A k‘[[tl, s ,td]] - liLnBy

via the identification k[[t1, -+ ,tq]] = limk[ty, -~ ,ta]/(t] , -+ 2] ).

In light of the isomorphism , we wish to show that )\ is a topological isomorphism. We
only need to prove that each A, is an isomorphism. Since each )\, is surjective by construction,
it suffices to verify that its source and target have equal k-dimensions; in other words, it is
enough to show that each B, has k-dimension p™, or equivalently that each H, has order p?.

For v = 1, the assertion follows from Proposition [1.5.19 Let us henceforth assume the

inequality v > 1 and proceed by induction. Proposition [2.1.16|shows that é(p ) is a p-divisible
group over k with ¢z o ¢z = [p]é(p). Moreover, as [p]é(p) is surjective by Proposition

the map ¢ is surjective and thus maps H, = ker(gp[g) surjectively onto ker(gp[g(_ml ]) ~ [P,
We deduce that there exists a short exact sequence

0— H — H,—HY, —0.

Now the desired assertion follows from Theorem [1.1.18 and the fact that the order of H, () is

v—1
the same as the order of H,_1. O

Remark. The ind-scheme H = lii>nHv is not necessarily a p-divisible group.
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LEMMA 2.2.17. Given an R-algebra B, its ideal J with J®grk = 0 is trivial if for each maximal
ideal n of B the By-module J, admits a finite set of generators.

PROOF. Let us write m for the maximal ideal of R. For each maximal ideal n of B, we
have J, = mJ, C nJ, and thus deduce from Nakayama’s lemma that J, is trivial. [l

LEMMA 2.2.18. Let G = lim G, be a p-divisible group over R with G, = Spec (Ay).
(1) G gives rise to a flat R-algebra lim A,.
(2) If an R-algebra B admits a k-algebra isomorphism
0: (Begrk)[ty, - ,tq] — lim(A, ®@g k)  for some d > 0,

there exists an R-algebra surjection 0 : Bl[t1,- -+ ,t4]] - lim A, which lifts 0.

PrROOF. Since each i, : G, — Gy4+1 is a closed embedding by Proposition [I.1.11] the
induced map m, : Ay+1 — A, is surjective. Hence statement follows from a general fact
stated in the Stacks project [Stal Tag 0912]. It remains to establish statement

We assert that each 8, : (B ®pg k)[[t1,- - ,td]] = Ay ®pg k lifts to an R-algebra homomor-

phism 6, : Bl[t1,- - ,tq]] — A, with a commutative diagram
6
Blt1,-+ ,tal] = Avy1 —— App1 ®rk
\ lﬂ'v lﬂ"u@ld
O

Ay — A, ®rk

We take 6; to be an arbitrary lift of §; and proceed by induction on v. Let us write m for
the maximal ideal of R and choose ay,--- ,aq € Ayyq which lift 0,41(t1),- -+, 0p41(tq). We
observe that m,(ay), - ,m(aq) lift 0,(t1), - ,0,(tq) and in turn find 0, (¢;) — 7 (a;) € mA,.
Since T, is surjective, we may choose by, - by € mA, 11 with m,(b;) = 0,(¢;) — my(a;) and
deduce that 0,1 lifts to a map 6,11 : B[[t1, - ,t4]] — Ayy1 with 0,11(¢;) = a;+b; as desired.

Now we have an R-algebra homomorphism 6 : Bl[t1,- - ,t4]] — lim A, which lifts 0. We

find coker(f) ®g k = coker(d) = 0 and also observe that coker(f) admits a generator over
@Av given by the image of 1. Therefore Lemma implies that 6 is surjective. U

LEMMA 2.2.19. Every connected p-divisible group G' = lim G, over R with G, = Spec (Ay)
yields a formal group law p : & — @/ ®p.e/ via a topological R-algebra isomorphism

o = R[[t,-- ,tg]] ~lim A,  for some d > 0.

PROOF. Proposition and Lemma[2.2.18]yield a surjective R-algebra homomorphism
¢ : & — lim A, which lifts a topological isomorphism 0 : k[[ty,--- ,tq]] — lim(A, ®g k).
In addtion, we have ker(f) ®pg k = ker(f) = 0 by Lemma and a general fact stated in
the Stacks project [Stal Tag O0HL|. Since <7 is a notherian local ring, we find ker(6) = 0 by
Lemma, [2.2.17 and in turn deduce that 6 is an isomorphism.

The map 6 is continuous as the kernel of each 0, : &/ — A, is open by the fact that the
R-algebra A, is of finite length. Moreover, with @ being a topological isomorphism, we observe
that every power of the ideal .# := (t1,--- ,t4) contains an open set in its image under 6 and
consequently find that 6 is open. Therefore 6 is a topological R-algebra isomorphism.

Let us denote the comultiplication of each G, by u,. Via the isomorphism 6 we may
identify lim 4, with a continuous R-algebra homomorphism p : & — &/ ®p. It is evident
by the axioms for each comultiplication u, that p is indeed a formal group law over R.  [J
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THEOREM 2.2.20 (Serre-Tate). There exists an equivalence of categories

{ p-divisible formal group laws over R } — { connected p-divisible groups over R }
which maps each p-divisible formal group law p over R to p[p™].

PROOF. Since Lemma shows that the functor is fully faithful, we only need to
prove that the functor is essentially surjective. Let G = h_II)IG be an arbitrary connected

p-divisible group « of height h over R with G,, = Spec (A4,). Lemmamylelds a formal group
law p1: @/ — &g/ induced by G via a topological R-algebra isomorphism

o = R[[t1, -+ ,tq]] = lim A,  for some d > 0.

We wish to show that p is p-divisible with u[p>®] ~ G

We denote the agumentation ideal of o7 by .#. For each v > 1, we have G, = ker([p"]g)
by Proposition 8 and thus find 4, ~ & /[p’],(.#). Let us write r := p" and choose
fi,o fred Whose images in Ay ~ &7 /[p|,(-#) form a basis over R.

For every g € </, a simple induction yields a sequence (g; ;) for each i =1,--- ,r with

9ij € Gij—1+ 371 and g € Z gm Vi + ] (f)j

r

Since we have [p],(-#) C .# by Lemma [2.2.1, we set g; := lim g¢; ; and find g = Z[p]#(gi)fl-.
oo i=1

Therefore we deduce that fi,--- , f, generate <7 over [p], ().

Meanwhile, each [p]¢, factors through a surjective R-group homomorphism G411 — G,
by Lemma and in turn induces a faithfully flat R-algebra homomorphism

Mot Av = o J0Vu(F) — [ NI) = A

by a standard fact stated in the Stacks project [Stal Tag 00HQ]. As we know that each A,
is a free local R-algebra of rank p*", we see that A, is free over A, of rank r = p" by some
general facts stated in the Stacks project [Stal Tag 08WP and Tag 00NZ]. Hence the images
of fi,-++, frin Apy1 ~ o /[p*™],(F) form a basis over A, ~ o /[p*],(F).

Let us now consider a relation Z[p]u(hi)fi = 0 with hy,--- ,h, € &/. For each v > 1,

i=1
we consider this relation in 4,11 ~ & /[p**1],(#) and find [p],,(h1), -, [plu(hr) € [P¥]u(H).
Since we have [p],(.#) C #V for each v > 1 as easily seen by Lemma [2.2.1] we deduce that
[p]u(h1),-- -, [p]u(hy) must all be zero. Therefore we find that fi,---, f, form a basis of &/
over [p],(«), which in particular implies that y is p-divisible. As we evidently have p[p>] ~ G
by construction, we deduce the desired assertion and complete the proof. O

Definition 2.2.21. Let GG be a p-divisible group over R.

(1) We define its associated formal group law to be the p-divisible formal group law u¢
over R corresponding to G° under the equivalence in Theorem [2.2.20
(2) We define its dimension to be the dimension of ug.

PROPOSITION 2.2.22. Given a p-divisible group G over R of dimension d, its special fiber
G := G xpk is a p-divisible group over k such that ker(yg) is finite flat of order pe.

PROOF. Proposition|1.5.17/implies that ker(yz) lies in G° := G°x gk. Hence the assertion
follows from Proposition [2.2.16] Lemma [2.2.19] and Theorem [2.2.20 U
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THEOREM 2.2.23. Let G be a p-divisible group of height h over R. If write d and d" respec-
tively for the dimensions of G and GV, we have h = d + dV.

PROOF. Lemma m shows that ¢ G := G xp k is a p-divisible group of order h over k.
Let us write G = lim G, where each G, is a finite flat k-group. Proposition [2.1.16| yields the

equality Yzops = [p]g and in turn implies that ker(¢g) is a k-subgroup of G|p]. Moreover, we
note by Proposition that oz is surjective. Therefore we obtain a commutative diagram

0 —— ker(pg) G cs é(p) s 0
J Jmc Ve
0 > 0 G d_.,3q > 0

where the rows are evidently exact. By the snake lemma, the diagram yields an exact sequence
0 —— ker(pg) — Glp] —— ker(vg) —— 0.
Proposition [2.2.22| shows that ker(¢z) has order p?, while Proposition implies that

Glp] = G has order p". Hence we deduce from Theorem [1.1.18|that ker(iz) has order p"~2
For the desired assertion, it suffices to show that ker(¢z) has order p®". We have

ker(¢g) 2 ker(¢g,) and  ker(pgv) = ker(goélv)

as easily seen by Proposition and Proposition [2.1.16] Since the k-groups G and égp)
are of the same order by construction, we apply Theorem [I.1.1§ with the identifications

U, (@) = G Jker(ug,)  and  coker(iig,) = G1/vg, (@)
to see that ker(¢)5, ) and coker (5, ) are of the same order. Moreover, Propositionyields

a natural isomorphism coker(¢7, ) = ker(«pélv) as we have ¢z = gpév by definition. Therefore
1

ker (1) and ker(¢zv) have the same order. Now we find G =GV x r k by Proposition m

and in turn deduce from Proposition |2.2.22| that ker(¢§v) has order p?”, thereby establishing
the desired assertion. 0

PROPOSITION 2.2.24. Assume that R = k is an algebraically closed field of characteristic p.
Every p-divisible group G = @Gv of height 1 over k is isomorphic to either Q,/Z, or fipe.

PROOF. Let us first consider the case where G is étale. Each G, is a finite étale k-group
of order p¥ with G, = Gy41[p"]. Since every finite étale k-group is a constant group scheme
as noted in Proposition we find G, ~ Z/pZ for each v > 1 by a simple induction and

consequently obtain an isomorphism G ~ Q,/Z,,.

We now turn to the case where G is not étale. By Proposition [2.1.12] a p-divisible group
over R is étale if and only if its dimension is 0. Since the height of G is 1, we deduce
from Theorem [2.2.23| that GV is étale and in turn find GV ~ Q,/Z,. Hence we obtain an

isomorphism G ~ p,~ by Proposition and Example [2.1.11] thereby completing the
proof. O

Example 2.2.25. Let E be an ordinary elliptic curve over F,,. Since E[p>°]° and E[p>°]¢" are
of height 1 with E[p]° ~ p, and E[p]** ~ Z/pZ by Example|1.4.16} there exists an isomorphism

Ep™] = Qp/Zp X ppe
by Proposition [2.1.12] and Proposition



56 II. FOUNDATIONS OF p-ADIC HODGE THEORY
2.3. Dieudonné-Manin classification

Throughout this subsection, we assume that R = k is a perfect field of characteristic p.
We introduce several algebraic objects and discuss their relation to p-divisible groups over k.
We begin by stating the following technical result without a proof.

THEOREM 2.3.1. Let A be a perfect F)-algebra.
(1) There exists a unique (up to isomorphism) ring W (A) which is p-adically complete
with W(A)/pW (A) = A.
(2) Given a p-adically complete ring B, every homomorphism f : A — B/pB uniquely
lifts to a multiplicative map f : A — B and a homomorphism f : W (A) — B.
Remark. For a proof, we refer readers to the book of Serre [Ser79, §I1.5].

Definition 2.3.2. Let A be a perfect IF,-algebra.

(1) We refer to the ring W(A) in Theorem as the ring of Witt vectors over A.

(2) For each a € A, we define its Teichmdller lift [a] € W(A) to be its image under the
unique multiplicative map A — W(A) which lifts the identity map on A.

Example 2.3.3. We present two important examples which frequently arise in practice.

(1) For an integer r > 1, the ring W (F,-) is isomorphic to the valuation ring of the
degree 7 unramified extension of Q,, as easily seen by Theorem [2.3.1]

(2) The ring W(F,) is isomorphic to the valuation ring of @g\n, where @g\n denotes the
p-adic completion of the maximal unramified extension of Q.

PROPOSITION 2.3.4. Let A be a perfect Fp-algebra.
(1) For every a € W(A), there exists a unique element ag € A with a — [ag] € pW (A).

o0
(2) Every a € W(A) admits a unique expression o = Z[an]p" with a,, € A.
n=0

(3) The p-th power map on A uniquely lifts to an automorphism Ow(4) On W(A) with

Pw(a) <Z[an]p”> => [aj]p".

n=0 n=0

PROOF. Statement is evident with a¢ given by the image of a under the natural
map W(A) - W(A)/pW(A) = A. Statement follows from statement by inductively
constructing a unique sequence (a,) in A with

m
a— Z[an]pn e p"W(A) for each m > 0.
n=0

Statement is straightforward to verify by Theorem and the perfectness of A. O
Definition 2.3.5. Let A be a perfect I,-algebra.

(1) For every a € W(A), we define its Teichmiiller expansion to be the unique expression
o0

a= Z[an]p” with a, € A given by Proposition [2.3.4
n=0

(2) We call the map ¢y (4) in Proposition the Frobenius automorphism of W(A).

Remark. Teichmiiller expansions for Z, = W(IF,) are not the same as p-adic expansions.
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PROPOSITION 2.3.6. Given a perfect Fp-algebra A, an element ov € W(A) is a unit if and only

if the first coefficient in the Teichmiiller expansion of « is a unit in A.

PRrOOF. The first coefficient in the Teichmiiller expansion of « coincides with the image
of o under the natural map W(A) - W(A)/pW (A) = A. Since W(A) is p-adically complete,
the assertion follows from a general fact stated in the Stacks project [Stal Tag 05GI]. g

PROPOSITION 2.3.7. Let A be a perfect Fp-algebra. Take two arbitrary elements a, 8 € W(A)
o

[e.o]
with Teichmiiller expansions o = Z[an]pn and = Z[bn]p”.
n=0 n=0

(1) The Teichmiiller expansion of o + § has the first two coefficients given by

(t+u)P —tP —uP

p
(2) The Teichmiiller expansion of a3 has the first two coefficients given by

where we write W1 (t,u) := € L[t, u.

do = apbp and di = agbt + a1bg.

PROOF. The addition under the natural surjection W(A) — W(A)/pW(A) = A yields
the identity cg = ag + bg. Since every element of A admits a unique p-th root, we have

c(l)/jl7 = aé/p + b(l)/p. Hence we find [c(l)/p] € [a(l)/p] + [b(l)/p] + pW(A) and in turn get the relation
leo] = [eg/1" € (lag"1+ 0§/"1) " + 02w ().
Meanwhile, the addition under the natural map W (A4) — W (A)/p?W (A) yields the relation
[co] + pler] = [ao] + [bo] + p([ar] + [b1]) + p* W (A).
Now we have
plea] € pllar] + [oa]) + fao) + ool — ([ag/") + ")) + B2 (4)
and consequently find
e1] € las] + (1] = W (lag”), o)) + pW (A).
We consider the images under the natural surjection W (A) - W (A)/pW (A) = A and obtain
the identity ¢c; = a1 + b1 — Wy <aé/ P b(l)/ P ) Therefore we establish statement

Let us now consider statement The multiplication under the natural surjection
W(A) - W(A)/pW (A) = A yields the identity dy = agbyp. Moreover, the multiplication
under the natural map W (A) — W (A)/p*W (A) yields the relation

[do] + pldi] € [aobo] + p([agb1] + [arbo]) + P*W (A).
Hence we have
pldi] € p([aobi] + [arbo]) + p* W (A)
and consequently find
[d1] € [aobi] + [a1bo] + pW (A).
We consider the images under the natural surjection W(A) - W (A)/pW (A) = A and deduce
the identity di = agbi + a1bg, thereby completing the proof. O

Remark. The book of Serre [Ser79, §11.6] explains a way to compute other coefficients in
the Teichmiiller expansions of o + 8 and «f.
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Our main objective for this subsection is to discuss fundamental theorems of Dieudonné
and Manin which describe p-divisible groups over k via certain free W (k)-modules. We won’t
provide their proofs, as these theorems will mostly serve as motivations for some constructions
and only play a significant role at the end of Chapter [V] Curious readers may consult the
book of Demazure [Dem72, Chapters III and IV] for an excellent exposition of these results.

Definition 2.3.8. Let us write o for the Frobenius automorphism of W (k).

(1) Given W(k)-modules D, D’ and an integer r, we say that an additive map f : D — D’
is 0" -semilinear if it satisfies the identity

f(em) =0"(c)f(m) for each ¢ € W(k) and m € D.
(2) A Dieudonné module over W (k) is a finite free W (k)-module D with a o-semilinear
endomorphism ¢p, called the Frobenius endomorphism, whose image contains pD.

(3) A W(k)-linear map f : D — D’ for Dieudonné modules D and D" over W(k) is a
morphism of Dieudonné modules if it satisfies the identity foep = wpr o f.

LEMMA 2.3.9. The ring W (k) is a complete discrete valuation ring with residue field £ and
uniformizer p.

PROOF. Since W (k) is p-adically complete with W (k)/pW (k) = k by construction, it is
a local ring with maximal ideal pW (k) and residue field k& by Proposition [2.3.6|and a general
fact stated in the Stacks project [Stal Tag 00E9]. Moreover, Proposition [2.3.4] shows that
every element o € W (k) admits a unique expression o = p"u with n > 0 and v € W (k)*.
Therefore we establish the desired assertion. 0

LEMMA 2.3.10. Let D be a Dieudonné module over W (k).

(1) The Frobenius endomorphism ¢p is injective.
1

(2) There exists a unique o~ *-semilinear endomorphism tp on D such that ppotp and
¥p o pp coincide with the multiplication by p on D.

PRrROOF. Take e1,---,e, € D which form a basis over W (k). Since W (k) is a principal
ideal domain by Lemma m statement follows from the rank-nullity theorem and the
fact that ¢ p(D) has rank r for containing pD. Hence we only need to prove statement

We may write pe; = ¢p(e;) for a unique element e, € D and in turn obtain a unique
o~ L-semilinear endomorphism p on D with ¢p o 1p being the multiplication by p on D;
indeed, ¥p maps each e; to ;. We wish to prove that ¥)popp coincides with the multiplication

by p on D. We note that each € satisfies the equality

Up(ep(e;)) = ¥plep(¥plei))) = ¥p(pe;) = pe;,
which means that )p o pp and the multiplication by p agree on the W (k)-module D’ C D

/

spanned by €/, -+ ,e.. Moreover, D' has rank r as €},--- ,el. are linearly independent by

construction. Hence we deduce from the rank-nullity theorem that the difference between
¥p o pp and the multiplication by p vanishes on D, thereby completing the proof. O

Definition 2.3.11. Given a Dieudonné module D over W (k), we refer to the o~ !-semilinear
endomorphism ¢ p in Lemma [2.3.10] as the Verschiebung endomorphism of D.

LEMMA 2.3.12. Given a Dieudonné module D over W (k), its dual DY = Homyy () (D, W (k))
is naturally a Dieudonné module over W (k) with

opv(f)(m) =o(f(p(m))) forall f € DY and m € D.

PROOF. The assertion is straightforward to verify by definition. O
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THEOREM 2.3.13 (Dieudonné [Die55]). There is an additive anti-equivalence of categories
D : { p-divisible groups over k } — { Dieudonné modules over W (k) }
such that for every p-divisible group G over k we have the following statements:

(1) The rank of D(G) is equal to the height of G.
(2) The maps g, 1q, and [p]e yield vpg), ¥p(g), and the multiplication by p.
(3) There exists a natural isomorphism D(GY) = D(G)".

Remark. Let us briefly describe the construction of D(G) for a p-divisible group G = lim G,
over k. For each integer n > 1, we have a k-group W,, with W,,(A) = W(A)/p"W (A) for every
perfect k-algebra A. If GV is connected, D(G) := lim lim Homy g, (G, Wi,) turns out to be a

v n
Dieudonné module over W (k) with Frobenius endomorphism induced by pg. If GV is étale, it
is connected by Theorem [2.2.23|and consequently yields a Dieudonné module D(G) := D(GY)Y

over W (k). In the general case, G admits a natural decomposition
G Gunip % Gmult
with (G"P)V connected and (G™W)Y étale, thereby giving rise to a Dieudonné module
D(G) := D(G™P) @ D(G™) over W (k).
Definition 2.3.14. We refer to the functor D in Theorem [2.3.13] as the Dieudonné functor.

Example 2.3.15. We describe the Dieudonné functor for some simple p-divisible groups.

(1) D(Qp/Zp) is isomorphic to W (k) with vpq,/z,) = ¢ and ¥p(q,/z,) = po—L.

(2) D(upee) is isomorphic to W (k) with ¢p(,, ) = po and ¥p(, ) = oL

Definition 2.3.16. Let us write Ko(k) := W (k)[1/p] for the fraction field of W (k).

(1) We define the Frobenius automorphism of Ky(k) to be the unique field automorphism
on Ky(k) which extends o.

(2) An isocrystal over Ky(k) is a finite dimensional vector space D over Ky(k) with a
o-semilinear automorphism @p called the Frobenius automorphism of D.

(3) A Ko(k)-linear map g : D — D’ for isocrystals D and D’ over Ky(k) is a morphism
of isocrystals if it satisfies the identity

g(ep(v)) = ¢ep(g(v)) for each v € D.
LEMMA 2.3.17. Let o denote the Frobenius automorphism of Ky(k).

(1) Every Dieudonné module D over W (k) yields an isocrystal D[1/p] = D ®yy () Ko(k)
over Ky(k) with Frobenius automorphism ¢pp ® 1.

(2) Given an isocrystal D over Ko(k), its dual DY = Hom, ) (D, Ko(k)) is naturally
an isocrystal over Ky(k) with

epv(f)(v) = a(f(pp' (v)) forall f€ DY and v e D.

(3) Given two isocrystals D and D' over Ko(k), their tensor product D ®p, ) D' is
naturally an isocrystal over Ky(k) with Frobenius automorphism ¢p ® ¢pr.

ProOOF. All statements are straightforward to verify by definition. O

Example 2.3.18. For an isocrystal D of rank r over Ky(k), its determinant det(D) = A"(D)
is naturally an isocrystal of rank 1 over K(k) as easily seen by Lemma
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Definition 2.3.19. We say that a homomorphism of group schemes or p-divisible groups is
an isogeny if it is surjective with finite flat kernel.

Example 2.3.20. We present some examples of isogenies between p-divisible groups.
(1) Given a p-divisible group G over k, the maps [p|a, ¢q, and g are all isogenies by
Proposition [2.1.8| and Proposition [2.1.16
(2) Anisogeny A — B of two abelian varieties over k induces an isogeny A[p>] — B[p®].

PROPOSITION 2.3.21. A homomorphism f : G — H of p-divisible groups over k is an isogeny
if and only if it induces an isomorphism D(H)[1/p] ~ D(G)[1/p].

PROOF. Let us first assume that f is an isogeny. Its kernel lies in G, for some v > 1
and thus is a p-power torsion k-group. Theorem implies that the map D(H) — D(G)
induced by f is injective with its cokernel killed by a power of p. We deduce that f induces
an isomorphism D(H)[1/p] ~ D(G)[1/p].

For the converse, we now assume that f induces an isomorphism D(H)[1/p] ~ D(G)[1/p].
The map D(H) — D(G) is injective with D(H) and D(G) having the same rank over W (k).
The cokernel of this map is a p-power torsion W (k)-module by Lemma Hence we deduce
from Theorem that f is an isogeny as desired. O

Definition 2.3.22. Let D be a nonzero isocrystal over Ky(k).
(1) The degree of D is the unique integer deg(D) with pget(p)(1) € pdeePIW (k)*, where
we fix an isomorphism det(D) ~ W (k).
deg(D
(2) We write rk(D) for the rank of D and define the slope of D to be u(D) := rig((D))

Example 2.3.23. Let A\ = d/r be a rational number written in lowest terms with r > 0. The
simple isocrystal of slope X over Ky(k) is an isocrystal Dy over Ky(k) of rank r with

SOD)\ (61) = €2, 7%0D>\ (67”—1) = €r, SOD)\ (67‘) - pdela
where e, - -+ , e, are basis vectors. It is evident that D) has rank r, degree d, and slope A.

PROPOSITION 2.3.24. Given a p-divisible group G over k of height A and dimension d, the
associated isocrystal D(G)[1/p] over Ky(k) has rank h and degree d.

PROOF. As noted in Proposition [2.2.22] and Example [2.3.20] the Frobenius g is an
isogeny with ker(¢g) having order p?. Moreover, Proposition [2.1.16{ implies that ker(¢g) is
p-torsion. Hence we deduce from Lemma and Theorem [2.3.13 that ¢p ) is injective

with coker(pp(q)) =~ (W (k) /pW (k))®%. Now it is straightforward to verify that D(G)[1/p] has
degree d. Since D(G)[1/p] evidently has rank h over K(k) by Theorem [2.3.13] we establish
the desired assertion. 4

THEOREM 2.3.25 (Manin [Man63]). Every isocrystal D over Ky(k) admits a direct sum
decomposition

n
D ~ @D;‘imz with \; € Q.
i=1

Example 2.3.26. If an elliptic curve E over F, is ordinary, we have
D(E[p>])[1/p] ~ Do & Dy

as easily seen by Example and Example

Remark. If E is supersingular, D(E[p>])[1/p] turns out to be isomorphic to D /5.
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3. Hodge-Tate decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical
results, we prove the Hodge-Tate decomposition for Tate modules of p-divisible groups. The
primary reference for this section is the article of Tate [Tat67].

3.1. Tate twists of p-adic representations

In this subsection, we introduce some basic notions in p-adic Hodge theory, such as p-adic
fields, p-adic representations and their Tate twists. Given a valued field L, we write Op, for
its valuation ring, my, for its maximal ideal, and kp, for its residue field.

Definition 3.1.1. Let E be an arbitrary field.
(1) A p-adic T'g-representation is a finite dimensional Q,-vector space V together with
a continuous homomorphism I'p — GL(V).
(2) The p-adic cyclotomic character of E is the character xg : I'p — Z) via which I'g
acts on Zp(1) := Tp(ppee) = lim pye (E).
(3) Given an integer n, the n-fold Tate twist of a Z,[I'g|-module M is

M Zy(1)Em f >0
M) = M OB BT o 20
M ®z, (Zy(1)") for n < 0.
Example 3.1.2. Let E be an arbitrary field.
(1) Given a p-divisible group G over E, its rational Tate module Vy(G) := T,(G) @z, Qp
is a p-adic I'g-representation by Proposition [2.1.18

(2) For a proper smooth variety X over E, the étale cohomology group H}, (X, Qp) is
a p-adic I'g-representation.

LEMMA 3.1.3. Let E be an arbitrary field and M be a Z,[I' g]-module.
(1) There exist natural I"g-equivariant isomorphisms
M(n) = M ®z, Zy(n) and M(n)" = MY(—n) for each n € Z.
(2) If T'g acts on M via a homomorphism p : 'y — Aut(M), it acts on M(n) for

each n € Z via X - p.

PROOF. Statement is straightforward to verify by definition. Statement is an
immediate consequence of statement O

Definition 3.1.4. A p-adic field is an extension of Q, which is discretely valued and complete
with a perfect residue field of characteristic p.

Example 3.1.5. We present some essential examples of p-adic fields.

(1) Every finite extension of Q,, is a p-adic field.

(2) Every perfect field k of characteristic p gives rises to a p-adic field Ko (k) = W (k)[1/p]
as noted in Lemma 2.3.01

Remark. We will see in Chapter [[II, Proposition [2.2.19] that every p-adic field is a finite
extension of Ky(k) for some perfect field k of characteristic p. There are p-adic fields which

are not algebraic over ), such as @1 := Ko(F,). It is worthwhile to mention that for many
authors p-adic fields simply mean finite extensions of Q.
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For the rest of this section, we let K be a p-adic field. In addition, we write m for its
maximal ideal, &k for its residue field, and y for its p-adic cyclotomic character.

Definition 3.1.6. The completed algebraic closure of K, denoted by Cg, is the p-adic com-
pletion of K.

Remark. The field Cg is not a p-adic field as its valuation is not discrete.

Example 3.1.7. If K is a finite extension of @, we often write C,, = Cg and refer to it as
the field of p-adic complex numbers.

LEMMA 3.1.8. The action of 'y on K uniquely extends to a continuous action on Cg.

PROOF. The assertion is evident by the continuity of the I'g-action on K. O

Definition 3.1.9. The normalized p-adic valuation on Cg is the unique valuation v on Cg
with v(p) = 1.

PRroOPOSITION 3.1.10. The field Cg is algebraically closed.

PrROOF. We wish to prove that every nonconstant polynomial f(¢) over Cx admits a root
in Cgx. We may replace f(t) by p™ef(t/p™) for some sufficiently large m € Z to assume that
f(t) is a polynomial over Oc, . Let us write

f) =t + et 4+ g with ¢; € Ocy.
For each integer n > 1, we choose a polynomial
Ft) =t + et o+ can
with ¢;, € O and v(¢; — ¢;n) > dn. Since O is integrally closed, each f,(t) admits a
factorization into linear polynomials over O; in other words, we have
d
fat) =T[(t = Bni)  with B,; € O (3.1)
i=1
Let us construct a sequence (o) in O with f,(o,) = 0 and v(ay, — ap—1) > n—1. We
set a1 := 1,1 € O and proceed by induction on n. We have

d
fn(an—l) = fn(an—l) - fn—l(an—1> = Z(Ci,n - Ci,n—l)az:zl
i=1
and in turn find v(fy(an—1)) > d(n — 1) as each ¢, — cin—1 = (Cin — ¢i) + (¢;i — Cin-1)
has valuation at least d(n — 1). We deduce from the identity (3.1)) that f,,(¢) admits a root
an = Bni € O with v(ap—1 —ap) >n — 1.
The sequence (a,) is Cauchy by construction and thus converges to an element o € O¢, .
Moreover, for each integer n > 1 we obtain the identity
d
flom) = flom) = falan) = Z(Cz - Ci,n)ag_i
i=1
and in turn find v(f(as,)) > dn. Hence we see that « is a root of f(t), thereby completing
the proof. 0

Remark. We can alternatively derive Proposition|3.1.10| from Krasner’s lemma by modifying
our argument. Moreover, we can use Krasner’s lemma to show that K is not complete; in
particular, we have Cx # K.
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We assume the following fundamental result about the Tate twists of Cg.

THEOREM 3.1.11 (Tate [Tat67], Sen [Sen80]). For the Galois cohomology of Ck and its Tate
twists, we have the following statements:

(1) H°(Tg,Ck) admits a natural isomorphism H°(T'y,Cx) = K.
(2) H'(Tk,Cf) is an 1-dimensional vector space over K.
(3) H'(Tk,Ck(n)) and HY(T'g,Cx(n)) vanish for n # 0.

Remark. We refer curious readers to the notes of Brinon-Conrad [BC, §14] for a proof, which
involves the higher ramification theory and the local class field theory.

PROPOSITION 3.1.12. Every p-adic I'k-representation V' yields a natural Cg-linear map
~ r
ay . @ (V ®q, (CK(—n)) "ok Cg(n) —V ®q, Cx
ne”L

which is I'k-equivariant and injective.

ProOF. For each n € Z, we have a I'x-equivariant injective K-linear map
~ r
0483{ : (V ®Qp (CK(—TL)) K RK K(TL) —sV ®Qp CK(—TZ) RK K(n) =2V ®Qp Cg.

Let us extend each o?gl k to a I'g-equivariant Cg-linear map

0781) : (V ®Qp (CK(—TL))FK RK (CK(n) -V ®Qp Cg

and set ay = @ &gl). We wish to show that &y is injective.
nez
Suppose for contradiction that ker(ay ) is nonzero. For every n € Z, we take a K-basis
(Um.n) of (V ®q, (CK(—n))FK ®r K(n) and regard each vy, as a vector in V ®q, Cx via
the map dgg{. In addition, we choose a nontrivial Cg-linear relation ) ¢ nUmn = 0 with
minimum number of nonzero terms. We may set ¢y,,.n, = 1 for some integers mgy and ng. For

every v € 'r, we apply Lemma to find

0=vy (Z Cm,nvm,n> —x(y)" (Z Cm,nvm,n> = Z ('Y(Cm,n)X('Y)n - X('Y)nocm,n) Um,n-

Since the coefficient of v, », in the last expression is 0, the minimality of our linear relation
implies that all coefficients in the last expression must vanish and in turn yields the relation

Y(emn)X(Y)"" = ¢y for every v € I'k.

Now Lemma and Theorem [3.1.11] together imply that each ¢, lies in K with ¢, , = 0
for n # ng. Hence we have a nontrivial K-linear relation ) ¢ pnoUmmn, = 0 on the basis

(Um,no) Of (V ®q, CK(—no))FK ®x K(ng), thereby obtaining a desired contradiction. O

Definition 3.1.13. We say that a p-adic 'i-representation V is Hodge-Tate if the natural
map &y in Proposition [3.1.12]is an isomorphism.

Example 3.1.14. Every Tate twist Q,(n) of Q, is Hodge-Tate by Theorem [3.1.11

Remark. We will see in that the rational Tate-module of a p-divisible group over O is
always Hodge-Tate.
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3.2. Points on p-divisible groups

For the rest of this section, we take the base ring to be R = Og. The main objective for
this subsection is to investigate points on p-divisible groups over Og. We let L denote the
p-adic completion of an algebraic extension of K. A primary example of such a field is Cg.

LEMMA 3.2.1. The valuation ring O, is m-adically complete; in other words, there exists a
natural isomorphism
~ i i
@ L = lﬁl @ L / m'O L-

PROOF. The ideal m contains p as the residue field k = Ok /m is of characteristic p. Since
Og is a discrete valuation ring, we deduce that the p-adic topology coincides with the m-adic
topology and consequently establish the desired assertion by observing that Oy, is p-adically
complete. O

Definition 3.2.2. Given a p-divisible group G = liL>nGU over Ok, we define its group of
Oy -valued points to be ‘
G(Orp) = LiLnli_n}Gv((’)L/mZC’)L).

K3 v

Remark. Readers should be aware that G(Op) is in general not equal to lim G,(Op). This

v
subtlety comes from the fact that we take points on G as a formal Og-group. In fact, if we
write G, = Spec (A,) for each v > 1, we argue as in Lemma [2.2.19| to naturally identify G
with a formal Og-group ¢ = Spf(lim A,) and find G(Or) = 4(Oy).
“«—
Example 3.2.3. We describe the Op-valued points for some p-divisible groups of height 1.
(1) The p-power roots of unity j,~ admits a natural isomorphism
Jhpoo (Op)=Z1+my.

In fact, since my, contains p, we identify lii>nupv (OL/mi(’)L) with the image of 1 +mp,
v

in Or,/m‘Oy, and thus obtain the desired isomorphism by Lemma
(2) The constant p-divisible group Q,/Z,, admits a natural isomorphism

Qp/Zyp(OL) = Qp/Zy.

In fact, since O, /m‘Qy, is connected, we have Z/p'Z(Or/m'Op) = Z/p'Z and thus
obtain the desired isomorphism.

PROPOSITION 3.2.4. Given a p-divisible group G = lim G, over O, the group G(Op) is
naturally a Zy-module such that its torsion part G(Op )tors admits a natural identification

G(OL)tors = hl>n th Gv(OL/mlOL)

v K3

PROOF. Proposition [2.1.8/shows that each h_r)nGv(OL/miOL) is a Zp-module and in turn

v
implies that G(Op,) is also a Z,-module. Therefore G(OF )tors consists of p-power torsions. In
addition, we observe by Proposition [2.1.8| that the p-torsion part of each liigGy((’)L /m'Or)

v

is Go(Or/miOp). Since filtered colimits are exact in the category of abelian groups as

stated in the Stacks project [Stal Tag 04B0], we deduce that the p”-torsion part of G(Op) is

lim G,,(Op/m*Or). The desired assertion is now evident. O
i
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PROPOSITION 3.2.5. Given a p-divisible group G = lim G, over O with G, = Spec (Ay),
there exists a canonical isomorphism

G(OL) = HomOKfcont(liLn Ay, OL)

PROOF. For every continuous Og-algebra homomorphism f : lim A, — Op, the induced
map f; : anAv — Op/miOyp, for each i > 1 factors through a natural surjection liLnAv — A,
for some w; > 1. Hence we have a canonical map

HomOK—cont(liLn Ay, OL) - liLnﬁ_H}HOHlOK (A’U7 OL/mlOL)
i v

which sends each f € HomoK_Com(liLnAU, Or) to (f;) € liinli_r)nHom@K(Av,(’)L/mi(’)L). It is

K2 v
not hard to see that this map is an isomorphism by Lemma, Now we obtain the desired
isomorphism from the natural identification

G(Or) = lim lim Home, (Ay, Or/m'OL),

thereby completing the proof. O

Remark. Proposition establishes a canonical isomorphism G(Opr) = ¢4(Op) for the
formal Ok-group ¢4 = Spf(lim 4,).

PROPOSITION 3.2.6. Let G = lim G, be a p-divisible group over Ok.

(1) If G is connected of dimension d, it admits a Z,-module isomorphism
G(Or) = Homo —cont (Ok|[t1, -+, t4]], OL)

where the multiplication by p on the target is induced by [p],,,-
(2) If G is étale, G(Oy) is torsion with a natural isomorphism G(Op) = lim G, (Or,/mOp).

PROOF. Statement |(1)|is evident by Lemma [2.2.19| and Proposition Let us now

assume for statement |(2)| that G is étale. Each G, is formally étale by a general fact stated
in the Stacks project [Staz Tag 02HM]; in particular, there exists a natural isomorphism
G, (0 /m'Op) = G, (O /m10Op) for each integer i > 1. Hence we find

G(Or) = limlim G, (Or/m'Or) = lim G,,(Or/mOy)

3 v

and in turn deduce from Proposition that G(Op) is a torsion group. O

Remark. If L is a finite extension of K, we have mQOp = m% for some integer 5 > 1 and
thus find G¢*(Op) = h_r)nt}t((’)L/mOL) = liLQGf}t(OL/mL) = h_r)nt,t(kL) where the second
isomorphism follows from the fact that each G<' is formally étale as noted in the proof.

LEMMA 3.2.7. An Og-algebra homomorphism f : Og|[[t1,--- ,t,]] — L is continuous if and
only if each f(t;) lies in my.

PROOF. The map f is continuous if and only if there exists an integer v with f(¢}) € my,
for each ¢ = 1,--- ,n. Hence the assertion follows from the fact that O is reduced. O

Remark. Proposition and Lemma together show that every p-divisible group G

over Ok of dimension d gives rise to an isomorphism G°(Or) ~ m%d with group law on mdL

induced by pg. It turns out that the multiplication and the inverse on m%d

functions; in other words, G°(QOp) ~ m%d

are analytic
is a p-adic analytic group.
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PROPOSITION 3.2.8. Every p-divisible group G = lim G, over Ok yields an exact sequence
0 — G°(01) — G(Or) — G*(OL) — 0.

PROOF. The sequence is left exact as limits and filtered colimits are left exact in the
category of abelian groups. Hence we only need show that the map G(Or) — G*(Op) is
surjective. For each integer v > 1, we let A,, A2, and AS' respectively denote the affine rings
of Gy, G, and G<'. In addition, we write & := lim A,, &/° := lim A9, and /" := lim A".
By Proposition it suffices to prove the surjectivity of the map

HomOK—Cont(JZ{7 OL) — HomOK—cont(vQ{ét7 OL) (32)
Lemma [2:2.19 yields a topological O-algebra isomorphism
JZ/O ~ OK[[tl, ce ,td]]

where d denotes the dimension of G. Since k is perfect, we apply Proposition to obtain
a topological k-algebra isomorphism

(%ét ®og k)[[tlv e >th = ('Q{O Kok k) (/gk(%ét R0y k) =¥ R0 k.
By Lemma [2.2.18] this map lifts to a surjective Og-algebra homomorphism
0: Aty tq)] — .

Moreover, Lemma shows that 27 is flat over O and consequently yields the relation
ker(f) ®p, k = 0 by a general fact stated in the Stacks project [Stal Tag 00HL]. For each
v > 1, we take an ideal _#, of &/[[ty, - ,t4]] with & [[t1,- - ,t4]]/ _Fo = AS @0, A and
obtain a short exact sequence

0 — ker(0)/ ker(0) N 7, — [t1, - ,tdl]/ Lo — o /0(_F,) — O.
We have m (ker(0)/ker(8) N _#,) = ker(0)/ker(6) N _#, and thus find ker() = ker(6) N _7,
‘

for each v > 1 by Lemma [2.2.17| as ([t - - - Jtdll) o =AY Qo A% is noetherian. Since
we have (| _#, = 0, we see that ker(f) is trivial and in turn deduce that 6 is an isomorphism.

The map 6 is continuous as the kernel of each 0, : @ — A, is open by the fact that the
R-algebra A, is of finite length. Moreover, with € being a topological isomorphism after base
change to k, we observe that every power of the ideal .# := (¢1,--- ,t4) contains an open
set in its image under # and in turn find that 6 is open. Hence 6 is a topological R-algebra
isomorphism. Now 6 yields a surjective continuous map &7 — /¢ which splits the natural
map 7¢" — &/. We conclude that the map is surjective as desired. O

PRrROPOSITION 3.2.9. Let G be a p-divisible group over Ok

(1) For every g € G(Op), we have p"g € G°(Oy) for each n > 0.

(2) If L is algebraically closed, G(Op) is p-divisible in the sense that the multiplication
by p on G(Opr) is surjective.

PROOF. Since statement is an immediate consequence of Proposition and Propo-
sition we only need to establish statement In light of Proposition it suffices to

show that the multiplication by p is surjective on each G*(Or) and G°(Op). The surjectivity
on G¢(Or) follows from Proposition and Proposition Moreover, we deduce the
surjectivity on G°(Op,) from Proposition and the p-divisibility of ug. O

Remark. If L is not algebraically closed, for every g € G(Op) we have a finite extension L’
of L and an element h € G(QOy/) with the equality g = ph, where we naturally identify G(Op)
as a subgroup of G(Op).
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Definition 3.2.10. Let G be a p-divisible group over Og and M be an Og-module. We
write .# for the augmentation ideal of ug.

(1) The tangent space of G with values in M is tg(M) := Home, mod (£ /2, M).
(2) The cotangent space of G with values in M is t§,(M) := 7 | 9% @0, M.

Remark. We may naturally identify ¢g and t{, respectively with the tangent space and the
cotangent space of the formal group ¥ uq associated to ug.

PROPOSITION 3.2.11. For a p-divisible group G over Ok of dimension d, both tg(L) and tf (L)
are vector spaces over L of dimension d.

PRrROOF. We identify the augmentation ideal of pug with & := (¢1,--- ,tq) C Ok|[t1, - , td]]
and obtain the assertion by observing that .#/.#2 is a free Ox-module of rank d. U

Definition 3.2.12. Given a p-divisible group G over Ok of dimension d, we define the
valuation filtration on the group G°(Opr) to be the collection { Fil* G°(Oy) })\>0 with

Fil) G°(O1) :== { f € G°(O1) : v(f(a)) > A for each o € .7 },

where we write .# for the augmentation ideal of pg and fix a Z,-module isomorphism
G°(Or) ~ Homo, —cont (Ok|[[t1, - - , ta]], OL) given by Proposition

Remark. It is not hard to see that the collection {Fil)‘ G°(Or) } y>0 does not depend on
the choice of the isomorphism G°(Opr) ~ Homo, —cont(Ok|[t1,- -+ ,t4]],Or). If we take
an isomorphism G°(Op) =~ m%d as remarked after Lemma for each A > 0 we have
Fil* G°(0r,) ~ m4 with my, y :={c€ Op:v(c) > A }.

LEMMA 3.2.13. Given a p-divisible group G over Ok, we have

| Fi*G°(0r) =G°(0)  and [ Fil*G°(Oy) = 0.
A>0 A>0

PROOF. The assertion is evident by Lemma and the completeness of Or,. ]
LEMMA 3.2.14. Let G be a p-divisible group over Ok and A be a positive real number. For
every f € Fil* G°(Op), we have pf € Fil* G°(Or) with £ = min(\ + 1,2)).

PrROOF. Let .# denote the augmentation ideal of ¢ and take an arbitrary element o € .#.
We may write [p],, (a) = pa+ B for some 8 € #? by Lemma [2.2.13[ and in turn find

Pf)(@) = f([pluc (@) = f(pa + B) = pf(a) + f(B).
Therefore we have v((pf)(«)) > min(A + 1,2)) as desired. O
LEMMA 3.2.15. Let G be a p-divisible group over Og. If L is a finite extension of K, we have
oo
() p"G°(0L) = 0.
n=1

PROOF. Since the valuation on L is discrete, there exists a minimum positive valuation §
on Op, given by the valuation of the uniformizer. Hence we find p"G°(OQy) C Fil™ G°(Oy) for
each n > 1 by Lemma and in turn deduce the desired assertion from Lemma|3.2.13] [
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PROPOSITION 3.2.16. Let G be a p-divisible group over Ok and write .# for the augmentation
ideal of pg. There exists a map logg : G(Or) — tg(L) with
. _(p"g)(c
logg () (@) = tim E"9)

n—oo p

for every g € G(Op) and a € .,

where @ denotes the image of o in % /.#2.

PROOF. Let us take arbitrary elements g € G(Or) and a € .#. We have p"g € G°(Oy)
for each n > 0 as noted in Proposition [3.2.9 Therefore Lemma [3.2.14] implies that there
exists ¢ € R with p"g € Fil""¢G°(Op) for each n > 0 and in turn yields the inequality

V(W) >2(n+c¢)—n=n+2c foreach B e .72 (3.3)
p
Meanwhile, for each n > 0 we find

P"9)(a)  @"9)a)  @"9)([Pluc(@)  @"9)(@)  @"9)([pluc(a) —pa)

pn+1 pn pn+1 pn pn+1

Since we have [pl,,, (o) —pa € #? by Lemma [2.2.13] we deduce from the inequality (3.3) that
n
o
the sequence <(pg7)l() converges in L. Moreover, if a lies in .#? the inequality (3.3)) shows
p
that the sequence converges to 0. The desired assertion is now evident. O

Definition 3.2.17. Given a p-divisible group G over O, we refer to the map log. given by
Proposition [3.2.16| as the logarithm of G.

Example 3.2.18. Let us provide an explicit description of logupoo. Choose isomorphisms
ppee (O1) = Homoy —cont (OL[[t]], Or)  and  t,, (L) ~ L

respectively given by Proposition and Proposition (3.2.11} Since we have pz=—[p>] = iy
as noted in Example [2.2.12] for each g € i, (Op) we find
(P"9)(t) = g (L + )" —1) = (L +g(1)"" — 1.

Meanwhile, under the identification pp~(Or) = 1 + my, noted in Example we identify
each g € pp~(Or) with 1 + g(¢). Hence obtain the identity

R O ) LA S 21 i
log,, .. (1+z)= nlingo T nangoZ; o\ x*  for each z € my.
1=
Moreover, for integers ¢ and n we have
DY D e (=i 1) = (1) 1)
pn\ i i il ’
We observe that the numerator is divisible by p™ and in turn find

1/(1<p;>_(_12i_1> Zn—u(i!)Zn—i;—n—pil.

T
p =

Hence we obtain the expression

S
log,, .. (1+z)= ——za' for each z € mp,
(3

i=1

which coincides with the p-adic logarithm.
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Let us state the following technical result about the logarithm maps without a proof.

PRrROPOSITION 3.2.19. Let G be a p-divisible group over Ok and write .# for the augmentation
ideal of p. The map logs is a local homeomorphism which induces an isomorphism

Fil* G°(Op) ~ {retc(L) : v(r(f)) > Afor each f € /.2 }  for every A > 1.

Remark. A key fact for the proof of Proposition [3.2.19]is that the multiplication by p on the
group G°(Op) induces an isomorphism Fil* G°(Op) = Fil*! G°(O}) as stated in the book of
Serre [Ser92| Theorem 9.4]. It turns out that log. admits a local inverse expé on

Fil* tg(L) := {reta(L) : v(r(f)) > Aor each f € 7 /.57 }.
In fact, for every 7 € Fil* tg(L) we have expp(7)(t;) = lim g, (t;) with each g, € Fil* G°(Op)
determined by the relation (p"gy,)(t;) = p"7(t;).

PRrROPOSITION 3.2.20. Let G be a p-divisible group over O and denote by .# the augmentation
ideal of pg.

(1) logg is a Zy-linear homomorphism.
(2) The kernel of logg is the torsion subgroup G(Or)tors of G(OL).
(3) logg induces a Qp-linear isomorphism G(Op) ®z, Qp ~ tg(L).

PROOF. Let us write &7° := Ok|[t1,- - , tq]] where d is the dimension of G. Take arbitrary
elements g, h € G(Or) and o € .#. We have p"g, p"h € G°(Or) for each n > 0 as noted in
Proposition [3.2.9] Since the axioms for ug yield the relation

pel@) €1@a+a® 1+ (I8y09)?,

for each n > 0 we may write

(P"(g+h)(@) = (p"g @ p"h) o pa(a) = (p"g)(a) + (p"h)(a) + Bn
with 8, € (p"g)(&) - (p"h)(-¥). Moreover, we deduce from Lemma [3.2.14] that there exists a
real number ¢ with p"g, p"h € Fil"*¢ G°(Oy) for each n > 0 and in turn find v(8,,) > 2(n+c).
Now we obtain the identity
i P @) e (R (e)
n—o00 pn n—o0 pn n—00 pm
and consequently establish statement by Proposition |3.2.19

For statement we only need to show that ker(logs) lies in G(Op )tors; indeed, we have
G(OL)tors C ker(logg) as tg(L) is torsion free for being a vector space over L. Let us take

an arbitrary element g € ker(logs). Proposition and Lemma together imply that
we have p"g € Fil' G°(Op) for some n > 0. Since p"g lies in ker(log;) by statement it
must vanish by Proposition We deduce that g is a torsion element and thus obtain
statement

Statement |(2)[ readily implies that log,; induces an injective map G(Or) ®z, Qp — ta(L).
Moreover, we observe by Proposition that this map is surjective as for each 7 € tg(L)
there exists an integer n with p"7 € Fil' tg(L). Hence we establish statement thereby
completing the proof. O

Remark. For G = pp~ and L = Cg, the map logupoo naturally extends to a I'g-equivariant
group homomorphism log, : C — Cg with log,(p) = 0, called the Twasawa logarithm.
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3.3. Hodge-Tate decomposition for Tate modules

In this subsection, we establish the main result for this chapter by exploiting our accu-
mulated knowledge of finite flat group schemes and p-divisible groups.

LEmMA 3.3.1. Every p-divisible group G = li_r)nGU over Ok yields canonical isomorphisms
Gy(K) 2 Gy(Ck) 2 Gy(O¢,) for each v > 1.

PROOF. Since the generic fiber of each G, is finite étale as easily seen by Corollary|1.3.10
the first isomorphism follows from Proposition [3.1.10]and a standard fact stated in the Stacks
project [Stal Tag OBND]. The second isomorphism is evident by the valuative criterion. [
LEMMA 3.3.2. Let GG be a p-divisible group over O.

(1) G(Oc¢y) and tG(Ck) admit natural I'ix-actions with canonical identifications
G(Oc, )'® 2 G(Ok) and tg(Cr)'x = t5(K).
(2) The map logg : G(Oc,.) — ta(Ck) is I'k-equivariant.

PRrROOF. The group I' naturally acts on G(Oc, ) by Proposition and on t¢(Cg) by
construction. Hence statement follows from the identities (CI;{K = K and (’)g’; = Ok given
by Theorem [3.1.11] Statement |(2)|is straightforward to verify. O

Definition 3.3.3. Let G = lii>nGv be a p-divisible group over Ok.
(1) The Tate module of G is T,,(G) :=T,(G xp, K) = @GU(?).

(2) The Tate comodule of G is ©,(G) := lim G, (K).

Example 3.3.4. We have T},(yip>) = Zp(1) by definition and identify @ (o) = lim fipe (K)
with the group of p-power roots of unity in K.

LEMMA 3.3.5. Let G be a p-divisible group G of height h over Ok.

(1) T,(G) is a free Zy-module of rank h with a natural continuous I'i-action.
(2) ®,(G) is a torsion Z,-module with a natural continuous I'g-action.

PROOF. Let us write G = h_rr)l G, where each G, is a finite flat Og-group. Corollary@
shows that the generic fiber of each G, is finite étale. Hence we deduce from Proposition [1.3.4]
that each G,(K) is a free module of rank h over Z/p’Z with a natural continuous I x-action
and in turn establish the desired assertions. O

LEMMA 3.3.6. Every p-divisible group G over Ok naturally gives rise to a short exact sequence
0 — T,((G*)Y) — T,(GY) — T,((G°)") — 0.

PROOF. Let us write G = lim G, where each G, is a finite flat Ox-group. For each v > 1,
Proposition [1.2.13| and Lemma together yield a natural commutative diagram

0—— (G}éﬁl)v(?) — GXH(?) — ( $+1)V(F) —0

I l

0 —— (GI)Y(K) —— GY(K) —— (G))V(K) —— 0

where both rows are exact. Therefore we obtain the desired exact sequence by a general fact
stated in the Stacks project [Stal, Tag 03CA]. O


https://stacks.math.columbia.edu/tag/0BND
https://stacks.math.columbia.edu/tag/03CA
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ProrosiTION 3.3.7. Given a p-divisible group G = h_H)le over Ok, there exist canonical
I k-equivariant Z,-module isomorphisms

Tp(G) = HomZp(Tp(GV),Zp(l)) and  ®,(G) = Homg, (Tp(GV), q’p(ﬂp“’)) :

PRrOOF. Corollary [1.3.10] implies that the generic fiber of each G, is finite étale. Hence
each G, gives rise to a canonical identification

Gy(K) = (G))"(K) = Homg ., (G, (v )z) = Hom (G (K), e (K)) (3.4)
by Theorem Lemma and Proposition We deduce that T),(G) admits a

natural I' x-equivariant isomorphism
T,(G) = lim G, (K) 2= lim Hom(G (), e (K))
— Homg, (lim GY (), lim p () = Homz, (T,(G), Z,(1)).
Moreover, under the isomorphism ®,(G) = lim G, (K) = lim Homgz, (G (K), ®p(upe<)) given
by the identification (3.4]), we have a natural I'g-equivariant map
Homg, (T,,(G"), ®p(pp)) = Homg, (lim Gy (K), ®p(pp=)) — @p(G)
which we verify to be an isomorphism using Lemma [2.1.6 g

PROPOSITION 3.3.8. Every p-divisible group G = lim G, over Ok yields a short exact sequence
1
0 —— ®,(G) — G(Oc,) —55 tg(Cx) — 0.
PRrROOF. Since G(Oc¢, ) is p-divisible by Proposition (3.1.10] and Proposition we de-

duce from Proposition [3.2.20| that log is surjective. In addition, we have
ker(logg) = G(Oc rors = lim lim Gy (O, /m'Oc,.) = lim G, (O,) 2 lim G, (K) = &,(G)

v 1 v v
by Proposition [3.2.20] Proposition [3.2.4] Lemma [3.2.1] and Lemma [3.3.1] O
LEMMA 3.3.9. Every p-divisible group G over O yields I' x-equivariant Z,-linear maps
a:G(Oc,) — HomZp(Tp(GV), 1+mg,) and da:tg(Ckx)— HomZP(Tp(GV),(CK)
via a natural isomorphism T),(G") = Homy, div grp (G@CK, (upoo)ocK>.
PROOF. Let us write G = lim G, where each G, is a finite flat Ox-group. Lemma m

and Lemma together yield a canonical identification
T,(GY) = im G} (K) = lim G (Oc,)

= liLnHomOCK-grp ((GU)OCK7 (MP”)OCK>

= Homy, giv grp (GOCK ) (MPOO )OCK ) :

In addition, we have jye(Ocy) = 1 +mc, and ¢, . (Cx) = Ck as noted in Example [3.2.18
Hence each w € T,(GY) gives rise to maps

woe,. + G(Ocy) — e (Ocy) =1+me,  and  dwgy : t6(Cr) — tp,. (Cx) = Cr.
Now we obtain the desired maps a and da by setting
a(g)(w) = wo., (9) and  do(r)(w) := dwcy (1)
for each g € G(Ocy ), T € ta(Ck), and w € T,(GY). O
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ProrosITION 3.3.10. Given a p-divisible group G over O, there exists a canonical commu-
tative diagram

00— 3,(G) s G(Oc,) loge s t(Cx) —— 0

| I o

0 — Homyg, (T,(GY), By(up=)) — Homg, (Tp(GY), 1+ me,) — Homg, (To(GY),Ck) — 0

with exact rows and I' g-equivariant arrows.

PrOOF. The vertical arrows in the diagram are the natural I'g-equivariant maps given
by Proposition |3.3.7|and Lemma [3.3.9} The horizontal arrows in the diagram are the natural
maps given by Proposition and are I'g-equivariant by Lemma, We observe that
both rows are exact by Lemma [3.3.5] and Proposition In addition, it is straightforward
to verify that the diagram is commutative. Hence it remains to prove that o and da are
injective. We only need to show that do is injective as we have ker(«) ~ ker(da) by the snake
lemma.

We assert that « is injective on G(Of). Suppose for contradiction that there exists a
nonzero element g € ker(a). The Z,-linear map do is in fact Q,-linear as both t¢(Ck) and
Homy,, (T,(G"),Ck) are vector spaces over Q,. We deduce that ker(a) ~ ker(da) is also a
vector space over QQ, and thus is torsion free. Now we may assume by Proposition that
g lies in G°(Of). Lemma yields a commutative diagram

GO(OCK) ) G(OCK)

lao la

Homyg, (T,((G°)"), 1+ me,) < Homyg, (T,(GY), 1+ mc,)

where the injectivity of the horizontal maps follow from Proposition [3:2.8 and Lemma [3.3.6]
We find g € ker(a®) N G°(Ok) and obtain the identification ker(a®) N G°(Of) = ker(a®)''s
by Lemma Since ker(a®)'® is a vector space over Qp, for every integer n > 0 there
exists an element g, € ker(a®) NG°(Ok) with g = p"g,. We deduce from Lemma [3.2.15| that
g must be zero and in turn obtain a desired contradiction.

Now we show that da is injective on t¢(K). It is enough to establish the injectivity on
log(G(Ok)) as we have logo(G(Ok)) ®z, Qp = tq(K) by Proposition Let us take an
arbitrary element h € G(Og) with logg(h) € ker(da). Since logy induces the isomorphism
ker(a)) ~ ker(da) by the snake lemma, we find logg(h) = logg(h') for some h' € ker(a).
Proposition implies that h — A’ is torsion, which means that there exists n > 0 with
p"(h — k') = 0 or equivalently p"h = p"h’. Hence we have p"h € ker(a) N G(Ok) and in
turn find p™h = 0 by the injectivity of a on G(Of). We deduce from Proposition that
log(h) is zero, which implies that do is injective on log(G(Ok)).

Our discussion in the previous paragraph shows that da factors through an injective map
ta(Ck) 2 tq(K) @k Cx — Homg, (TH(GY),Cx)'™ ®k Ck.
In addition, Proposition |3.1.12] yields an injective map
Homg, (T,(GY),Cx)'* @k Cx — Homy, (T,(G"), K) ®k Cx = Homy, (T,(G"),Ck)

where the isomorphism comes from the fact that 7,(G") is free over Z, by Lemma m
Now we identify da with the composition of these maps and in turn establish its injectivity,
thereby completing the proof. O
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THEOREM 3.3.11 (Tate [Tat67]). Let G be a p-divisible group over Og.
(1) There exist natural isomorphisms
G(Ok) = Homgz, (T,(G¥),1+mg,)'%  and  te(K) = Homg, (T,(GY), Cx) .

(2) The tangent spaces t¢(Cg) and tgv(Cg) are orthogonal complements with respect
to a Cg-linear I'g-equivariant perfect pairing

HomZP(Tp(G),CK) X Homzp(Tp(Gv), (CK) — CK(—l).
PROOF. Proposition [3.3.10[ and the snake lemma together yield a commutative diagram

0 —— G(O¢,) —— Homg, (T,(GY),1+ m¢, ) — coker(a) —— 0

[ | Jz

0 — tq(Cx) —%— Homg, (T)(G"),Cr) —— coker(da) — 0

where both rows are exact. We apply Lemma to obtain a commutative diagram

0 —— G(Og) =5 Homg, (T,(GY),1 4 mg, )'5 ——— coker(a)t®

| | [

0 —— tg(K) _dox Homg, (T,(GV), Ck)'s ——— coker(da)'%

where both rows are exact. We observe that the middle vertical map induces an injective map
coker(ag) — coker(dag). (3.5)
In addition, we switch the roles of G and G to get an injective map
day; : tgv(K) — Homg, (T,(G),Ck)"'<.
Let us denote the height of G by h. Proposition and Lemma together show

that V' := Homg, (T,,(G),Ck) and W := Homg, (1,(G"),Ck) are vector spaces over Cg of
dimension h. Moreover, Proposition [3.3.7 yields a T -equivariant Z,-linear perfect pairing

T,(G) x T,(GY) — Zp(1),
which in turn gives rise to a I'k-equivariant Cg-linear perfect pairing
VXW — Cg(-1). (3.6)

This pairing maps V% x W' into Cg(—1)'%, which is zero by Theorem [3.1.11} We deduce
that VI« @ Cx and WK @ Cg are orthogonal and consequently find

dimg (VIE) + dimg (W) < dime, (V) = h.
Meanwhile, the injectivity of dak and day, yields the inequality
dimg (VEE) + dimg (W) > dimg (tq(K)) 4 dimg (tgv (K)) = h

where the equality follows from Theorem and Proposition [3.2.11T] Therefore all in-
equalities are in fact equalities. We deduce that the injective map day is an isomorphism
and in turn find by the injective map that ax is also an isomorphism. Now we establish
statement which in particular yields natural identifications

tg((CK) ~ s QR Cx and tg\/((CK> ~ ik QK Ck.

Our discussion readily shows that these spaces are orthogonal under the pairing (3.6 with
dimc, (t¢(Ck)) + dime, (tgv(Ck)) = dimc, (V'), thereby implying statement O
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PROPOSITION 3.3.12. Given a p-divisible group G of dimension d over Ok, we have
d = dimg (Homg, (T,(GY),Ck)"'*) = dim (Tp(G) ®z, Cx(—1))'<.
ProOOF. The first equality is evident by Proposition [3.2.11] and Theorem The
second equality follows from the identification
T, (@) 9z, Cre(~1) = Homg, (T,(G"), Zy(1)) ©z, Cxe(~1) = Homz, (T,(G"), Cx)
given by Lemma and Proposition [3.3. O

Remark. Lemma|3.3.5|and Proposition [3.3.12 together show that we can compute the height
and the dimension of G from T,,(G).

THEOREM 3.3.13 (Tate [Tat67]). Every p-divisible group G over Ok gives rise to a canonical
Ck|[I'k]-module isomorphism

Homz, (T,(G),Ck) = tqv(Ck) @ t5(Ck)(—1).
Proor. We identify ¢,(Cx) with the Cg-dual tg(Ck) and find
Homc, (t¢(Ck),Cr(—1)) = tH(Cr)(—1).
Since Theorem yields a Cg-linear I' g-equivariant perfect pairing
HomZP(Tp(G),CK) X Homzp(Tp(Gv),CK) — Cg(-1)
under which t¢(Cg) and tgv(Cg) are orthogonal complements, we get a short exact sequence
0 — tqv(Cx) — Homg, (Tp(G),Ck) — t&(Cx)(—1) — 0 (3.7)

where all maps are Cg-linear and I'k-equivariant. Let us write d := dimc, (t¢(Ck)) and
d" := dimc, (tgv(Ck)). We have isomorphisms

Exte, i, ((6(Cr) (—1), tav (Ck)) = ExtéK[rK](CK(—l)@dv,C??d) ~ H'(Ig, Cr(1))®4",
Homg, 1, (t&(Cr ) (—1), tev (Cr)) ~ Home ) (Cr (—1)®4", CPY) ~ HO(Dg, Cie (1))

Theorem [3.1.11|shows that both H(T'x, Cx (1)) and H'(I'gr, Cx (1)) vanish. Hence we deduce
that the exact sequence (3.7)) canonically splits, thereby establishing the desired assertion. [

Definition 3.3.14. Given a p-divisible group G over O, we refer to the isomorphism in
Theorem [3.3.13| as the Hodge-Tate decomposition for G.

COROLLARY 3.3.15. For every p-divisible group G over O, the rational Tate-module
Vo(G) =T,(G) ®z, Qp

is a Hodge-Tate p-adic I'g-representation.

PROOF. Let us identify the Cr-duals of tgv(Cg) and tf,(Cg) respectively with ¢, (Cx)
and tg(Cg). Theorem [3.3.13|yields a natural decomposition

Vp(G) ®q, Ck = tgv(Ck) ® ta(Cr)(1).
Therefore we apply Theorem [3.1.11] to find
tew (K)  forn =0,
(Vp(G) ®q, CK(—n))FK = Jtq(K)  forn=1,
0 for n # 0, 1.

The desired assertion is now evident. O

Remark. Our proof of Corollary [3.3.15| shows that we can find t¢(K) from T,(G).
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PRrROPOSITION 3.3.16. Let A be an abelian variety over K.
(1) There exists a canonical isomorphism
Hé}t(AFv Qp) = Homg, (T,(A[p™)), Zp) ®z, Qp.
(2) If A has good reduction, its integral model A over Ok yields natural isomorphisms
H(A, Q) g) = ey (K)  and  H'(A, 04) =t gvppee) (K).
(3) Given integers i, j > 0 and n > 0, we have natural identifications
HE (A, Q) = \' H(Ax, Q).
HI(A,Q, )= N\ HY(A,00) @ N HOA,QY) ).
ProOOF. All assertions are standard facts about abelian varieties stated in the notes of
Milne [Mil, §7, §12] and the book of Mumford [Mum?0, §4]. O

THEOREM 3.3.17. Given an abelian variety A over K with good reduction, there exists have
a canonical I'g-equivariant isomorphism

Hg (A, Qp) ®q, Cx = @ Hi(A,Qi‘/K) ®K Cx(—j) for each n > 1.
i+j=n

PROOF. Since A has good reduction, it admits an integeral model A over O. We have
T,(A[p*>]) = T,(A[p™]) by definition and find A" [p>] = A[p>°]" by Example [2.1.11] Hence
Theorem [3.3.13|and Proposition|3.3.16|together yield a canonical I' g-equivariant isomorphism

Hy(Az, Q) ®g, Cr = (H'(A,04) @k Cr) ® (H (A, Q) @1 Cre(=1).
Now we deduce the desired assertion from Proposition [3.3.16] O

Remark. Theorem is a special case of the Hodge-Tate decomposition theorem that
we have introduced in Chapter [, Theorem The proof of the Hodge-Tate decomposition
theorem for the general case requires ideas that are beyond the scope of our discussion. We
refer curious readers to the notes of Bhatt [Bhal9] for a wonderful exposition of the proof
by Scholze [Sch13]| using his theory of perfectoid spaces.

COROLLARY 3.3.18. For every abelian variety A over K with good reduction, the étale coho-
mology H},(Az,Qp) for each n > 1 is a Hodge-Tate p-adic I'g-representation.

PROOF. Let us take an arbitary integer m. If we have 0 < m < n, Theorem [3.1.11] and
Theorem together yield a natural isomorphism

n 'k ~ pyn—m m
(Hi (A, Qp) ®g, Cx(m)) ™ = H" (A, Q).

Otherwise, Theorem [3.1.11| and Theorem [3.3.17 imply that (H% (A%, Q,) ®q, (CK(m))FK is
trivial. Now the desired assertion is straightforward to verify. O

Remark. In fact, given a proper smooth variety X over K, the Hodge-Tate decomposition
theorem implies that the étale cohomology H}} (X4, Q,) for each integer n > 1 is a Hodge-Tate
p-adic I'g-representation.
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Exercises

1. In this exercise, we study homomorphisms between the R-groups G, and G,,.
(1) Show that every homomorphism from G, to G, is trivial.
(2) If R is reduced, show that every homomorphism from G, to G, is trivial.

(3) If R contains a nonzero element o with a? = 0, construct a nonzero homomorphism
from G, to G,,.

2. Assume that R =k is a field.
(1) Establish a canonical isomorphism Endj grp(Gm) = Z.
(2) If k has characteristic 0, establish a natural identification Endy_gr,(G4) = k.

(3) If k has characteristic p, show that Endy._gp(Gq) is isomorphic to the (possibly non-
commutative) polynomial ring k(p) with pc = Py for any c € k.

3. Assume that R = k is a field of characteristic p.

(1) Show that the k-algebra homomorphism k[t] — k[t] which sends ¢ to t¥ — ¢ induces
a k-group homomorphism f : G, — G,.

(2) Show that ker(f) is isomorphic to Z/pZ.

4. Assume that R = k is a field of characteristic p.
(1) Verify that the k-group o2 := Spec (k[t]/ ") with the natural additive group struc-

ture on a2 (B) = { beB:b =0 } for each k-algebra B is finite flat of order p.

(2) Show that a, admits an isomorphism oz, = Spec (k[t,u]/(tP, uP)) with the multi-
plication on 041\3/2 (B) = { (by,b2) € B®: b = bl =0} for each k-algebra B given by
(b1, b2) - (b],b5) = (by + b, by + by — Wi(by, ba))
(t+u)P — 7 —uP
p

Hint. We can show that a B-algebra homomorphism f : B[t,t"!] — BIt]/(t"")
induces a B-group homomorphism a,2 — Gy, if and only if f(¢) admits an identity

€ Z[t,ul.

where we write Wi (¢, u) :=

p

! il
i=0 j=

-1 ; p—1 .
0

for some by, by € B with b} = b5 = 0.

3) For k = F,, show that o, fits into a nonsplit short exact sequence
p D 1% q

00— ap — a2 — ap — 0.

p

Remark. For k = Fp, there exists a natural identification

EXt%p_grp(O‘pa ap) = (Z/22)?

with elements given by ag, a2, a;Q, and the p-torsion part of a supersingular elliptic curve.
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5. Assume that R = k is a perfect field.
(1) Given a finite abelian group M with a continuous I'g-action, show that the scheme

T
MUk .= Spec (A) for A := ( H k) is naturally a finite étale k-group.
ieM

Hint. Since M is finite, the I'y-action should factor through a finite quotient.

(2) Prove that the inverse functor for the equivalence in Proposition maps each
finite abelian group M with a continuous I'p-action to M Uk,

(3) Prove that a finite étale group scheme G over a field & is a constant group scheme if

and only if the I'y-action on G(k) is trivial.

6. Given a nonperfect 1ﬁeld k of characteristic p, let ¢ be an element of £ which is not a p-th
power and set G := p]_[ G; with G; := Spec (k[t]/(t? — ¢)).
i=0
(1) Given a k-algebra B, verify a natural identification
Gi(B)%{bGB:bp:ci} foreach i =0,--- ,p—1
and show that G(B) is a group with multiplication given by the following maps:
e m;j : Gi(B) x Gj(B) — G;4;(B) for i + j < p sending each (g, ¢’) to g¢’,
e m;j : Gi(B) x Gj(B) — Gitj—p(B) for i + j > p sending each (g,¢’) to gg’/c.
(2) Show that G yields a nonsplit connected-étale sequence
0 — pty — G — B/pl — 0.
Hint. To show that the sequence does not split, compare Gy with G; for i # 0.

Remark. This exercise shows that Proposition fails when the base field is not perfect.
The notes of Pink [Pin| §15] provide an analogous example with G; = Spec (k[t]/(t’ —ic)).

7. Assume that R =k is a field.
(1) Give a proof of Theorem when R = k is a field without using Theorem
Hint. If £ has characteristic 0, we can adjust the proof of Proposition [1.5.19|to show
that G° is trivial.

(2) Prove Theorem [1.1.17|when R = k is a field.

Hint. If £ has characteristic 0, we can deduce the assertion from Lagrange’s theorem
for finite groups by observing that G is étale. If k has characteristic p, we can reduce
to the case where G is simple with k algebraically closed.

8. Let E be an elliptic curve over EJ.
(1) Show that E is either ordinary or supersingular.

(2) If E is supersingular, show that ker(¢gy,)) is isomorphic to ay,.
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9. Assume that R = k is a perfect field.
(1) Show that the dual of every étale p-divisible group over k is connected.
(2) Show that every p-divisible G over k admits a natural decomposition
G Gll % Gmult % Gét
with the following properties:
(i) G is connected with (G!)V being connected.
(ii) G™ is connected with (G™*)V being étale.

(iii) G¢ is étale with (G')Y being connected.

10. Assume that R = k is a field of characteristic 0. Establish an isomorphism between the
formal group laws piz~ and pg— over k.

Hint. Consider the map k[[t]] — k[[t]] sending ¢ to exp(t) — 1 = Z

n=1

tTL
a.

11. Let K be a finite extension of @, with uniformizer 7= and residue field F,.

(1) Show that there exists a unique formal group law p, over O of dimension 1 with
an endomorphism (7] : Og|[[t]] = Ok|[[t]] sending ¢ to mt + t9.

(2) Show that p, is p-divisible.

Remark. The formal group law p, is a Lubin-Tate formal group law, introduced by the work
of Lubin-Tate [LT65] as a means to construct the totally ramified abelian extensions of K.

12. If R = k is an algebraically closed field of characteristic p, prove that every étale p-divisible
group of height h over k is isomorphic to (Q,/Z,)".

13. In this exercise, we study the p-adic expansion and the Teichmiiler expansion on Zj,.
(1) Show that the 2-adic expansion agrees with the Teichmiiler expansion on Zs.

(2) Show that the p-adic expansion does not agree with the Teichmiiler expansion on Z,
for p > 2.

(3) Find the 3-adic expansion for [2] € Zs.
(4) Find the first four coefficients of the 5-adic expansion for [2] € Zs.

Hint. The Teichmiiler lift of an element a € [, is the unique lift [a] € Z,, with [a]P = [a]. We
can inductively find its image in Z,/p"Z, = Z/p"Z for each n > 1 by Hensel’s lemma.

14. Assume that R = k is a perfect field of characteristic p and write Ko(k) := W (k)[1/p].
(1) For every A € Q, establish a natural isomorphism of isocrystals DY = D_.
(2) For every A\, \' € Q, establish a natural isomorphism of isocrystals

Dy ®po) Dy = DYy, withn > 1.
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15. Let E be an arbitrary field.
(1) Show that the p-adic I'g-representation V,,(Q,/Z,) is trivial.

(2) If E has characteristic p, show that the p-adic cyclotomic character xg is trivial.

16. Let K be a p-adic field.
(1) Prove that the algebraic closure K of K is not p-adically complete.

Hint. There are at least two ways to proceed as follows:

(a) We can observe that K is a countable union of nowhere dense subspaces and
apply the Baire category theorem to conclude.

(b) Alternatively, we can use Krasner’s lemma to produce a Cauchy sequence in K
whose limit is not algebraic over K.

(2) Given an extension L of K with L C K, prove that its closure L in Cg yields an
identity L = LN K.

17. In this exercise, we study the logarithm of p,~ over O for a p-adic field K.
(1) Give a proof of Proposition [3.2.19| for G = fpee.

(2) Show that the map logupoo naturally extends to a I'x-equivariant group homomor-

phism log, : Cx — Cg with log,(p) = 0.

18. Let K be a p-adic field and G be a p-divisible group over Of.
(1) Show that there exist canonical Z,-linear I' x-equivariant isomorphisms
Tp(G) = HomZp(Qp/Zpa (I)p(G)) and ®p(G) = Tp(G) ®z, @P/ZP'

(2) Given a p-divisible group H over O, show that the generic fibers of G and H are
isomorphic if and only if G and H satisfy the following equivalent conditions:

(i) The Zy[I'k]-modules T),(G) and T},(H) are isomorphic.
(i) The Z,[I'k]-modules ®,(G) and ®,(H) are isomorphic.

19. Let K be a p-adic field and F be an elliptic curve over Ok.
(1) Prove that E gives rise to a natural I'x-equivariant Z,-linear perfect pairing
Tp(E[p™]) x T(E[p™]) — Zp(1).

(2) Prove that the determinant character of the I'g-representation V,(E[p™]) coincides
with the p-adic cyclotomic character.

Remark. The perfect pairing in the first part coincides with the Weil pairing on E.

20. Let K be a p-adic field and G be a p-divisible group over O with an exact sequence
0 — Qp(m) — V3(G) — Qp(n) — 0.
(1) Show that m and n respectively satisfy the inequalities 0 <m <1 and 0 <n < 1.
(2) Show that G is étale if and only if m and n satisfy the equality m =n = 0.
(3) Show that G is connected if and only if m and n satisfy the equality m =n = 1.






CHAPTER III

Period rings and functors

1. Fontaine’s formalism on period rings

The main goal of this section is to discuss the formalism developed by Fontaine [Fon94al
for p-adic period rings and their associated functors. Our primary references for this section
are the notes of Brinon-Conrad [BC| §5] and the notes of Fontaine-Oiyang [FOl §2.1].

Throughout this chapter, we let K be a p-adic field with absolute Galois group I', inertia
group Ix, and residue field k. In addition, we write Repg, (') for the category of p-adic
I'k-representations and x for the p-adic cyclotomic character of K.

1.1. Basic definitions and examples

In this subsection, we define some key notions for our formalism and relate them to
Hodge-Tate representations.

Definition 1.1.1. An integral domain B over Q, with an action of I' is (Qp, I'r)-regular if
it satisfies the following conditions:

(i) We have B'x = CTx where C denotes the fraction field of B endowed with a natural
I'k-action extending the I'i-action on B.

(ii) A nonzero b € B is a unit if Q,b = {cb € B : c € Q, } is stable under the I'-action.

Remark. For any field F' and any group I', we can similarly define (F,I")-regular rings. The
formalism that we develop in this section readily extends to (F,I')-regular rings.

Example 1.1.2. Every field extension of @, with an action of ' is (Qp, ' )-regular.
Definition 1.1.3. Let B be a (Q,, 'k )-regular ring with E := BI'x.
(1) We define the functor associated to B to be D : Repg, (I'x) — Vectp with
Dp(V) := (V ®q, B)'E  for every V € Repg, (I'x),

where Vecty denotes the category of vector spaces over F.
(2) We say that V' € Repg, (I'r) is B-admissible if it satisfies the equality

dimg Dp(V) = dimg, V.

Example 1.1.4. For every (Qp,I'x)-regular ring B, trivial p-adic I'g-representations are
B-admissible.

Definition 1.1.5. Given a character 1 : I'x — Q) and a Q,[I'k]-module M, we define the
n-twist of M to be the Qp[I'x]-module

M(n) :== M g, Qp(n)
where Q,(n) denotes the I'x-representation on Q, given by 7.

Example 1.1.6. Given a Q,[I'x]-module M, we have an identification M (n) = M (x") for
every n € Z by Lemma in Chapter [T}

81
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We assume the following generalization of Theorem [3.1.11]in Chapter [[I]

THEOREM 1.1.7 (Tate [Tat67], Sen [Sen80]). Let n: I'x — Q, be a continuous character.

(1) If n(Ix) is finite, both HY(T'x, Cx(n)) and H (T, C(n)) are 1-dimensional vector
spaces over K.

(2) If n(I) is infinite, both H°(T'x, Cx (1)) and H(T'x,Ck(n)) vanish.

Remark. By Theorem the p-adic I' g-representation Q,(n) is Cx-admissible if and only
if n(Ix) is finite. In fact, by a deep result of Sen [Sen80], a p-adic I'k-representation V' is
Cg-admissible if and only if the Ix-action on V factors through a finite quotient.

LEMMA 1.1.8. The group x(Ix) is infinite.

PrOOF. We have ker(x) = ﬂ Gal(K (pyr (K))/K) as x encodes the action of I'x on
v>1

Zp(1) = lim prpe (K). Let us write e, for the ramification degree of K(uy (K)) over K and e

for the ramification degree of K over Q,. We find e,e > p’~!(p — 1) by noting that e,e and

p’"1(p — 1) are respectively equal to the ramification degrees of K (u, (K)) and Qp(pupw (K))

over Q,. We deduce that e, grows arbitrarily large and thus obtain the desired assertion. [

Remark. Since we have Cx(n) = Cg(x") for each n € Z as noted in Example we can
deduce Theorem [3.1.11| in Chapter [II] from Lemma [1.1.8 and Theorem |1.1.7]

Definition 1.1.9. The Hodge-Tate period ring is Byt := @CK(n).
neZ

ProposITION 1.1.10. The Hodge-Tate period ring Byt is (Qp, Ik )-regular.

PROOF. Let us first prove the identity Bgff = Cg%, where Cgr denotes the fraction field of
the integral domain Byr. We consider the natural action of I'x on Cx ((¢)) with v(t) = x(v)t
for every v € I'x. Lemma in Chapter [[T] yields I'x-equivariant isomorphisms

Bur ~ Ckl[t,t™!] and Cur ~ Cg(t).

Since we have BEIT( = K by Theorem [3.1.11|in Chapter [II, it suffices to establish the identity
Cx((t))'® = K. The group I' acts on each f(t) = > c,t" € Ck((t)) via the relation

v (Z cntn) = Z’Y(Cn)x(’y)"t" for every v € I'k.

Hence f(t) = > cnt™ € Cg((t)) is I'k-invariant if and only if we have ¢, = v(c,)x(y)" for
each n € Z and v € I', or equivalently ¢, € Cx(n)'% for every n € Z by Lemma [3.1.3]in
Chapter [l The desired identity Cx ((t))'% = K follows from Theorem [3.1.11|in Chapter E

It remains to show that every nonzero b € Byt with Q,b being stable under the I'-action
is a unit. Let us identify b with f(t) = Y e,t" € Ckl[t,t71] via the I'g-equivariant isomor-
phism Byt ~ Cg/[t,t7!]. The group I'r acts continuously on By as it acts continuously on
each Ck (n); in particular, it acts on f(t) via a continuous character 1 : I'x — Q. For each
n € Z and v € Tk, we find n(y)c, = y(cn)x ()" or equivalently ¢, = (n71x™)(v)7v(c,). Hence
we have ¢, € Cg(n~'x")'® for every n € Z and in turn deduce from Theorem that
(n~'x™)(If) is finite for every n € Z with ¢,, # 0. Let us now choose m € Z with ¢,,, # 0. If we
have ¢, # 0 for some n # m, we see that the image of I under X"~ = (p~1x") - (™)~}
must be finite, which contradicts Lemma We find that f(t) = cp,t™ € Cgl[t,t71] is a
unit, thereby completing the proof. O
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ProrosiTION 1.1.11. A p-adic representation V of 'k is Hodge-Tate if and only if it is
Byr-admissible.

PROOF. Since we have

Dy (V) = (V g, Bur)'* = @V ®g, Cx(n))", (1.1)
nez
the desired assertion follows from Proposition [3.1.12) in Chapter [[I} O

Example 1.1.12. Given a p-adic I'g-representation V' which fits into an exact sequence
0 — Qy(m) — V — Qy(n) — 0
with m # n, we assert that V' is Hodge-Tate. For every i € Z, we have an exact sequence
0 — Cg(i+m) — V ®q, Cx(i) — Cg(i+n) — 0
which gives rise to a long exact sequence
0 — Crg(i+m)'* — (V ®g, Cx(i))'* — Ck(i+n)'* — H'(Tk,Ck (i +m)).
Therefore Theorem in Chapter [[T] yields an identification

K fori=-m,—n
V &g, Ck (i)' = C
V&g, Cx (@) {0 for i # —m, —n.
Now we find
dimg Dy (V) =) dimg (V @q, Cx (1)) = 2 = dimg, V
€L
and in turn establish the desired assertion.

Remark. On the other hand, a self extension of Q, is not necessarily Hodge-Tate. For
example, we can show that the two-dimensional Q,-vector space with the I'-action given by

the matrix <1 Ing °X

0 i ) is not Hodge-Tate, where log, denotes the Iwasawa logarithm.

PROPOSITION 1.1.13. For a continuous character 1 : I'c — Q), the I'x-representation Qy(n)
is Hodge-Tate if and only if there exists some n € Z with (nx™)(Ix) finite.

PRrROOF. By Proposition |3.1.12in Chapter [II} the I"-representation Q,(n) is Hodge-Tate
if and only if there exists an integer n with (Q,(n) ®q, Cx(n))'s # 0, or equivalently
Cx (nx™)'® # 0 by Example Hence the assertion follows from Theorem m O

Definition 1.1.14. Given a Hodge-Tate I'x-representation V', an integer n is a Hodge-Tate
weight of V' with multiplicity m if we have

dimg (V ®q, Cx(n)'% =m > 0.

Remark. Readers should be aware that many authors use the opposite sign convention for
Hodge-Tate weights. We will explain the reason for our choice in Proposition [2.4.4]

Example 1.1.15. We record the Hodge-Tate weights for some Hodge-Tate representations.

(1) For every n € Z, the Tate twist Qp(n) of Q, has Hodge-Tate weight —n.
(2) For a p-divisible group G over Ok, the rational Tate module V,(G) has Hodge-Tate
weights 0 or —1 (possibly both) by Theorem [3.3.13|in Chapter

(3) For an abelian variety A over K with good reduction, the étale cohomology group

H}, (A%, Q,) has Hodge-Tate weights 0,1,--- ,n by Theorem [3.3.17|in Chapter
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1.2. Formal properties of admissible representations

Throughout this subsection, we fix a (Qp,I'k)-regular ring B and write E := B, In
addition, we denote by Repgp (T'k) the category of B-admissible I'x-representations.

THEOREM 1.2.1. Let V be a p-adic I'x-representation.
(1) There exists a natural map
ay :Dp(V)®@g B — V ®q, B
which is B-linear, I' x-equivariant, and injective.
(2) V satisfies the inequality
dimg Dp(V) < dimg, V (1.2)

with equality precisely when ay is an isomorphism.

PROOF. Let us first consider statement We have the natural map
ay - DB(V) R B — (V@Qp B) XRp B = V®Qp (B@EB) — V®Qp B,

which is clearly B-linear and I'k-equivariant. We wish to show that ay is injective. Since
the fraction field C of B is (Qp, ' )-regular as noted in Example we obtain a canonical
C-linear map

By : Dc(V) @ C — V ®q, C

which fits into a commutative diagram

Dp(V)®p B > V ®q, B

! l

De(V) 05 C -2 Vg, C
with injective vertical maps. It suffices to prove that Sy is injective. Suppose for contradiction
that ker(8y ) is nonzero. Take an E-basis (e;) of Dc(V) = (V®g,C)"'* and choose a nontrivial
C-linear relation ) ¢;e; = 0 with minimal number of nonzero terms. We may set ¢; = 1 for
some j. For every v € ', we find

Z(v(ci) —¢lei ="y (Z ciei) - Zciei =0 and ~(¢)—cj=~(1)—1=0.

By the minimality of our relation, each ¢; satisfies the equality ¢; = v(¢;) for every v € 'k
and thus lies in C'¥ = E. Now we have a nontrivial E-linear relation > cie; = 0 for the
E-basis (e;) of Do (V), thereby obtaining a desired contradiction.

It remains to verify statement Since the inequality is evident by statement we
only need to consider the equality condition. If oy, is an isomorphism, the inequality becomes
an equality. For the converse, we henceforth assume the identity dimg Dp(V) = dimg, V.
Let us choose an E-basis (u;) of Dp(V) = (V ®q, B)'* and a Q,-basis (v;) of V. We may
represent ay by a d x d matrix My with d = dimg Dp(V) = dimg, V. We wish to show
that det(My) is a unit in B. We have det(My) # 0 as the map Dp(V) @ C — V ®q, C
induced by ay is an isomorphism for being an injective map between vector spaces of equal
dimension. Meanwhile, I' i acts trivially on u; A --- A ug and via some Qp-valued character n
on v1 A - -+ Awvg. Since the I'g-equivariant map «y yields the identity

(Ao ) (uy A -+ Aug) = det(My)(v1 A -+ Awg),
we deduce that I'x acts on det(My ) via n~! and in turn find det(My) € B> as desired. [
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PROPOSITION 1.2.2. The functor Dp is exact and faithful on Rep(gp (Tk).
Proor. Let V and W be arbitrary B-admissible I'g-representations. Theorem |[1.2.1
yields natural I'g-equivariant B-linear isomorphisms
DB(V) ®EB§V®QPB and DB(W) ®EB%W®QP B.

Given f € Homg,r,)(V, W) with the associated map Dg(f) : Dp(V) — Dp(W) being zero,
we observe that the map V' ®q, B — W ®q, B induced by f is zero and in turn deduce that
f must be zero. Therefore the functor Dp is faithful on Rep(gp (T'k).

It remains to verify that Dp is exact on Rep(gp (k). Let us consider an arbitrary short
exact sequence of B-admissible I'g-representations

0 —U—V - —W—0.
We obtain a short exact sequence
0—U®q, B—V®q, B— W®gq,B—0,
which we naturally identify with a short exact sequence
0— Dp(U)®g B — Dp(V)®r B — Dp(W)®g B — 0

by Theorem The desired assertion is now evident as B is faithfully flat over the field £
by a standard fact stated in the Stacks project [Stal, Tag 00HQ]. O

Remark. The functor Dp is not fully faithful on Repgp (T'x) with values in the category

of vector spaces over E; indeed, the isomorphism class of Dgp(V) for every V € Rep(gp (Tk)
depends only on the dimension of V. In practice, however, we enhance Dp to a functor that
takes values in a category of vector spaces over E with some additional structures, as briefly
described in Chapter [I We will see in §3] that such an enhanced functor is fully faithful
for the crystaline period ring B = Beis-

ProposiTIiON 1.2.3. The category Repgp (T'k) is closed under taking subquotients.

PRroOOF. Consider a short exact sequence of p-adic I'i-representations
0—U—V-—W-—70 (1.3)

with V € Rep(gp (I'). We wish to show that both U and W are B-admissible. We note that
the functor Dp is left exact on Repg, (I'k) by construction and thus obtain an exact sequence

0 — Dp(U) — Dp(V) — Dp(W). (1.4)
In addition, by Theorem [1.2.1| we have
dimg Dp(U) < dimg, U and  dimg Dp(W) < dimg, W.
Now the exact sequences and together yield the relation
dimg Dp(V) < dimg Dp(U) + dimg Dp(W) < dimg, U + dimg, W = dimg, V.

Since V is B-admissible, all inequalities are in fact equalities. Therefore we deduce that both
U and W are B-admissible as desired. O

Remark. In general, the category Repgp(FK) is not closed under taking extensions. For

example, the category of Hodge-Tate representations is not closed under taking extensions by
the remark following Example [1.1.12
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PROPOSITION 1.2.4. Given B-admissible I'-representations V' and W, their tensor product
V ®@q, W is B-admissible with a natural isomorphism

DB(V) XE DB(W) = DB(V ®Qp W)

PROOF. Theorem yields natural I'g-equivariant B-linear isomorphisms
ay : Dp(V)®@p B = V®g,B and aw:Dp(W)®gDB =W ®q, B-
Let us consider the natural map
Dp(V)®g Dp(W) — (V ®q, B) ® (W ®q, B) — (V ®g, W) ®q, B
with the first arrow given by the identifications
Dp(V)=(V&g, B)' and Dg(W)= (W ®q, B)'*.
Since the second arrow is evidently I'x-equivariant, we obtain a natural E-linear map
Dp(V)®g Dp(W) — ((V ©g, W) ©g, B) X = Dp(V ©g, W). (1.5)
It is not hard to see that this map is injective; indeed, this map extends to a B-linear map
(Dp(V) @ Dp(W)) @ B — ((V ®q, B) ®r (W ®q, B)) ® B — (V ®q, W) ®q, B
which coincides with the isomorphism ay ® apy under the identifications
(Dp(V)®r Dp(W))®r B= (Dp(V)®g B) ®@p (Dp(W) ®g B),
((V ®q, B) ®r (W ®q, B)) ®p B=(V®q, B®r B)®p (W ®q, B®E B),
(V ®g, W) &g, B=(V &g, B)@p (W ®q, B).
Therefore we obtain the inequality
dimg Dp(V ®q, W) > (dimg Dp(V)) - (dimg Dp(W)) = dimg, V ®q, W

where the equality follows from the B-admissibility of V and W. We find by Theorem [T.2.7]
that this inequality is indeed an equality and in turn deduce that V' ®q, W is B-admissible
with the natural isomorphism ((1.5]). O

ProproSITION 1.2.5. Given a B-admissible I' g-representation V' and a positive integer n, both
A™M(V) and Sym" (V) are B-admissible with natural filtered isomorphisms

AN (Dp(V)) = Dp(A"(V)) and  Sym"(Dp(V)) = Dp(Sym"™(V)).

PRrROOF. Let us only consider exterior powers here, as the same argument works with
symmetric powers. Proposition implies that V" is B-admissible with a natural isomor-
phism Dg(V®") = Dp(V)®". We find that A"(V) is B-admissible by Proposition and
in turn obtain a natural surjective E-linear map

~

Dp(V)®" — Dp(V®") = Dp(A"(V))

by Proposition It is straightforward to check that this map factors through the natural
surjection Dg(V)®" — A"(Dpg(V')). Hence we have a natural surjective E-linear map

N (Dp(V)) = Dp(A"(V)),
which turns out to be an isomorphism since we have
dimp A"(Dp(V)) = dimg Dp(A™(V))
by the B-admissibility of V' and A™(V). O
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LEMMA 1.2.6. Every d-dimensional p-adic I' g-representation V' admits natural I' g-equivariant
Qp-linear isomorphisms

A:det(VY) = det(V)Y  and A :det(VVY) ®q, ALy L Y

PROOF. Take arbitrary elements fi, -, fg € V¥ and v1,--+ ,v4 € V. Let M denote the
d x d matrix whose (i, j)-entry is fij(v;). We obtain A and A as Q,-linear maps with
A(fi NN fa)(vr A ANvg) = det(M),
A(fin---ANfa)@(waA---ANvg)) (v1) =det(M).
It is straightforward to verify that A and A are I'kx-equivariant isomorphisms. O

PROPOSITION 1.2.7. For every B-admissible ' i-representation V', the dual representation V'V
is B-admissible with a natural E-linear perfect pairing

DB(V) KRE DB(V\/) = DB(V ®Qp VV) — DB(Qp) =~ F. (1.6)

PROOF. Let us first consider the case where V' has dimension 1 over Q,. We fix a nonzero
vector v € V and take f € VY = Homg, (V,Q,) with f(v) = 1. In addition, we represent the
['k-action on V' by a continuous character 1 : I'x — Q.. We obtain the equalities

y(w)=n(v and  y(f)=n(y)"f for every vy € I'k.
Since Dp(V) = (V ®g, B)''¥ is 1-dimensional over E by the B-admissibility of V, it admits
a basis given by a vector v ® b for some b € B. Now we find
v@b=7(w®b)=7(v)®7y(0b) =n()v@y(0b) =v@n(y)y(b) forevery vy €Tk
or equivalently
b=mn(y)y() for every v € I'k.
Moreover, we have b € B* as v ® b yields a B-basis for V ®q, B via the natural isomorphism
Dp(V)®g B =V ®q, B given by Theorem Hence Dp(VY) = (VY ®q, B)'¥ contains
a nonzero vector f ® b~'. We deduce that the inequality
dimp Dp(V") < dimg, V¥ =1

given by Theorem must be an equality, which means that V'V is B-admissible. We also
observe that f ® b~! yields an E-basis for Dg(V'"V) and in turn find that the map is a
perfect pairing.

We now consider the general case. Let us write d := dimg, V' for notational convenience.
Propositionimplies that both det(V) = A%V and AY~1V are B-admissible. Since det(V)

has dimension 1 over Qp, we deduce from Proposition and Lemma that V'V is
B-admissible. Hence it remains to prove that the map ((1.6)) is a perfect pairing. We have

d = dimg Dg(V) = dimg Dg(V")

by the B-admissibility of V' and V. Upon choosing E-bases for Dp(V) and Dg(V"), we can
represent the pairing (1.6)) by a d x d matrix M. It suffices to show that det(M) is nonzero,
or equivalently that the induced pairing

det(Dp(V)) ®p det(Dp(VY)) — E
is perfect. Proposition yields natural isomorphisms
det(Dp(V)) = Dp(det(V)) and det(Dp(V")) = Dg(det(VY)).

Hence the desired assertion is evident by our discussion in the first paragraph. O
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2. de Rham representations

In this section, we define and study the de Rham period ring and de Rham representations.
The primary references for this section are the notes of Brinon-Conrad [BC| §4 and §6] and
the article of Scholze [Sch12].

2.1. Perfectoid fields and their tilts

Let us begin with the notion of perfectoid fields, which provides a modern perspective of
Fontaine’s original work.

Definition 2.1.1. A perfectoid field is a complete nonarchimedean field C' of residue charac-
teristic p with the following properties:

(i) The valuation on C' is nondiscrete.
(ii) The p-th power map on O¢/pO¢ is surjective.

Remark. By convention, we assume that the valuation on a nonarchimedean field is not
trivial. On the other hand, the valuation on a valued field may be trivial.

LEMMA 2.1.2. Let C' be a complete nonarchimedean field of residue characteristic p. If the
p-th power map on C is surjective, the field C' is a perfectoid field.

PROOF. Let us denote by v the valuation on C and take an arbitrary element z € C.
Since the p-th power map on C' is surjective by our assumption, there exists an element y € C
with x = yP. If x has positive valuation, we find

0<v(y)=v(z)/p <v(z). (2.1)

We deduce that C' does not have an element with minimum positive valuation, which in
particular implies that the valuation v is not discrete. Moreover, we note that the p-th power
map on O¢ is surjective; indeed, if x lies in O¢ we have y € O¢ by the relation (2.1). Hence
the p-th power map on O¢/pO¢ is also surjective. The desired assertion is now evident. [J

Remark. The converse of Lemma does not hold; in other words, the p-th power map
on a perfectoid field is not neccessarily surjective.

Example 2.1.3. Since C is algebraically closed as noted in Chapter [, Proposition
it is a perfectoid field by Lemma [2.1.2]

Remark. In fact, Lemma [2.1.2] shows that every complete nonarchimedean algebraically
closed field of residue characteristic p is a perfectoid field.

PROPOSITION 2.1.4. A nonarchimedean field of characteristic p is perfectoid if and only if it
is complete and perfect.

PROOF. By definition, every perfectoid field of characteristic p is complete and perfect.
Conversely, every complete nonarchimedean perfect field of characteristic p is perfectoid by
Lemma [2.1.2) Il

Definition 2.1.5. Let C be a perfectoid field.
(1) The tilt of C is C° := lim C endowed with the natural multiplication.

TP

(2) The sharp map associated to C' is the map C* — C which sends each ¢ = (c,) € C°
to the first component ¢! = ¢.
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For the rest of this subsection, we fix a perfectoid field C' with a valuation v. We aim to
show that the multiplicative monoid C? is naturally a perfectoid field of characteristic p.

PROPOSITION 2.1.6. Fix an element w € C* with 0 < v(w) < v(p).
(1) Given arbitrary elements =,y € O¢ with  —y € wO¢ we have
" —y?" € w1 O for each integer n > 0.

(2) The natural projection O¢ — O¢/wO¢ induces a multiplicative bijection

liLn Oc = m Oc/wOC. (2.2)
x—xP x—xP

(3) The monoid lim Oc is naturally a ring of characteristic p via the map ([2.2)).

T—xP
PROOF. The inequality v(w) < v(p) implies that p is divisible by @ in O¢. In addition,
for elements z,y € O¢ and an integer n > 1 we find
xpn . ypn _ (ypn71 + (aj‘pn71 . ypnfl))p . ypn.
Hence we obtain statement by a simple induction.
Let us now consider statement We wish to construct an inverse map

f: lim Oc/wOc — lim Oc.

r—xP r—xP

Take an arbitrary element ¢ = (¢,) € lim Oc/wO¢ and choose a lift ¢, € O¢ of each ¢,.

r—xP
We have l
cﬁ+m+l — cpym € WO for all [,m,n >0
and consequently find
m+1 m
cfl+;+l — i €@ O for all n,m >0

m

by statement We see that for each n > 0 the sequence (cf,

m)m>0 converges in O¢ for

m

being Cauchy. In addition, statement m implies that the limit of the sequence ()., )m>0
for each n > 0 does not depend on the choice of ¢,. Now we write

m

(@) = lim_ chim foreachn>0

and obtain the desired inverse by setting

/(@) = (fa®) € lim Oc.

r—xP

It remains to verify statement Since w divides p in O¢ as already noted in the first
paragraph, the ring O¢/wO¢ is of characteristic p and thus induces a natural ring structure

on 1&1 Oc = lim Oc/wO¢c. Moreover, this ring structure does not depend on w; indeed,
x—xP x—axP
for arbitrary elements a = (a,) and b = (b,) in lim Oc¢ we find
TP

ab = (anbn) and a+b= < lim (am+n + bm+n)pm) .

m—0o0
Now we establish statement as lim Oc is evidently of characteristic p. O
x—xP

Remark. If C has characteristic 0, it is customary to take w = p.
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PROPOSITION 2.1.7. The tilt C” of C' is naturally a field of characteristic p which satisfies the
following properties:

(i) It is complete under the natural valuation »” with v°(c) = v(ct) for every ¢ € C”.
(ii) For every w € C* with 0 < v(w) < v(p), there exists a natural identification

O = lin Oc = lin Oc/wO¢.

=P TP

PROOF. Let us fix an element w € C* with 0 < v(w) < v(p). Proposition shows

that O = lin Oc¢ is naturally a ring of characteristic p with a canonical identification
r—xP
0= l&l Oc/wO¢. (2.3)
xr—xP

We may identify C” with the fraction field of @, which is evidently perfect of characteristic p.

We assert that the function ©* on C” with °(c) = v(cf) for every ¢ € C” is indeed a
valuation. It is clear by construction that +” is a monoid homomorphism with respect to the
multiplication on C”. Let us take arbitrary elements a = (a,) and b = (b,) in C”. Without
loss of generality, we may assume the inequality ©”(a) > 1”(b). Since we have

1 1, 1, 1
via,) = —v(ag) = —1v’(a) > —1v°(b) = —v(by) = v(b, for each n > 0,
(an) pn(o) pn() pn() pn(o) (bn)
we write a = bu for some ©v € O and find
V(a+b) =1 (u+1)b) = v (u+ 1) + 17 (b) > °(b) = min(+"(a), (b))

where the inequality follows from the observation that u + 1 is an element of . Therefore
we deduce that ©” is a valuation as desired.

Let us now take an arbitrary element ¢ = (c,,) € C*. We find

1 1
vicy) = ﬁy(co) = ﬁub(c) for each n > 0
and in turn verify that O is the valuation ring of C”. Moreover, given an integer m > 0 we
have v(¢,) > v(w) for each n < m if and only if ¢ satisfies the inequality 1°(¢) > p"v(w).
Hence the map ([2.3)) is a topological isomorphism with respect to the ’-adic topology on O
and the inverse limit topology on m Oc¢/wO¢. It is not hard to see that lin Oc/wO¢ is

x—xP r—xP

complete, which implies that both O, = O and C” are complete. O

Remark. Proposition[2.1.6/and Proposition [2.1.7]remain valid if we replace C' by an arbitrary
complete nonarchimedean field L with its “tilt” L= lim L. However, if L is not perfectoid

c—cP
the valuation on L” may be trivial. For example, if L is a p-adic field L” is isomorphic to its
residue field with the trivial valuation.

PRroPoOSITION 2.1.8. The sharp map associated to C' is continuous on Ogy.

PROOF. Proposition yields a topological isormohpsim

~

Oc» = lim Oc/pOc.
x—xP
Given an integer m > 1, if we have elements a = (a,,) and b = (b,) in O» with a,, = b, for
each n < m, we apply Proposition to find af — b € p™t1Oc. Therefore we establish the
desired assertion. O
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LEMMA 2.1.9. For every ¢ € O¢ there exists an element ¢ € O with ¢ — (cb)ﬁ € pOc.

PROOF. Proposition yields a natural isormohpsim
Oc» = ££n Oc/pOc¢.
x—xP

Let ¢ denote the image of ¢ in O¢/pO¢. Since the p-th power map on O¢/pO¢ is surjective,
we obtain the desired assertion by taking ¢ = (c},) € lim O¢/pOc = O, with &=c O
r—xP

PROPOSITION 2.1.10. The map Oy — O¢/pO¢ which sends each ¢ € O to the image of t
in O¢/pOc¢ is a surjective ring homomorphism.

PROOF. Since we have Oy = lim Oc¢ as noted in Proposition [2.1.7, the assertion is
x—xP
straightforward to verify by Proposition and Lemma [2.1.9 O

Remark. The sharp map associated to C' is a multiplicative map but is not a ring homomor-
phism unless C is of characteristic p.

PROPOSITION 2.1.11. The valued fields C' and C” have the same value groups.

PROOF. Let ° denote the valuation on C°. Since we have v ((C’b) ) € v(C*) by Propo-
smon . we only need to establish the relatlon v(C*)Cv ( X) Consider an arbitrary

element ¢ € C*. We wish to find an element ¢ € (C’b) with 1°(¢”) = v(c). As we know
that v is nondiscrete, we can choose an element w € O¢ with 0 < v(w) < v(p). Let us

write ¢ = w"u for some n € Z and u € O¢ with v(u) < v(w). Lemma yields elements

@, u’ € Op» with @ — (wb)ji € pO¢ and u — (ub)ﬁ € pO¢. By Proposition [2.1.7, we find

(@) = v(@)) =v (= - (@ - (=) >) v(w),
V(W) = V((ub)ﬁ) = (u — (u— )
Hence we take ¢ = (@”)™u” and obtain the equality 1°(¢”) = v(c) as desired. O

PROPOSITION 2.1.12. The field C” is a perfectoid field of characteristic p.

PROOF. Proposition [2.1.11] implies that the value group of C” is not trivial. Since C" is
perfect by construction, the assertion follows from Proposition[2.1.4and Proposition[2.1.7, O

Remark. A main result of Scholze [Sch12] establishes a canonical bijection between the finite
extensions of C' and the finite extensions of C”, called the tilting equivalence. In Chapter
we will exploit this equivalence to present a classification of all p-adic I'g-representations in
terms of certain modules over a field of characteristic p.

Example 2.1.13. The field Cg is perfectoid as noted in Example [2.1.3| and thus gives rise
to a perfectoid field F' := (C% of characteristic p by Proposition [2.1.12

Remark. Since Cg is algebraically closed by Proposition [3.1.10] in Chapter [[I} the tilting
equivalence implies that F is algebraically closed. We will prove this fact in Chapter [[V]

PROPOSITION 2.1.14. If C is of characteristic p, there exists a natural identification C” = C.

PROOF. The assertion is evident as C' is perfect by Proposition O
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2.2. The de Rham period ring Bggr

For the rest of this chapter, we denote by v the normalized p-adic valuation on Cx and
by 1” the valuation on F = C% with 1°(c) = v(c*) for every c € F.

LeEMMA 2.2.1. The ring OF is a perfect Fj-algebra.

PROOF. The assertion is evident by Proposition [2.1.4] and Proposition 2.1.12] O
Definition 2.2.2. The infinitesimal period ring is Ajns := W(OF).
Remark. Our definition of A;,; relies on Lemma,

LEMMA 2.2.3. The ring Aj,r is an integral domain.

PROOF Since Ajnt is naturally a subring of W (F'), we deduce the desired assertion from

Lemma [2.3.9)in Chapter [[I} O

PROPOSITION 2.2.4. There exists a surjective ring homomorphism 6 : Ajps - Oc,. with

o oo
o (Z[cn]pn> = Z dpt for all ¢, € Op. (2.4)
n=0 n=0

PROOF. Proposition 0| yields a surjective ring homomorphism 6 : Op — Oc¢,. /pOc,
with (c) = cf for each ¢ € C’)F, where ¢f denotes the image of ¢! in Oc /pOc - Moreover,
by construction 8 lifts to a multiplicative map 8 : Op — O¢  with 0( ) = c* for each ¢ € Op.
Hence we obtain a ring homomorphism 6 : Ay — Oc, which satisfies the identity (2.4] . ) by
Theorem [2.3.1] in Chapter [T}

It remains to establish the surjectivity of 6. Let x be an arbitrary element in Oc,, . Since
Oc, is p-adically complete, it suffices to find a sequence (¢y,) in O with

m

T — Z ot € p"tOg,.  for each m > 0.
n=0
In fact, we can use Lemma to inductively construct such a sequence by setting each ¢,

to be an element in O with

1 m—1
P (m - Z c&Lp”> — & € pOc,.,

n=0
thereby completing the proof. O

Remark. Our proof remains valid if we replace Cx by an arbitrary perfectoid field C; in other
words, every perfectoid field C yields a surjective ring homomorphism 6c : W(Og») - Oc.

Definition 2.2.5. We refer to the map 6 in Proposition [2.2.4] as the Fontaine map and let
0[1/p] : Aine[1/p] — Ck denote the ring homomorphism induced by 6.

Remark. As explained by Brinon-Conrad [BC| Lemma 4.4.1], we can construct the Fontaine
map 6 without using Theorem [2.3.T] from Chapter [} In this approach, we first define 0 as a
set theoretic map given by the identity and show that 6 is indeed a ring homomorphism
using descriptions of the ring operations on Ay, = W(Op).

PROPOSITION 2.2.6. The ring homomorphism 6[1/p] : Ain¢[1/p] — Ck is surjective.

Proor. For every ¢ € Cg, there exists an integer n > 0 with p"c € Oc¢,. Hence the
assertion immediately follows from Proposition O
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Definition 2.2.7. We define the de Rham local ring to be

B = @Ainf[l/P]/kerW[l/P])i

7

and let 01, : BIy — Aine[1/p]/ ker(6[1/p]) denote the natural projection.

Remark. We will soon define the de Rham period ring Bgr to be the fraction field of B;er
after verifying that B:{R is a discrete valuation ring. At this point, it is instructive to explain
Fontaine’s insight behind the construction of Bgr. As briefly discussed in Chapter [[| Fontaine
introduced the rings Byt and Bggr respectively to formulate the Hodge-Tate decomposition
and the de Rham comparison isomorphism. The de Rham cohomology of a proper smooth
variety over K admits the Hodge filtration with the Hodge cohomology as its graded vector
space. Fontaine sought Bgr as the fraction field of a complete discrete valuation ring BSFR
with residue field Cx so that it admits a filtration { Fil*(Bar) },ez = {t"Big ez, for

a uniformizer ¢t € B:{R with its graded ring isomorphic to Bygp. For a perfect field k of
characteristic p, the theory of Witt vectors yields a complete discrete valuation ring with
residue field £ by Lemma [2.3.9]in Chapter [T, Fontaine judiciously adjusted the construction
of Witt vectors for the field Cx of characteristic 0 by passing to characteristic p, or by tilting
the perfectoid field Cx in modern language. He began by taking the ring Oc¢, /pOc, which is
evidently of characteristic p. As Oc, /pOc, turns out to be not perfect, Fontaine considered
its perfection lim Oc, /pOc, = OF by adding all p-power roots of elements in Oc,. /pOc -

x—xP
Fontaine then discovered that A,y = W(Op) gives rise to a surjective ring homomorphism

0[1/p] : Aine[1/p] = Ck. Moreover, as we will soon see, ker(0[1/p]) turned out to be a principal
ideal. Therefore Fontaine obtained the desired ring Bj; as the completion of Ajn¢[1/p] with
respect to ker(0[1/p]).

LEMMA 2.2.8. For each integer n > 0 we have ker(6) N p" Ains = p™ ker(6).

PROOF. Since we evidently have p™ ker(6) C ker(6) N p™Ajne, we only need to show that
every a € ker(0) Np"Ajys is an element of p™ ker(). Let us write a = p™b for some b € Ajys.
From the identity

0 =6(a) = 6(p"d) = p"0(b)
we find 0(b) = 0 as Oc, is torsion free. Therefore we deduce that a = p"b lies in p" ker(6) as
desired. O

LEMMA 2.2.9. The sharp map associated to Cg is surjective.

PROOF. The field Ck is algebraically closed as noted in Chapter [T, Proposition [3.1.10
Hence we deduce that the p-th power map on Cg is surjective and in turn obtain the desired
assertion. O

Remark. It is worthwhile to mention that Lemma [2.2.9] is not essential for our discussion.
In fact, we use Lemma only to give a simple description of an element generating ker(#).
For an arbitrary perfectoid field C, we can still show that the kernel of the surjective ring
homomorphism ¢ : W(Oe») — Oc is principal by explicitly presenting a generator.
Definition 2.2.10. A distinguished element of Aj,¢ is an element of the form £ = [pb]—p € Aint
for some p” € Op with (pb)ﬁ =p.

Remark. The existence of p° follows from Lemma We may regard p’ as a system of
p-power roots of p in Cg.



94 III. PERIOD RINGS AND FUNCTORS
For the rest of this chapter, we fix a distinguished element £ = [pb] —p € Ajnt.

LEMMA 2.2.11. Every element a € ker(#) is an Ajy¢-linear combination of £ and p.

ProoF. We wish to show that a lies in the ideal generated by £ and p, or equivalently by
[p°] and p. Let us write

a= Z[cn]pn = [co] +p2[cn}p”*1 with ¢, € Op.

n>0 n>1

It suffices to show that [cg] is divisible by [p’]. Since we have 0 = 6(a) = Z ¢ p™, we deduce

n>0
that cg is divisible by p and consequently find
i
v(co) = v(ch) > v(p) = (")) = V().
Hence there exists an element u € Op with ¢y = p’u or equivalently [co] = [p°][u]. O

PROPOSITION 2.2.12. The element £ € Ay generates the ideal ker(f) in Ajys.
PROOF. The ideal ker(#) contains £ as we have

f
0(¢) =0(P’)—p) = (") —p=p—p=0.
Hence we only need to show that every a € ker(0) lies in the ideal £ Aj¢. Since Ajys is p-adically
complete by construction, it suffices to present a sequence (¢,) in Ay, with

m
a— Z cnlp™ € P Ay for each m > 0.
n=0
We take ¢y € Ajns with a — cp€ € pAjns given by Lemma [2.2.11] and inductively construct ¢,
for each m > 1. In fact, by Lemma [2.2.8] we have
m—1
a— Z cn&p™ € ker(0) Np™ Aing = p"" ker ()
n=0
and thus find by, ¢y € Ajps with

m—1

a—"Y calp” =" (Pbm + k)

n=0

or equivalently
m
a — Z cnfpn = pm+1bm
n=0
as desired. O

Remark. Proposition yields a natural isomorphism Ajn¢/EAins = Oc,, which turns
out to be a topological isomorphism. Since the construction of Aj,¢ depends only on the
field F, the principal ideal £ A; s C Ajye contains all necessary information for recovering the
perfectoid field Cx from its tilt F. In fact, we will see in Chapter [[V] that every perfectoid
field C with C* ~ F arises as the fraction field of Ajy¢ /I for a unique principal ideal I C Ajys.

PROPOSITION 2.2.13. The element & € Ajyr generates the ideal ker(6[1/p]) in Aine[1/p].

PRrROOF. For every a € ker(0[1/p]), we have p"a € ker(6) for some n > 0. Hence the
assertion follows from Proposition [2.2.12 O
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LEMMA 2.2.14. Every a € Ajy¢[1/p] with £a € Ajyr is an element in Ajys.

PROOF. Since we have 6(§a) = 0[1/p]({a) = 0 by Proposition [2.2.13] we find £a € £Ains
by Proposition [2.2.12] and in turn apply Lemma to see that a lies in Ajpus. O

LEMMA 2.2.15. For each integer i > 1, we have Aj,¢ Nker(0[1/p])" = ker(9)".

PROOF. Since we clearly have ker()® C A N ker(6]1/p])?, we only need to show that
every a € Ayys Nker(6[1/p])? lies in ker(#)?. Proposition yields an element b € Ajne[1/p]
with a = &b. Hence we find b € Ay by Lemma and consequently deduce the desired
assertion from Proposition [2.2.12 O

PROPOSITION 2.2.16. We have ﬂ ker(0)" = m ker(0[1/p])" =
i=1 =

PROOF. By Lemma we have

ﬂker [1/p])° (ﬂker ) [1/p].

Hence it suffices to establish the identity ﬂ ker(f)" = 0. Let us take an arbitrary element
i=1

c € m ker(f)" and write ¢ = > [c,]p" with ¢, € Op. Proposition [2.2.12| shows that ¢ is

divisible by every power of £ = [pb] — p in A;u, which in particular implies that ¢y is divisible

by every power of p’ in Op. Since we have °(p’) = V((pb)ﬁ) =v(p) =1>0, we find ¢g =0
and in turn write ¢ = pc for some ¢’ € A;r. Moreover, Lemma [2.2.15| yields the relation

d € AN (ﬁ ker(@)i) [1/p] = Aijns N (ﬂ ker(6[1/p]) ) ﬂker

i=1 i=1
Now a simple induction shows that c¢ is infinitely divisible by p and thus is zero. O

PROPOSITION 2.2.17. The ring B:R is a complete discrete valuation ring with ker(GIR) as the
maximal ideal, Cx as the residue field, and £ as a uniformizer.

PROOF. Since we have Bi;/ker(61;) = Ck by Proposition |2_26L we deduce from some
general facts stated in the Stacks project [Stal, Tag 05GI and Tag 00E9| that B:{R is a local
ring with ker(#1;) as the maximal ideal and Cf as the residue field. Let us now consider an
arbitrary nonzero element b € BSFR. For each integer ¢ > 0, we write b; and &; respectively
for the images of b and ¢ under the projection Bj — Ain[1/p]/ ker(0[1/p])*. In addition, we
take the largest integer j > 0 with b; = 0. Proposition implies that for each i > j we
may write b; = §fuz with u; ¢ ker(0[1/p])/ker(0[1/p])". For each i > j we let u} denote the
image of u; in Ajy¢[1/p]/ ker(0[1/p])'~7. We observe that the sequence (u});; depends only on
b and gives rise to a unique unit v € B(TR with b = &/u. Therefore B;{R is a discrete valuation
ring with £ as a uniformizer. Now we deduce from Proposition and Proposition [2.2.16
that B;R is complete, thereby establishing the desired assertion. O

Remark. Our argument so far in this subsection remains valid if we replace Cx by an
arbitrary algebraically closed perfectoid field of characteristic 0.

Definition 2.2.18. The de Rham period ring Bgr is the fraction field of B(;FR.
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PROPOSITION 2.2.19. Let K denote the fraction field of W (k).
(1) The field K is a finite totally ramified extension of Kj.

(2) There exists a natural commutative diagram

Ko —— Aint[1/p]

| /

K——— B
\ iaarR
Ck

where the diagonal map is the natural inclusion.

PROOF. Let us take a uniformizer m of Ok . There exists an integer e > 0 with p = n°u
for some unit u € Ox. Hence we obtain a natural ring homomorphism

k=0k/mO0r — Ok /7°Ox = Ok /pOk (2.5)

which identifies Of /pOj; as a k-algebra with a basis given by 1,7, --- ,7¢~!. The map (2.5))
induces a ring homomorphism W (k) — Ok by Theorem in Chapter

We assert that 1,7, --- , 7! generate Ok over W (k). Take an arbitrary element ¢ € Of.
Since O is p-adically complete, it suffices to find sequences (ag ), -+ , (@de—1,,) in W (k) with
e—1 m
c— Z Z ajnp"'m € p" Ok for each m > 0.
=0 n=0

In fact, we use the map (2.5)) to inductively obtain ag ., - ,@e—1.m € W(k) with

1 e—1m—1 . e—1 '
p—m (c — Z Z amp”#) — Z a;mm' € pOk

i=0 n=0 i=0
and consequently obtain the desired assertion.
Our discussion in the previous paragraph shows that K is a finite extension of Ky and
in turn yields statement as both Ky and K have residue field k. Hence it remains to

establish statement The map (2.5) induces a ring homomorphism k& — Oc, /pOcy -
Since k is perfect, this map gives rise to a natural homomorphism

r—xP

with the isomorphism given by Proposition and in turn yields the top horizontal map
by Theorem in Chapter [[IL Moreover, we get the left vertical map from statement
and take the right vertical map to be the natural map

Aunt[1/p] — lim Aine[1/p]/ ker(6[1/p])" = B
(2
which is injective by Proposition We may now identify Ky as a subring of B:{R'
Statement and Proposition together show that K is a separable algebraic extension
of Ko which lies in the residue field Cg of the complete discrete valuation ring BSFR' Therefore
Hensel’s lemma implies that K admits a unique embedding into BCTR which fits in the desired
diagram. O
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In order to study some additional properties of Byr, we invoke the following technical
result without a proof.

PROPOSITION 2.2.20. There exists a refinement of the discrete valuation topology on B:{R
with the following properties:

(i) The natural map Aj,s — B;fR identifies Aj,¢ as a closed subring of BQFR.
(ii) The map 0[1/p] is continuous and open with respect to the p-adic topology on Cg.
(iii) There exists a continuous map log : Z,(1) — Bjg with

o

log(c) = Z(—l)"ﬂ({d;l)n for every ¢ € Z,(1)
n=1

under the natural identification Z,(1) = { c€ Op : ¢# =1 }.
(iv) The ring BJ, is complete.

Remark. We will eventually prove Proposition in Chapter [[V] after constructing the
Fargues-Fontaine curve. There will be no circular reasoning as the construction of the Fargues-
Fontaine curve relies only on results that we have discussed prior to Proposition [2.:2.20] Cu-
rious readers may consult the notes of Brinon-Conrad [BC|, Exercise 4.5.3] for a sketch of a
proof which does not involve the Fargues-Fontaine curve.

Let us briefly explain why Proposition [2.2.20] is essential for our discussion. The discrete
valuation topology on B('fR has a major defect of not carrying much information about the
p-adic topology on Cg. In fact, if we only consider the discrete valuation topology on B . the
map 6[1/p] is not continuous with respect to the p-adic topology on Cg. Proposition
allows us to incoorporates the p-adic topology on Cg in our discussion, which is pivotal for
studying continuous I'i-representations.

Definition 2.2.21. We refer to the map log : Z,(1) — Bj; given by Proposition [2.2.20] as
the cyclotomic logarithm.

LEMMA 2.2.22. Let € be a basis element of Z,(1) = { c€Op:cdf=1 } over Zjy,.

(1) The element ¢ divides [e] — 1 in Ajyg.
(2) We have (e — 1) = ]%

PROOF. Since [¢] — 1 satisfies the equality
O(e] —1)=cf—1=1-1=0,

statement follows from Proposition [2.2.12 Let us now write € = ((,») where each (n is a
primitive p™-th root of unity in K. We use Proposition and the continuity of v to find

V(Ee—-1)=v ((5 - 1)ti> =v (nlln;o(gpn - 1)pn> = nlLIEop”V(Cpn -1).

p—1
In addition, we note that the minimal polynomial of (,» —1 over Q) is f(x) = Z(:U + 1)ipn_1
i=0
of degree p"~!(p—1) with constant term p. Since the roots of the irreducible polynomial f(z)
over Q, have the same p-adic valuation, we obtain the equality
v(p) 1
I/(C n — 1) = =
Y prtp—1) plp-1)
and in turn establish statement O
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PROPOSITION 2.2.23. Let € be a basis element of Z,(1) = { ¢ € Op : ¢! =1} over Z,,.

(1) The element ¢ := log(e) € BJ is a uniformizer.
(2) For every m € Z,, we have log(e™) = mlog(e).

PROOF. Let us first consider statement |(1). By Proposition [2.2.19[and Lemma [2.2.22] we
_1)"
have [e] — 1 € £Ajyr and M € §2B:{R for each n > 2. Hence we find
n

S ([e] =D)"

Sy B e - + e
Since ¢ is a uniformizer of Bl as noted in Proposition [2.2.17} it suffices to show that [¢] — 1
is not divisible by ¢2 in BJj.

Suppose for contradiction that [¢] — 1 lies in £ BJ;. Proposition shows that [e] — 1
maps to 0 under the projection By — Aine[1/p]/ ker(6[1/p])%. Hence Proposition [2.2.12| and
Lemma [2.2.15 together imply that [¢] — 1 is divisible by £2 in Ajy. Since the first terms in
the Teichmiiller expansions for [¢] — 1 and €2 are respectively [¢ — 1] and [(p°)?], we have

V(e —1) 2 (")) = 27 () = (")) = 20(p) = 2
If p is odd, we find ”(¢ — 1) < 2 by Lemma and in turn obtain a desired contradiction.
For p = 2, we write [¢] — 1 = ¢2a for some a € Ay and compare the coefficients of p in
the Teichmiiller expansions using Proposition from Chapter |lI] to deduce the equality
e—1=¢2 (pb)4, where ¢ denotes the coefficient of p in the Teichmiiller expansion of a. Hence
for p = 2 we have

i
V(Ee—1) > () =4 (0) = w((p’)) = dv(p) =4
and accordingly obtain a desired contradiction by Lemma [2.2.22

It remains to establish statement If m is an integer, we have
log((1+x)™) = mlog(l + x)
as formal power series and thus set x = ¢ — 1 to find log(¢™) = mlog(e). For the general
case, let us choose a sequence (mj) of integers with each m, — m divisible by p™. It is
straightforward to verify the equality
m

lim g™ =™,
n—oo

for example by writing € = ((n) with each (,» being a primitive p™-th root of unity in K.
Hence we apply Proposition [2.2.20] to find

log(¢™) = log ( lim 5’”") = lim log(e™") = lim mylog(e) = mlog(e),
n—00 n—00

n—oo

thereby completing the proof. O

Remark. We can adjust our argument in the first paragraph to show that the power series
for log(e) converges under the discrete valuation topology on B(TR. Hence the topology given
by Proposition [2.2.20] is not necessary for constructing the cyclotomic logarithm.

Definition 2.2.24. A cyclotomic uniformizer of Bl is an element of the form ¢ = log(e) for
some basis element e of Zy(1).

PrOPOSITION 2.2.25. A cyclotomic uniformizer of B:{R is unique up to Z, -multiple.

PRrROOF. The assertion is evident by Proposition [2.2.23 O
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THEOREM 2.2.26 (Fontaine [Fon82]). The ring Bgr admits a natural action of I'x with the
following properties:

(i) The cyclotomic logarithm and 6, are I'x-equivariant.
(ii) Given a cyclotomic uniformizer ¢ € BJ;, we have v(t) = x()t for every v € I'k.
(iii) Every cyclotomic uniformizer ¢ € B:{R yields a natural I"k-equivariant isomorphism

"B/t Bl = @ Ck(n) = Bur.
neZ nez

(iv) Bgr is (Qp,I')-regular with a canonical identification ng =K.

PROOF. Let us first describe the natural action of I'iy on Bgqr. The action of 'y on Cg
naturally induces an action on F' = lln Cg as the p-th power map on Cg is I'x-equivariant.

x—xP

In fact, given an arbitrary element z = (x,) € F we have v(z) = (vy(x,,)) for every v € I'k.
Since Op is stable under the action of ', we apply Theorem in Chapter [[I to obtain a
natural action of ' on Aju¢[1/p] with

v (Z[cn]pn> = Z[’y(cn)]pn for each v € ' and ¢, € Op.

Now we find that 6 and 6[1/p] are both I'k-equivariant by construction, whicn in particular
implies that both ker(6) and ker(0[1/p]) are stable under the action of I'. Hence I' naturally
acts on Bl = lim_ Aine[1/p]/ ker(A[1/p])* and its fraction field Byg.

With our discussion in the preceding paragraph, property ((i)|is straightforward to verify.
Moreover, property and Proposition [2.2.23| togther show that every v € 'k acts on a
cyclotomic uniformizer ¢ = log(e) € Bj; by the relation

¥(t) = v(log(e)) = log(v(e)) = log(eX") = x(v) log(e) = x (1)t
and thus yield property Now we note by property |(i)| that the natural isomorphism
Bix/tBin = Big/ ker(01;) = Cxk
is I'k-equivariant and in turn obtain a I'-equivariant isomorphism
t"Biz /"' B ~ Cg(n) for every n € Z
by property and Lemma in Chapter [lI} Since Proposition shows that a cyclo-

tomic uniformizer of BSFR is unique up to Z;-multiple, we deduce that this isomorphism is
canonical and consequently establish property

It remains to verify property Example shows that Bgg is (Qp, 'x)-regular for
being a field extension of Q,. In addition, property implies that the natural injective

homomorphism K < BCTR given by Proposition [2.2.19|is I' x-equivariant and in turn induces
an injective homomorphism
7a r r
K=K " — (BRR)"® — B. (2.6)
Now by property we get an injective K-algebra homomorphism
r r 1 r
(B Nt"BiR)/(Byk Nt"'Bly) — By
nez

Since we have Bgﬁi > K by Theorem |3.1.11| in Chapter [[I, the K-algebra on the source has

dimension at most 1. Hence we find dimg B;f < 1 and in turn deduce that the map (2.6) is
an isomorphism, thereby completing the proof. O
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2.3. Filtered vector spaces

In this subsection, we set up a categorical framework for our discussion of Byr-admissible
representations in the next subsection.

Definition 2.3.1. Let L be an arbitrary field.
(1) A filtration on a vector space V over L is a collection of subspaces { Fil"(V) },.,
with Fil*(V) D Fil"™ (V) for every n € Z.
(2) A filtered vector space over L is an L-vector space V with a filtration { Fil"(V) }, .,

that satisfies the relations ﬂ Fil"(V) = 0 and U Fil"(V) =V.
nez nez

(3) A graded vector space over L is an L-vector space V with a decomposition V' = @ V.

nez
(4) For a filtered vector space V over L, its associated graded vector space is
= @ gr" (V) with  gr'( EB Fil"(V)/ Fil" (V).
nez neZ
Remark. Many authors do not require the relations m Fil"(V) = 0 and U Fil"(V) =V
neL nez

for a filtered vector space V.
Example 2.3.2. We present some examples given by Proposition and Theorem
(1) The de Rham period ring Bgg is a filtered K-algebra with
Fil"(Bar) := t"Bj; and  gr(Bar) = Bur
where t is a cyclotomic uniformizer of B(;FR
(2) Every V € Repg, (I'x) naturally gives rise to a graded K-vector space

Dur(V) := (V ®q, Bur)"'* = @P(V &g, Cx(n))"<
nez
and a filtered K-vector space
Dar(V) := (V ®qg, Bar)'®  with  Fil"(D4r(V)) := (V ®q, t"Bjx)"*
Definition 2.3.3. Let L be an arbitrary field.
(1) Given filtered vector spaces V and W over L, an L-linear map f : V — W is filtered
if it maps each Fil"(V) into Fil"(W).

(2) Given graded vector spaces V = @ Vo, and W = @Wn over L, an L-linear map

nez nez
f:V — W is graded if it maps each V,, into W,,.

Remark. A filtered isomorphism is a filtered bijection with a filtered inverse. Similarly, a

graded isomorphism is a graded bijection with a graded inverse.

Example 2.3.4. As mentioned in Chapter [l every proper smooth variety X over K yields a
canonical K-linear graded isomorphism

DHT(Het XKv@p GB Hz X, QJX/K)
i+j=n
and a canonical K-linear filtered isomorphism

Dar(Hé (X5, Qp)) = Hig (X/K).
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ProrosiTION 2.3.5. Let V = @ V., be a graded vector space over a field L.
neZ

(1) Given a graded vector space W = @Wn over L, the tensor product V ®; W is

neL
naturally a graded L-vector space with

V®LW:@ @ Vi®rp Wj

neZ \i+j=n
(2) The dual V'V is naturally a graded L-vector space with V" = @ VY
nez
PROOF. The assertions are stragithforward to verify. O

PROPOSITION 2.3.6. Let V be a filtered vector space over a field L.

(1) Given a filtered L-vector space W, the tensor product V ®y W is naturally a filtered
L-vector space with

Fil"(V ®r W) Z Fil'(V) ® Fi(W)  for every n € Z.
i+j=n
(2) The dual V'V is naturally a filtered L-vector space with

Fil"(VY)={ f e VY :Fil'" "™(V) C ker(f) } = (V/ Fill_”(V))v for every n € Z.
PrOOF. The assertions are stragithforward to verify. O

Example 2.3.7. Every field L is canonically a filtered vector space over itself with
L f <
Fil"(L):{ orn <0,

0 forn>0.
Given a filtered vector space V over L, we find
Fil"(V ®r, L) Z Fil'(V) @7, Fil/ (L) = Z Fil'(V) = Fil"(V)  for every n € Z
i+j=n i>n
by Proposition [2.3.6] and consequently obtain canonical filtered isomorphisms
VEVerLELeV.

Moreover, the natural linear bijection L = LV is a filtered isomorphism as Proposition
yields an identification

Fil"(LV) = (L) Fil'""(L))" =

L forn <0,
0 forn>0.

ProrosITION 2.3.8. Given a filtered vector space V over a field L, the natural L-linear
bijection V = (V)Y is a filtered isomorphism.
PROOF. For every n € Z, we apply Proposition to find
VY/Fillr (v =2 vV (V/FilY(V))Y = FilY(V)Y
and in turn obtain an identification
Fil" (VY)Y) = (vY/Fil' (V)" = Fil(V)
as desired. O
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PROPOSITION 2.3.9. Let V be a filtered vector space over a field L.

(1) Given a finite dimensional filtered L-vector space W, there exists a natural graded
isomorphism
gr(VerW) =g (V)@ gr(W).
(2) The dual V'V yields a natural graded isomorphism
gr(VY) = gr(V)".

PROOF. Let us begin with statement By Proposition it suffices to establish a
canonical identification
(VoL W) @ gr'(V) ®r gt/ (W) for every n € Z. (2.7)
i+j=n
Since W is finite dimensional, we have Fil"(W) = W and Fil*(W) = 0 for some r, s € Z.
Hence Proposition 6| yields a natural isomorphism

Fil"(V @1 W) ZFﬂ" I(V)®p Fill (W)  for every n € Z.

We can construct a basis (v; ) of V such that each Fil"™ (V) withn—s <m <n—r+1hasa
basis (v; i)i>m; indeed, we may fix a basis for Fil"~"*!(V) and inductively extend a basis for
each Fil"™ (V) to Fil™ (V). Similarly, we can find a basis (w; j:) of W such that each Fil™ (W)
has a basis (w; j1)j>m. Let us denote the image of each v; s under the map Fil'(V) — gri(V)
by ¥;+ and the image of each w; j under the map Fil/(W) — gr/(W) by w, ;. We obtain
the isomorphism by observing that both sides admit a basis (V;y ® Wj j/)itj=n. It is
straightforward to verify that this isomorphism does not depend on bases (v; ;) and (wj; ;).
It remains to establish statement |(2)} For every n € Z we apply Proposition to find

" (VY) =2 Flln(VV)/F11n+1(VV) (V/ Filt=" V))V/ (V/ Fil_"(V))v
= (Fil™(V)/Fil " (V)" = gr (V).
Hence we deduce the desired assertion from Proposition [2.3.5] O

ProprosITION 2.3.10. Given a field L, a bijective L-linear filtered map f : V — W is a filtered
isomorphism if and only if the induced map gr(f) : gr(V) — gr(W) is bijective.

PROOF. If f is a filtered isomorphism, the induced map gr(f) is clearly a graded isomor-
phism. Conversely, let us henceforth assume that gr(f) is bijective. We wish to show that for
every n € Z the induced map Fil"(f) : Fil"(V') — Fil" (W) is an isomorphism. The bijectivity
of f implies that each Fil"(f) is injective. Hence it remains to show that each Fil"(f) is
surjective. For every n € Z we obtain a commutative diagram

0 —— Fil"™Y (V) —— Fil*(V) —— gt™(V) —— 0
lFil"“(f) lFil"(f) lgr"(f)
0 —— Fil"™Y(W) — Fil"(W) —— g"(W) —— 0
with exact rows. Since each gr™(f) is bijective, the snake lemma implies that the inclusion
Fil"™ (W) < Fil"*(W) induces a canonical isomorphism coker(Fil"*(f)) = coker(Fil"*(f)).
Moreover, every w € Fil"(W) lies in the image of Fil”* (V') for some m < n by the surjectivity

of f and thus has zero image in coker(Fil™(f)) = coker(Fil"(f)). Hence we deduce that each
coker(Fil"(f)) vanishes as desired. O
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2.4. Properties of de Rham representations

For the rest of this chapter, we write Vectg, Filx, and Grdg respectively for the categories
of K-vector spaces, filtered K-vector spaces, and graded K-vector spaces. In addition, we fix
a cyclotomic uniformizer ¢ = log(e) of By for some basis element ¢ of Zy(1).

Definition 2.4.1. Let V be a p-adic I'g-representation.

(1) We refer to Dyr(V) and Dgr (V) in Example respectively as the Hodge-Tate
graded space and the de Rham filtered space associated to V.

(2) We say that V' is de Rham if it is Bgr-admissible.

Example 2.4.2. For every proper smooth variety X over K, the étale cohomology H}} (X7, Q,)
is de Rham as briefly discussed in Chapter [I}

PRrROPOSITION 2.4.3. If a p-adic I'g-representation V is de Rham, it is Hodge-Tate with a
natural K-linear graded isomorphism

gr(Dar(V)) = Dur(V).
PrOOF. For every n € Z we have a short exact sequence
0 — "M Bl — t"Biy — "By /t""'Bjz — 0,

which induces an exact sequence

0— (V &g, "™ B) " — (Vag, t"Biy) ~ — (V g, ("Biy/t" ' Bfy)
and in turn yields an injective K-linear map

. . r

gt" (Dar(V)) = Fil"(Dar(V))/ Fil" " (Dar(V)) = (V @q, (t"Biz/t""'Biz))

Hence we obtain an injective K-linear graded map
er(Dar(V)) — @ (V ®g, ("B /"' Bip)) ™ = (V ©g, Bur)"™ = Dir(V)
p dr dr p

neZ
with the first identification given by Theorem [2.2.26] Moreover, we find

dimK DdR(V) == dimK gr(DdR(V)) < dimK DHT(V) < dime Vv

where the last inequality follows from Theorem Since V is de Rham, both inequalities
are indeed equalities and thus yield the desired assertion. O

PROPOSITION 2.4.4. Given a de Rham I'-representation V', we have gr™(Dgr(V')) # 0 if and
only if n is a Hodge-Tate weight of V.

PROOF. The assertion is an immediate consequence of Proposition [2.4.3 O

Remark. Proposition [2.4.4] shows that Hodge-Tate weights of V' under our sign convention
coincide with the locations of jumps in the filtration of Dgr (V).

Example 2.4.5. Every Tate twist Q,(n) of @, is de Rham; indeed, the inequality
dimg Dgr(Qp(n)) < dimg, Qp(n) =1

given by Theorem is an equality, as Dar (Qp(n)) = (Qp(n)®q, Bar)" ¥ contains a nonzero
element 1 ® ¢~ by Theorem [2.2.26, In addition, Q,(n) has a unique Hodge-Tate weight —n
as noted in Example [1.1.15] Hence Proposition [2.4.4] yields an identification

K form< —n,

0 for m > —n.

Fil" (Dar(Qp(n))) = {
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For the rest of this subsection, we denote by RepﬁlQP;(FK) the category of de Rham
I' x-representations.

LEMMA 2.4.6. Given an integer n, a p-adic I'k-representation V' is de Rham if and only if its
Tate twist V' (n) is de Rham.

PROOF. Since we have V(n) = V ®q, Q,(n) and V = V(n) ®g, Qp(—n), the assertion
follows from Proposition and Example O

Example 2.4.7. Let V' be an extension of Q,(m) by Q,(n) with m < n. We assert that V
is de Rham. By Lemma [2.4.6] we may assume the equality m = 0 so that V fits into a short
exact sequence

0— Qp(n) —V—Q, —0. (2.8)
The functor Dyg is left exact by construction and thus yields an exact sequence
0 — Dgr(Qp(n)) — Dar(V) — Dar(Qp).
We wish to establish the identity dimgx Dgr (V) = dimg, V' = 2. Since we have
dimg Dgr(Qp(n)) = dimg Dgr(Qp) =1
by Example m it suffices to show the surjectivity of the map Dqr(V) — Dgr(Qp) = K.
The sequence ([2.8) gives rise to a short exact sequence

0 — Qp(n) ®q, Big — V @q, Bir — Qp ®q, Bip — 0.

In addition, Theorem [2.2.26] yields natural identifications
(Qp(n) ®q, B(TR)FK = (tnt_R)FK = and  (Qp ®q, BJR)FK = (B;R)FK =K.
Hence we obtain a long exact sequence
0—0— (V®q, Bix)' — K — H'(T'g,t"Bl).
Since we have (V ®q, Big)"® € Dqr(V), it is enough to prove that H!(I'x,t"BJ;) vanishes.
By Theorem we have a short exact sequence
0 — t""BI, — t"Bi; — Cg(n) — 0,
which in turn induces a long exact sequence
Cx(n)'® — H Tk, "' Bl;) — H' (T, t"Blz) — H'(Tk,Ck(n)).
Now Theorem in Chapter [[T] implies that there exists an identification
HY Tk, t"" Bjp) 2 H' (T g, t"Bip). (2.9)

Hence by induction we only need to show that H'(I'g, th+R) vanishes.

Take an arbitrary cocycle ag : 'y — tB('fR. For each ¢ > 1, we use the identification ([2.9)
to inductively construct a cocycle a; : ' — tiHBIR and an element b; € tiBIR with

ai(y) = ai—1(y) + (b)) —b;  for every v € Tk.
Since ¢ is a uniformizer in B(;FR, we take b= >b; € B:{R and find
ap(y) +(b) —b=0 for every v € T'k.
We deduce that ag has trivial image in H!(T'g, tBC'l'“R), thereby completing the proof.

Remark. It is a highly nontrivial fact that every non-splitting extension of Q,(1) by Q, is
not de Rham, even though it is Hodge-Tate as noted in Example [1.1.12
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PROPOSITION 2.4.8. Every de Rham I'i-representation V' admits a natural I'g-equivariant
K-linear filtered isomorphism

DdR(V) QK BdR =V ®Qp BdR-
PRroOF. Since V is de Rham, Theorem [1.2.1| implies that the natural Bgr-linear map
Dar(V) ®k Bar — (V ®q, Bar) ®k Bar =V ®q, (Bar ®k Bar) — V ®q, Bdr

is I'ir-equivariant and bijective. Moreover, this map is filtered as each arrow is evidently
filtered. Now by Proposition [2.3.10] it suffices to show the bijectivity of the induced map

gr(Dar(V) ®k Bar) — gr(V ®q, Bar)- (2.10)

Proposition [2.4.3| shows that V is Hodge-Tate with a natural isomorphism
gr(Dar(V)) = Dur (V).
We apply Theorem [2.2.26] and Proposition [2.3.9] to obtain canonical isomorphisms
gr(Dar(V) ®k Bar) = gr(Dar(V)) @k gr(Bar) = Dur(V) ®k Bur,
gr(V ®Q, Bgr) =V ®q, gr(Bgr) =V ®q, Burt-
Hence we identify the map (2.10) with the natural map
Dut(V) ®k Bur — V ®q, But

given by Theorem [[.2.1] and in turn deduce the desired assertion from Proposition 2.4.3] O

Remark. In our proof of Proposition the finiteness of dimg, (V') and dimg (Dgr(V))
are crucial for applying Proposition

PROPOSITION 2.4.9. The functor Dgr with values in Filk is faithful and exact on RepfiQIZ”(FK).

PROOF. Since the forgetful functor Filgy — Vecty is faithful, Proposition [1.2.2] im-
plies that Dgr is faithful on Rep&i}(FK). Hence it remains to verify that Dgr is exact

on Repﬁin:(F k). Consider an exact sequence of de Rham I'-representations

0 —U—V-—W-—0. (2.11)
For every n € Z, we have an exact sequence
0 — Fil"(Dgr(U)) — Fil"(Dgr(V)) — Fil"*(Dgr(W)). (2.12)

We wish to show that this sequence extends to a short exact sequence. Proposition [1.2.2
implies that the sequence (2.11]) gives rise to a short exact sequence of K-vector spaces

0 — Du1(U) — Dut(V) — Dur(W) — 0.

It is straightforward to verify that this sequence is indeed a short exact sequence in Grdg.
Therefore Proposition yields a short exact sequence of graded K-vector spaces

0 — gr(Dar(U)) — gr(Dar(V)) — gr(Dar(W)) — 0.
Now for every n € Z we find

dimg Fil"(Dar(V)) = > _ dimg gr'(Dar(V))

>n
= Z dim g gri(DdR(U)) + Z dim g gri(DdR(W))
>n >n

= dimg Fﬂn(DdR(U)) + dimg Fﬂn(DdR(W))
and in turn deduce that the sequence (2.12)) extends to a short exact sequence as desired. O
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PROPOSITION 2.4.10. Given a de Rham I'g-representation V', every subquotient W of V is
de Rham with Dgg (W) naturally identified as a subquotient of Dgr(V') in Filg.

PRrOOF. The assertion is evident by Proposition and Proposition [2.4.9 [l

PROPOSITION 2.4.11. Given two de Rham I'x-representations V' and W, their tensor product
V ®q, W is de Rham with a natural K-linear filtered isomorphism

Dar(V) @k Dar(W) = Dar(V ®@q, W). (2.13)

PROOF. Proposition shows that V' ®q, W is de Rham and yields the desired isomor-
phism (2.13) as a K-linear bijection. Since the construction of the map ([2.13) rests on the
multiplicative of Byg, it is straightforward to verify that the map ([2.13)) is filtered. Moreover,
we apply Proposition and Proposition to identify the induced map

gr(Dar(V) @k Dar(W)) — gr(Dar(V ®q, W)).
with the natural isomorphism
DHT(V) XK DHT(W) = DHT(V ®Qp W)

given by Proposition Now we deduce from Proposition [2.3.10| that the map (2.13) is a
K-linear filtered isomorphism, thereby completing the proof. O

Example 2.4.12. Given a de Rham I'g-representation V', we have
Fil™(Dgr(V (n))) = Fil"™*"(Dgqr(V)) for each m, n € Z
by Proposition [2.3.6], Example and Proposition 2.4.11

PRrROPOSITION 2.4.13. Given a de Rham I'k-representation V' and a positive integer n, both
A™(V) and Sym" (V) are de Rham with natural K-linear filtered isomorphisms

A" (Dar(V)) = Dar(A"(V))  and  Sym"(Dgr(V)) = Dar(Sym"(V)).

PROOF. Proposition shows that both A"(V') and Sym"™ (V') are de Rham. Moreover,
Proposition yields the desired isomorphisms as K-linear bijections. Proposition [2.4.10
and Proposition together imply that these maps are filtered isomorphisms. O

PROPOSITION 2.4.14. For every de Rham I'i-representation V', the dual representation V'
is de Rham with a natural K-linear filtered perfect paring

Dar(V) @k Dar(V") = Dar(V ®q, V") — Dar(Q,) = K.

PROOF. Proposition shows that V'V is de Rham and yields the desired pairing as a
K-linear perfect pairing. This pairing is filtered by Proposition [2.4.11] and thus gives rise to
a filtered K-linear bijection

Dar (V)Y — Dar(V"). (2.14)
Moreover, we apply Proposition [2.3.9) and Proposition [2.4.3] to identify the induced map
gr(Dar(V)") — gr(Dar(V"Y))
with the natural isomorphism
Dyur(V)" = Dyr(VY)

given by Proposition Now we deduce from Proposition [2.3.10| that the map (2.14) is a
K-linear filtered isomorphism, thereby completing the proof. O

Remark. Proposition and Proposition together show that the canonical isomor-
phism V 2 (V) induces a natural K-linear filtered isomorphism Dgr (V) = (Dgr(V)Y)".
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Definition 2.4.15. Given an extension L of K with an action of a group I', a semilinear
I'-module over L is an L-vector space M which carries a continuous I'-action with

v(em) = ~v(c)y(m) for each v €T, ¢ € L, and m € M.
LEMMA 2.4.16. Let L be a finite extension of K.

(1) L is naturally a p-adic field.

(2) If L is Galois over K, every semilinear Gal(L/K)-module M over L admits a canon-
ical isomorphism
M = MGal(L/K) QK L.

PRrROOF. Statement is straightforward to verify. For statement let us now assume
that L is Galois over K. Denote by GalMod,x the category of semilinear Gal(L/K)-modules,
where morphisms are Gal(L/K)-equivariant L-linear maps. A general fact stated in the Stacks
Project [Stal Tag 0CDR] yields an equivalence

GalMody ¢ = Vect g

which sends each M € GalMody i to M Gal(L/K) with the inverse sending each V € Vecty
to V @k L. Hence we establish the desired assertion. O

Remark. Lemma [2.4.16| admits an analogue for p-adic completion K of the maximal un-
ramified extension K" of K; indeed, K" is a p-adic field with a natural I'g-action such that
every semilinear I';-module M over K" admits a canonical isomorphism M = Mk @ K,
PROPOSITION 2.4.17. Let V be a p-adic I'ix-representation and L be a finite extension of K.
(1) There exists a natural L-linear filtered isomorphism
Dyr,x (V) ®x L = Dgr, (V)
where we set DdR,K(V) = (V ®Q, BdR)FK and DdR,L(V) = (V XQ, BdR>FL.
(2) V is de Rham if and only if it is de Rham as a p-adic I';-representation.
PROOF. Lemma [2.4.16/ shows that L and its Galois closure L' in K are p-adic fields. If
we set Dar,/ (V) := (V ®q, Bgr)''v, we have
Dar,x (V) @k L = (Dar,x (V) @ L)E/D) and Dy (V) = Dag, 1 (V)2 E /D),
Hence we may replace L by L’ to assume that L is Galois over K. Now we find
Fil"(Dgr.x (V)) = Fil”(DdR,L(V))Gal(L/K) for every n € Z
and in turn obtain statement by Lemma|2.4.16f Statement is an immediate consequence
of statement O

Remark. We can extend Proposition to every p-adic field L with K C L C Cg by the
remark following Lemma [2.4.16 Hence every Cx-admissible I'i-representation is de Rham
by a result of Sen [Sen80] stated after Theorem

Example 2.4.18. Given a continuous character n : 'y — Q, with finite image, the corre-
sponding I'g-representation Q,(n) is de Rham with a K-linear filtered isomorphism

Dar(Qp(n)) = K = Dar(Qp). (2.15)

In fact, if we take a finite extension L of K with I';, C ker(n), Proposition [2.4.17| yields an
L-linear filtered isomorphism Dgr(Qp(n)) ® x L = L which induces to the isomorphism ([2.15]).

Remark. Example [2.4.18 shows that Dgg : RepﬁiQF;(F k) — Filg is not fully faithful.
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We close this section by introducing the Fontaine-Mazur conjecture, which proposes a
classification of global p-adic representations arising from algebraic geometry.

CONJECTURE 2.4.19 (Fontaine-Mazur [FM95]). Let E be a number field and denote by Op its
ring of integers. An irreducible p-adic I'g-representation V' is a subquotient of H (X, Qp(m))
for some proper smooth E-variety X if and only if it satisfies the following properties:

(i) V is unramified at all but finitely many prime ideals of O in the sense that the
inertia group at each of these prime ideals acts trivially on V.

(ii) V is de Rham at each prime ideal p of O lying over p in the sense that the restriction
of V to I'g, is de Rham.

Remark. Let us explain the necessity of properties and We take E = Q for notatoinal
simplicity. It is a standard fact that every proper smooth variety X over Q has good reduction
at all but finitely many primes. If X has good reduction at a prime £ # p, we deduce from a
general fact about the étale cohomology that there exists a I'g,-equivariant isomorphism

Y (Xg, Q) = H (X5, Qy),

where X denotes the mod ¢ reduction of X, and thus find that the inertia group at £ acts
trivially on the Tate twists of H gfc(X@é, Qp) and their subquotients. Moreover, Theorem

in Chapter [I| shows that H}, (X@ ,Qp) is de Rham, which in turn implies that the Tate twists
P
of H, (X@p, Qp) and their subquotients are de Rham by Lemma and Proposition [2.4.10)

Conjecture has a very surprising implication that the behavior of a p-adic
I'g-representation V' at prime ideals lying over p affects the behavior of V at other prime
ideals. We continue to take F¥ = Q for notational simplicity. If the p-adic étale cohomology of
a proper smooth variety X over QQ is unramified at a prime ¢, the eigenvalues of the Frobenius
element in I'g, turn out to be algebraic numbers. Hence for a p-adic I'g-representation V'
which are unramified at almost all primes, being de Rham at p should force the eigenvalues
of the Frobenius at all unramified primes to be algebraic.

If V is one-dimensional, Conjecture holds essentially by results of Weil [Wei56] and
Serre [Ser68|. For £ = Q, the key fact is that every one-dimensional p-adic I'g-representation
with properties|(i) and corresponds to a Tate twist of a continuous character n: I'q — Q)
with finite order. We may regard the values of such a character n as elements of a number
field which contains sufficiently many roots of unity and thus deduce that 7 arises from the
etale cohomology of a zero-dimensional smooth variety over Q. For a general number field F,
a similar argument applies after some modifications.

If V is two-dimensional, the results of Kisin [Kis09], Emerton [Emel1], and Pan [Pan22]
verify Conjecture under some additional assumptions. These results exploit a tidy
connection between two-dimensional Galois representations and certain holomorphic complex
functions called modular forms. A key ingredient for these results is a refinement of the method
developed by Taylor-Wiles [TW95|, commonly referred to as the Taylor- Wiles patching, which
has numerous applications including the proof of Fermat’s Last Theorem by Wiles [Wil95].

The natural local analogue of Conjecture [2.4.19|is false. In other words, if K is a finite
extension of Q, there exists a de Rham I'kx-representation which is not a subquotient of
H} (X3, Qp(m)) for a proper smooth variety X over K. The main issue is that the p-adic
étale cohomology of a proper smooth variety X over K satisfies certain arithmetic property;
for example, if X has good reduction the eigenvalues for the Frobenius elements in I'x must
be algebraic.
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3. Crystalline representations

In this section, we define and study the crystalline period ring and crystalline representa-
tions. Our primary references for this section are the notes of Brinon-Conrad [BC, §9] and
the notes of Fontaine-Ouyang [FOL §7].

3.1. The crystalline period ring B.is

Throughout this section, we denote by K the fraction field of W (k). Let us recall that we
have fixed a cyclotomic uniformizer ¢ = log(e) of Bjy for some £ € Z,(1) and a distinguished

element € = [p’] — p € Ay for some p* € Op with (p*’)ti = p.
Definition 3.1.1. The integral crystalline period ring, denoted by Acys, is the p-adic com-
pletion of the Ajy¢-subalgebra A%, in Aj¢[1/p] generated by the elements £"/n! with n > 0.

LEMMA 3.1.2. The elements £"/n! € A is With n > 0 generate AC as an A;-module.

cris

PROOF. Since we have
gm én _ m-+n ém—i—n
m! n! \ n J(m+n)

the assertion is straightforward to verify. O

for m,n >0,

PROPOSITION 3.1.3. The ring A;ne[[¢/p]] is a p-adically complete subring of By

PROOF. Proposition [2.2.17|shows that Au,[[¢/p]] is a subring of B,. Let us consider the
natural ring homomorphism

1+ Aing[[€/P]] — lim Aine[[§/p]]/P" At [[£/P]]-

We wish to show that 7 is an isomorphism.

Take an arbitrary element b € ker(n). For every n > 1, we may write
b=p" Z anﬂ'ﬁ with QAn i € Aips.
We have 05 (b) = p"01 (ano) € p"Oc, for each n > 1 and thus find 6 (b) = 0. We see that

each a,o satisfies the equality G(TR(an,o) = 0, which means by Proposition [2.2.12| that each
an o is divisible by £ in Ajn¢. Moreover, we obtain the relation

b _ n—1 Pan0 — gi—l n—1
—=p ( i +an1) + E am-p—F1 € p" " Aie[[€/p]]  for every n >1
=2

and in turn find b/¢ € ker(n). Now a simple induction shows that b is infinitely divisible by &
in Aine[[€/p]] and thus is zero. We deduce that 7 is injective.

It remains to show that 7 is surjective. Choose an arbitrary sequence (b)) in Ai¢[[€/p]]
with by, | — b, € p"Aine[[§/p]] for every n > 0. For each n > 0, we may write

b, =p Z i ey with a;w-eAinf.

oo

We take a := Za;mpn € Ajr and see that b = b + Za pei € Aine[[€/p]] satisfies the
n=0

relation b’ — b, € p™ Aine[[£/p]] for every n > 0. Hence 7 is surJectlve as desired. O
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PROPOSITION 3.1.4. The ring Acris is naturally a subring of Bd+R with an identification

oris = { Zan— € Blp : an € Ay with lim a, =0 } .

n—oo

PROOF. Since A is naturally a subring of A;.¢[[¢/p]] by construction, Proposition

cris
yields canonical injective maps

0
Acns

— Aeris — Ainf[[g/p“ — BchrR

e n
In addition, it is not difficult to see that every element b = Zan% € BJR with a,, € A;ur

and lim a, = 0 lies in As; indeed, we take the maximum integer n,, with a,, ¢ p™Ajus
n—oo
Nm
for each m > 1 and set b, = Zang— € A% to find b — by, € p™Ait[[¢/p]]. Let us now
n!
n=0

consider an arbitrary sequence (b)) in A%, with b, — ¥/, € p" A%, for every n > 0. We note

that each ¥}, ; — bj, admits an expression

/ / / . !/
nt+1 — bn = pn E anviﬁ with anﬂ- € Ainf

o0
where the sum has finitely many nonzero terms. Take a} := Z ayp, ;p" € Ayt for each i > 0
n=0

and set b’ := b)) + Za’g € Bji. We find b/ — b, € p"Aine[[¢/p]] for every n > 0 and in

turn see that (b)) converges to t/. Moreover, we have lim a; = 0 as there exists an increasing
1—00

sequence (lp,) in Z with am = 0 for each 7 > I,,. Hence we establish the desired assertion. [
PROPOSITION 3.1.5. The element ¢ € By lies in Acyi.

PROOF. Since we have [¢] — 1 = £c for some ¢ € Ajy¢ by Lemma [2.2.22] we find

e= St EED S e £
n=1 n=1

Now we observe the identity lim (n—1)!¢" = 0 and consequently deduce the desired assertion
n—oo
from Proposition [l

Definition 3.1.6. The crystalline period ring is Beis := BE, [1/t] with BL. = Ais[1/p).

Cris

Remark. Let us explain Fontaine’s insight behind the construction of Be,s. As briefly dis-
cussed in Chapter |IL Fontaine introduced Bgs to formulate the crystalline comparison iso-
morphism. Given a proper smooth K-variety X with a smooth reduction X over k, the
crystalline cohomology H™. (X, W (k)) admits a natural Frobenius-semilinear endomorphism

and a canonical K-linear isomorphism H?2, (X, W (k))[1/p] ®k, K = H}(X/K). Fontaine
sought the ring Beis as a (Qp, I'x)-regular subring of Bgr with a natural extension of the
Frobenius automorphism ¢i,s on Ajne[1/p] = W(OF)[1/p]. The ring Bgr does not admit a
natural extension of pi,¢ since ker(6[1/p]) is not stable under ¢j,¢. Fontaine discovered that
A(C)HS is stable under s and consequently showed that ¢i,r canonically extends to an endo-
morphism of Aeis. The only issue with Ay is that it is not (Qp, Ik )-regular, which Fontaine

resolved by taking the ring Beris = Acris[1/p, 1/t].
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PROPOSITION 3.1.7. The ring Beyis admits an identification Beyjs = Acris[1/t].

PROOF. Since we have Beyis = Aeris[1/p, 1/t], we wish to show that p is a unit in Aes[1/¢].
It suffices to prove the relation t?~! € pA.is. Let us set

E:: zp:(_l)nJrl ([6] ; 1)71 c B(—li-R
n=1

We may write [¢] — 1 = £a for some a € Ajys by Lemma [2.2.22[ and in turn find

t—1t= i (_1>n+1([€];1)n: i (—l)n—i_l(n—l)!an-%_
n=p+1 n=p+1 :

Since (n — 1)! is divisible by p for every n > p, we have t — { € pAcs by Proposition
We wish to prove the relation ?P~! € pAgis. In the definition of ¢, the terms with n < p are
all divisible by [e] — 1 in Aggs; in other words, we may write

t=(e—1) <b+ (—1)P+1W>

p
for some b € Auis. Hence it suffices to establish the relation ([e] — 1)P~! € pAcs. Since we
have ([e] —1) —[e — 1] € pAjnt C pAesis, it is enough to prove the relation [(e — 1)P71] € pAcyis.
We apply Lemma [2.2.22] to find

V(-1 =p =2 ("))

and in turn deduce that [(¢ — 1)P~!] is divisible by [p’]P = (£ +p)P. Now we obtain the desired
relation by observing that &P =p - (p — 1)!- (£P/p!) is divisible by p in Aeis. O

PROPOSITION 3.1.8. The ring B.js is naturally a filtered Ky-subalgebra of Byr which is stable
under the action of I'k.

PROOF. Proposition yields the relation
Ainf[l/p] - Acris[l/p] B+ - BCI‘IS - BdR

cris —
In addition, Proposition [2.2.19] shows that the natural homomorphism K — Bgr extends the
canonical homomorphism Ky — Aju¢[1/p]. Hence Bes is naturally a filtered Ky-subalgebra
of Bqr with Fil"(Beis) = Bais N t"Biy for each n € Z.

It remains to show that Bgs is stable under the action of I'xy. Let us work with the
identification Byis = Acris[1/t] given by Proposition Since I'c acts on t via y as noted
in Theorem [2.2.26] we only need to prove that Acs is stable under the action of I'r. Take an
arbitrary element v € 'k and an arbitrary sequence (ay,,) in Ajp¢ with nhm an = 0. We observe

that ker(f) is stable under the I'x-action by Theorem [2.2.26| and in turn find v(§) = b,£ for
some b, € Ajys by Proposition [2.2.12] In addition, we note that the I'g-action is continuous

on Bc—lkR with respect to the discrete valuation topology and on Aj,; with respect to the p-adic
topology. Now we apply Proposition to obtain the relation

oo gn 0 ngn
Y (ZO ana = Z{)’Y(an)b’yn! € Acris

and consequently deduce the desired assertion. O

Remark. It is worthwhile to mention that Fil®(Beis) = Beris N B 1R is not equal to BCrlS In
2
[e1/P7] —

m lies in Beris N BdR but not in BJr

fact, we can show that cris®
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In order to study the I'k-action and the filtration on Bs, we invoke the following crucial
result without a proof.

PROPOSITION 3.1.9. The natural I'g-equivariant map Beis ®k, K — Bgr is injective.

Remark. The assertion is evident if we have K = K. However, the proof for the general case
is surprisingly difficult. Moreover, the original proof by Fontaine [Fon94a| is incomplete. We
refer curious readers to the article of Colmez [Col02, Proposition 8.12] for a complete proof,
which involves an enlargement By, of Beis. The key point is that we can construct Bqr with
Aine[1/plk = Aine[1/p] ®k, K in place of Aiy¢[1/p]; indeed, the K-algebra homomorphism
0[1/plk : Aint[1/p|xk — Ck induced by 0[1/p] turns out to yield a natural isomorphism
B = lim Aing[1/p]xc/ ker(0[1/p] k)"
7

ProprosITION 3.1.10. There exists a natural I'x-equivariant graded K-algebra isomorphism
gr(Bais ®k, K) = Bur.

PROOF. Theorem [2.2.26| and Proposition show that the natural filtered K-algebra
homomorphism Bis @k, K — Bqggr yields an injective graded K-algebra homomorphism
gr(Bcris ®K0 K) — gr(BdR) = BHT- (31)
Since each Fil"(Beyis) = Beris N t"B(J{R is stable under the I'g-action by Theorem |2.2.26 we
obtain a natural action of I'x on gr(Beis ®k, K) and in turn deduce that the map (3.1) is
I'k-equivariant. Meanwhile, the map (3.1)) gives rise to an injective K-algebra homomorphism
gr’(Bais ®k, K) — gr’(Bar) = Ck,

which is indeed an isomorphism as the image of Beis ®k, K in Bqr contains Ajn¢[1/p] and
consequently maps onto Cx = Bl /ker(613) by Proposition Hence the map is
a graded Cg-algebra homomorphism. Moreover, each gr"(Beis ®k, K) contains a nonzero
element t" ® 1 while each gr”(Bggr) has dimension 1 over Cx. We deduce that the injective
map is an isomorphism, thereby completing the proof. O

LEMMA 3.1.11. Let L be an algebraic extension of K and L be its p-adic completion.
(1) The residue fields of L and L are naturally isomorphic.
(2) The absolute Galois groups of L and L are naturally isomorphic.

PROOF. Statement follows immediately from a standard fact about completions stated
in the Stacks project [Stal, Tag 05GG]. Hence we only need to establish statement The

p-adic completion Cx of K = L evidnetly contains L. Since Ck is algebraically closed by

Proposition |3.1.10|in Chapter [I1| it also contains L and its p-adic completion C;. Meanwhile,

we observe that every element of Ck is an element of C; as K lies in L. Therefore we find
Cg = (CZ and in turn obtain a natural identification

=~

FZ = Autz(L) = Autz((CE) = Autz((CK) =~ Autr(Cg) = AutL(f) =TIy
where we take all automorphisms to be continuous. Il

Example 3.1.12. The completed unramified closure of K, denoted b ﬁl, is the p-adic
completion of the maximal unramified extension K" of K. Lemma [3.1.11|shows that K" is
a p-adic field with residue field & and absolute Galois group Ik

Remark. We can naturally identify K™ with K & Ko W (K)[1/p].
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PROPOSITION 3.1.13. An element b € (Bjz)* is algebraic over the fraction field @ of W (k)
if ' acts on b via a character n: 'y — Q;.

PROOF. Theorem implies that g acts on b := 01z (b) € Ck via the character .
We see that 7 is continuous as the I'k-action on Cx is continuous. In addition, we may regard
b= 01 (b) as an element of Cx (n~')'% which is nonzero for being the image of a unit in BJj.
Therefore Theorem [1.1.7) shows that n(I) is finite.

Since K0 is a p-adic field with residue field k£ and absolute Galois group I as noted in
Example[3.1.12] it has a finite extension L such that 7 is trivial on I',. Lemma[2.4.16/implies
that L is a p-adic field with residue field k. Now we apply Proposition [2.2.19|to deduce that

L is finite over the fraction field @‘ of W (k) and fits into a natural commutative diagram

Jrg — T

l I

+
L —— B

\ l%

Ck

with all maps being I'g-equivariant. We identify L as a subfield of Bgr via the diagram .

It suffices to show that b lies in L. Suppose for contradiction that b does not belong to L.
Since T'x acts on b via 1, we have be CE(L = (CEL = L by Theorem in Chapter and
thus find b # b. Moreover, the diagram yields the identity 615 (b) = b= 0z (b), which
implies that there exists a unique integer m > 0 with b — be th(YR and b—b ¢ tm“‘lBgR.
We see that T'g acts via 77 on the nonzero image of b — b in Cg(m) = t"Big /t" T B, given
by Theorem Hence we deduce from Theorem that Ix has a finite image under
X™ =n-(n~1x™), thereby obtaining a desired contradiction by Lemma m O

THEOREM 3.1.14 (Fontaine [Fon94al). The ring Beis is (Qp, ['k )-regular with BLX = K.

cris

PROOF. The ring B.s is a subring of the field Bgr and thus is an integral domain.
Proposition implies that the fraction field Ccyis of Beyis is a Kg-subalgebra of Bgr which

is stable under the action of I'k. In addition, Proposition and Theorem [2.2.26| together
yield natural injective K-algebra homomorphisms

BlX @, K — Bl 2K and C.X @y, K— B =K.

cris dR — cris dR —
~ pl'x ~ A
Therefore we have Ko = B_ i = C_X.

It remains to prove that every nonzero b € Bis with Q,b being stable under the I' x-action
is a unit. We apply Proposition [2.2.23| to write b = t"¥ for some b’ € (B:{R)X and n € Z.
We observe that ¢ is a unit in Beis = B [1/t] and in turn find b’ = bt™" € Bis. Moreover,

cris
Theorem [2.2.26|implies that Qb is stable under the I'x-action. Hence we may replace b by b’
to assume that b is a unit in B(;FR. Proposition |3.1.13| yields a polynomial equation

bd—l-Clbd_l—i-"'-i-Cd,lb-i—Cd:O with ¢g # 0
where each ¢; is an element in the fraction field [/(?1 of W (k). Now we find
bl = —Cgl(bd_l + Clbd_2 + -+ Cd—l) € Beis

by noting that @1 naturally embeds into B, thereby completing the proof. O
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Our final objective in this subsection is to construct the Frobenius endomorphism on the
crystalline period ring Beyis.

LEMMA 3.1.15. The Frobenius automorphism of Aj,s uniquely extends to a I'k-equivariant
endomorphism ¢* on BCrlS which is continuous with respect to the p-adic topology.

PROOF. The Frobenius automorphism of A;,s = W(OFr) uniquely extends to an automor-
phism on Ajn¢[1/p], which we denote by ¢ins. Since we have an equality

eint(€) = ()] —p=[P'PP —p=(E+p) —p, (3.3)

we may write gine(€) = &P + pa for some a € Ajys. We find

omt(§) =p- (a+ (p— 1) (£/p))

and in turn obtain the relation

it (€7 /nl) = (@™ /nl) - (a+ (p— 1)!- (€7 /p))™ € A, for each n > 1

by observing that p"/n! is an element of Z,. Hence Agns is stable under ¢;,s. Moreover,
the automorphism ¢ins on Ajne[1/p] is by constructlon I'k-equivariant and continuous with
respect to the p-adic topology. Now we note that the I'g-action on As is continuous with
respect to the p-adic topology and in turn establish the desired assertion by the identity
Bl = Auis[1/p). O

Cris

Remark. The equality (3.3) shows that ¢i,¢(§) is not divisible by £, which implies that
ker(f) is not stable under ¢i,r. Hence the endomorphism ¢ on Bl. (or the Frobenius

endomorphism on Bgis that we are about to construct) is not filtered.

PRroPOSITION 3.1.16. The Frobenius automorphism of Aj,; canonically extends to a I'g-
equivariant endomorphism ¢ on Bes with ¢(t) = pt.

PROOF. By Lemma [3.1.15] the Frobenius automorphism of Aj,s uniquely extends to a
I"x-equivariant continuous endomorphism ¢ on Bt. . Hence we apply Proposition [2.2.23| to
obtain the equality

cris”

oty = (-t CELZ DT sm gy 120 o) — piog(e) = .
n=1 n=1

Since I'c acts on t via x as noted in Theorem [2.2.26, we deduce that ¢ uniquely extends to
a I'g-equivariant endomorphism ¢ on Bes = ms[l /t]. O

Remark. The endomorphism ¢ is not continuous on Bgs, even though it is a unique ex-

tension of the continuous endomorphism ' on BCrlS The issue is that, as pointed out by

Colmez [Col98], the natural topology on BCrls induced by the p-adic topology on Ac.is does

not agree with the iulispace topology inherited from Bgs. In fact, it is not hard to show that
p—

(pm —1)!

Definition 3.1.17. We refer to the map ¢ in Proposition [3.1.16| as the Frobenius endomor-
phism of Bers and write B, := BY__ L

Cris

> converges to 0 in Bgs but does not converge to 0 in BCrlS

the sequence <
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3.2. Properties of crystalline representations

For the rest of this section, we denote by o the Frobenius automorphism of Ky and by
Vect, the category of Ko-vector spaces. Let us invoke the following result without a proof.

PROPOSITION 3.2.1. The Frobenius endomorphism of Bs is injective.

Remark. We will present a proof of Proposition [3.2.1]in Chapter [[V] We refer curious readers
to the article of Brinon [Bri22], Theorem 1] for another proof which does not involve materials
covered in Chapter [V]

Definition 3.2.2. For a Ky-vector space V, we write Vg =V ®g, K.
(1) A filtered isocrystal over K is an isocrystal D over K such that Dy is a filtered
K -vector space.
(2) Given filtered isocrystals D and D’ over K, a morphism f : D — D’ of isocrystals
over K is K-filtered if the induced K-linear map fx : Dx — D' is filtered.

Remark. A K-filtered isomorphism of isocrystals is a bijective K-filtered morphism of isocrys-
tals with a K-filtered inverse.

Example 3.2.3. Every proper smooth K-variety X with a smooth reduction X over k yields
a filtered isocrystal H .. (X /Ky) over K with H, (X /Ko)x = Hz(X/K).

PROPOSITION 3.2.4. Let D be a filtered isocrystal over K.

(1) Given a filtered isocrystal D’ over K, the tensor product D ®g, D’ is naturally a
filtered isocrystal over K.

(2) The dual DV = Hompg, (D, Kj) is naturally a filtered isocrystal over K.

PROOF. The assertions follow from Lemma[2.3.17]in Chapter [[I|and Proposition O

LEMMA 3.2.5. Given a finite dimensional vector space D over Ky, every injective o-semilinear
map f: D — D is bijective.

PROOF. The additivity of f implies that f(D) is closed under addition. In fact, f(D) is
a subspace of D over K, as for arbitrary ¢ € Ky and v € D we have

cf(v) =o(67H(e) f(v) = fe™ (c)v) € f(D).
Let us choose a Ky-basis (e;) for D. Since f is o-semilinear and injective, every relation
> cif(ei) = 0 with ¢; € Ky yields a relation ) | o(c;)e; = 0. We deduce that the vectors f(e;)
form a Ky-basis for D and consequently find f(D) = D. O

PRrOPOSITION 3.2.6. Every p-adic I'g-representation V' naturally yields a filtered isocrystal
Deis(V) :== (V ®q, Beis)'® over K with Frobenius automorphism 1 ® ¢ and

Fil"(Deris (V) i) = (V ®q, Fil" (Beris ®1, K))'<  for each n € Z. (3.4)

PROOF. Theorem and Theorem [3.1.14] together imply that Des(V) is a finite di-
mensional Ky-vector space. In addition, we find
Dcris(V)K = (V ®Qp Bcris)rK ®K0 K = (V ®Qp (Bcris ®K0 K))FK

and in turn deduce from Proposition that Deis(V) g is a filtered K-vector space with
the identification (3.4). Meanwhile, since 1 ® ¢ is o-semilinear by the fact that ¢ extends o,
it is bijective on Deyis(V') by Proposition and Lemma Therefore we establish the

desired assertion. O
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Definition 3.2.7. Let V be a p-adic I'g-representation.
(1) We refer to Deis(V') in Proposition as the filtered isocrystal associated to V.
(2) We say that V' is crystalline if it is Beis-admissible.

Example 3.2.8. Let us present two essential examples of crystalline I'g-representations.

(1) For every proper smooth K-variety X with a smooth reduction X over k, the étale
cohomology H}} (X7, Q,) is crystalline with a natural isomorphism

DcriS<H2t(X?7 Qp)) = Hgis(y/KO)
as briefly discussed in Chapter [}

(2) For every p-divisible group G over Ok with special fiber G = G x o, k, the rational
Tate module V,(G) is crystalline with a natural isomorphism

DcriS(V;?(G)) = D(é)[l/p]
as proved by Fontaine [Fon82, §6].

ProrosiTIiON 3.2.9. If a p-adic I'x-representation V' is crystalline, it is de Rham with a
natural K-linear filtered isomorphism

Deris(V) ik = Dar(V).
PROOF. Proposition and Proposition together show that Beis @k, K is natu-

rally a filtered K-subalgebra of Bgr with

Fil" (Beais @K, K) = (Bais @k, K) NFil"(Bgr) for every n € Z.
Therefore Proposition yields a natural injective K-linear filtered map

Deis(V) i = (V ®q, (Beris @k, K))'* — (V ®g, Bar)'* = Dar(V)

with an identification

Fil"(Deris(V) k) = Deris(V)k NFil"(Dar(V))  for every n € Z.
In addition, we find

dimg, Deris(V) = dimg Deris(V)x < dimg Dgr(V) < dimg, V

where the last inequality follows from Theorem Since V is crystalline, we see that both
inequalities should be equalities and in turn establish the desired assertion. ]

Example 3.2.10. Every Tate twist Qp,(n) of Q, is crystalline; indeed, the inequality
dimg Deris(Qp(n)) < dimg, Qp(n) =1

given by Theorem is an equality, as Deis(Qp(n)) = (Qp(n) ®q, Beris)'® contains a
nonzero element 1 ® t~" by Theorem [2.2.26 Moreover, D.is(Qp(n)) is naturally isomorphic
to the simple isocrystal of slope —n with identifications

K form < —n,

0 for m > —n

Fﬂm(DcriS(Qp(n))K) = {

given by Example and Proposition [3.2.9

LEMMA 3.2.11. Given an integer n, a p-adic I'g-representation V is crystalline if and only if
its Tate twist V'(n) is crystalline.

PROOF. Since we have V(n) = V ®g, Qy(n) and V = V(n) ®g, Qp(—n), the assertion
follows from Proposition and Example [3.2.10] O
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cris

For the rest of this section, we denote by Repg, (T'x) the category of crystalline
I k-representations and by MFY. the category of filtered isocrystals over K.

ProPOSITION 3.2.12. Every V € Reprf;S(F k) admits a natural I"x-equivariant isomorphism
Deris(V) @k, Beris £V ®q, Beris
which is compatible with the Frobenius endomorphisms and induces a filtered isomorphism
Deris(V) k @K (Beris @Ko K) =V ®q, (Beris @k, K).
PROOF. Since V is crystalline, Theorem implies that the natural Bgs-linear map
Deris(V) @Ky Beris — (V ®q,, Beris) @Ko Beris £V ®q, (Beris @Ky Bais) — V ®q, Beris

is I'-equivariant and bijective. Moreover, this map is compatible with the natural Frobenius
endomorphisms on Deis(V) ®k, Beris and V ®q,, Beris induced by ¢. Let us now consider the
induced K-linear bijective map

DcriS(V)K KK (Bcris ®K0 K) —V ®Qp (Bcris ®Ko K)

It is straightforward to verify that this map is filtered. Hence by Proposition [2.3.10} it suffices
to prove the bijectivity of the graded map

gt (Deris (V) k @k (Beris ®ko K)) — gr (V ®q, (Beris ®k, K)) - (3.5)

Proposition [2.4.3]and Proposition [3.2.9)show that V' is Hodge-Tate with a natural isomorphism
gr(Dais(V) k) = gr(Dar(V)) = Dur (V)
We apply Proposition and Proposition to obtain canonical isomorphisms
&t (Deris(V) k @k (Beris ®k, K)) = gr(Deris(V) k) @k g1(Beris ®k, K) = Dur(V) ®k Bur,
gr (V ®q, (Beis @k, K)) =V ®q, 8r(Beris ®k, K) =V ®q, Bur.
Now we identify the map with the natural map
Dut(V) ®k Bat — V ®q, Bur

given by Theorem [1.2.1] and in turn establish the desired assertion as V' is Hodge-Tate. [J

Remark. In our proof of Proposition [3.2.12} the finiteness of dimg, (V) and dimg (Deris(V))
are crucial for applying Proposition

PROPOSITION 3.2.13. The functor D, with values in MF% is faithful and exact on Reprf;s(F K)-

PROOF. Since the forgetful functor MFY, — Vectg, is faithful, Proposition im-
plies that Dcys is faithful on Repd®(I'x). Hence it remains to verify that D is exact
Qp

on Reprf;S (T'k). Consider an exact sequence of crystalline I' x-representations
0—U—V-—W —0.
By Proposition this sequence gives rise to an exact sequence of isocrystals
0 — Deris(U) — Deris(V) — Deris(W) — 0. (3.6)
Moreover, we apply Proposition [3.2.9]to identify the induced sequence of filtered vector spaces
0 — Dais(U)k — Deris(V)x — Deris(W)x — 0
with the exact sequence of filtered vector spaces
0 — Dgr(U) — Dar(V) — Dar(W) — 0
given by Propositionm Therefore we deduce that the sequence is exact in MF7.. O
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PROPOSITION 3.2.14. Given a crystalline I' g-representation V', every subquotient W of V is
crystalline with Deyis(W) naturally identified as a subquotient of Deyis(V) in MF%..

PRrOOF. The assertion is evident by Proposition [1.2.3| and Proposition [3.2.13 O

PROPOSITION 3.2.15. Given two crystalline I' i-representations V' and W, their tensor product
V ®q, W is crystalline with a natural K-filtered isomorphism of isocrystals

Deris(V') @Ky Deris(W) = Deris(V ®q, W). (3.7)

PROOF. Proposition shows that V ®q, W is crystalline and yields the desired iso-

morphism (3.7) as a Kp-linear bijection. Since the construction of the map (3.7) rests on

the multiplication of Beis, it is straightforward to verify that the map (3.7) is a K-filtered
morphism of isocrystals. Moreover, we apply Proposition to identify the induced map

DCriS(V)K ®K DCI‘iS(W)K — Dcris(v ®Qp W)K
with the natural K-linear filtered isomorphism
Dar(V) ®k Dar(W)k = Dar(V ®q, W)

given by Proposition [2.4.11, Now we deduce that the map (3.7)) is a K-filtered isomorphism
of isocrystals, thereby completing the proof. Il

PROPOSITION 3.2.16. Given a crystalline I'g-representation V' and a positive integer n, both
A™(V) and Sym" (V') are crystalline with natural K-filtered isomorphisms of isocrystals

A" (Deis(V)) 2 Deyis(A™(V))  and  Sym"(Deyis(V)) &2 Deyis(Sym™ (V).
PROOF. Proposition [1.2.5] shows that A"(V) and Sym"™(V) are crystalline. Moreover,

Proposition yields the desired isomorphisms as Kg-linear bijections. Proposition
and Proposition [3.2.15| imply that these maps are K-filtered isomorphisms of isocrystals. [

Example 3.2.17. Given a crystalline I'g-representation V', we have
(Deris(V(n))) = p(Deris(V)) —n for each n € Z
by Example [3.2.10] Proposition [3.2.15] and Proposition [3.2.16]

PROPOSITION 3.2.18. For every crystalline I g-representation V', the dual representation V'V
is crystalline with a natural K-filtered perfect pairing of isocrystals

Dcris(V) ®K0 Dcris(vv) = Dcris(v ®Qp VV) — Dcris(@p)~
PROOF. Proposition m shows that V'V is crystalline and yields the desired pairing as

a Ky-linear perfect pairing. This pairing is a K-filtered morphism of isocrystals over Ky by
Proposition [3.2.15| and thus gives rise to a K-filtered bijective morphism of isocrystals

Deris(V)Y — Ders(VY). (3.8)
Moreover, we apply Proposition [3.2.9] to identify the induced K-linear filtered map
Deris(V)je — Deris(VY) i
with the natural K-linear filtered isomorphism
Dar(V) = Dgr(V"Y)

given by Proposition [2.4.14] Now we deduce that the map (3.8)) is a K-filtered isomorphism
of isocrystals, thereby completing the proof. O

Remark. Proposition and Proposition [3.2.18| together show that the canonical isomor-
phism V 2 (V)" induces a natural K-filtered isomorphism Deis(V) 2 (Deyis(V)Y)V.
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For the rest of this chapter, we generally write ¢ for a map naturally induced by the
Frobenius endomorphism on Bg,is. In order to discuss some additional properties of crystalline
representations and the functor D5, we state the following remarkable result without a proof.

THEOREM 3.2.19 (Fontaine [Fon94al]). The ring B, = Bgizsl fits into a natural exact sequence
0 — Q, — B, — Bar/Bjz — 0.
Remark. We will present a proof of Theorem [3.2.19 in Chapter [[V]

LEMMA 3.2.20. The ring B, = Bf;l yields an identification
Be NFil%(Beys ®k, K) = B. N Bl = Q.
PRroOF. By Proposition [3.1.9] and Theorem |3.2.19 we find
Be NFil%(Beys ®k, K) € B NFil’(Byr) = B N Bl = Q.

Hence we obtain the desired identification as both B, and Fil° (Beris ® K, K) contain Q,. 0O
PRrOPOSITION 3.2.21. Every crystalline I'i-representation V' admits canonical isomorphisms
V 2 (Deris(V) @Ko Beris)*~" NFIl (Deis (V) i @ (Beris @rcy K))

2 (Deris(V) ©Ko Beris)?~ NFil® (Dexis (V) @ Bar) -
PROOF. Proposition yields a natural I'g-equivariant isomorphism
Deris (V) ®Ky Beris 2V ®q, Beris

which is compatible with the Frobenius endomorphisms. Moreover, this isomorphism induces
a canonical filtered isomorphism

Deris(V) x @K (Beris @K K) =V ®q, (Beris @k, K),
which in turn gives rise to a natural filtered isomorphism
Deis(V) ik @k Bar =V ®q, Bdr-

Therefore we obtain canonical isomorphisms

(Deris(V) @1y Beris) P+ 2V ®q, Be,

Fil° (Deris (V) i @1 (Beris @k, K)) =V ®q, Fil°(Beis @K, K),
Fil (Devis(V) k ®K Bar) =2V ®q, Bix.

Now the desired assertion follows from Lemma [3.2.20 O
THEOREM 3.2.22 (Fontaine [Fon94b]). The functor Deris with values in MF% is exact and
fully faithful on Repg*(I'x).

ProOOF. By Proposition [3.2.13] we only need to prove that D is full on Reprf;S(FK).
Let V and W be arbitrary crystalline I'x-representations. Consider an arbitrary morphism
[ ¢ Deris(V') = Deris(W) in MF%.. Proposition [3.2.12 yields a I'x-equivariant Beyis-linear map

Vv ®Qp Bcris = Dcris(v) ®K0 Bcris f*> Dcris(W) ®K0 Bcris =W ®Qp Bcris~

Moreover, Proposition [3.2.21| implies that this map restricts to a Qp-linear map ¢ : V. — W.
Now we identify f with the restriction of ¢ ® 1 on (V ®q, Beris)'® under the identification

(V ®@p Bcris)FK = (Dcris(V) ®K0 Bcris)FK = Dcris(v)

and in turn deduce that f corresponds to ¢ under the functor D ys. O
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ProproSITION 3.2.23. Let V be a p-adic I'k-representation and L be a finite unramified
extension of K with residue field [. Denote by Lg the fraction field of W (I).

(1) There exists an L-filtered isomorphism of isocrystals
Dcris,K(V) ®K0 LO = DcriS,L(V)
where we set Deis (V) := (V ®q, Beris)'% and Deis (V) == (V ®q, Beris)'r
(2) V is crystalline if and only if it is crystalline as a I'z-representation.

PRrOOF. Lemma [2.4.16|shows that L is a p-adic field. Moreover, L and Lg are respectively
Galois over K and Ky with natural isomorphisms
Gal(L/K) = Gal(Ly/Ky) = Gal(l/k).
Hence we find
Dcris,K(V) - Dcris,L(V)Gal(L/K) - Dcris,L(V)Gal(Lo/KO)
and in turn apply Lemma [2.4.16] to obtain a natural bijective Lo-linear map
Dcris,K(V) ®Ko LO B Dcris,L(V)‘ (39)
This map is evidently a morphism of isocrystals. In addition, by Proposition [2.4.17] and
Proposition the map (3.9) induces an L-linear filtered isomorphism
(Deris,k (V) @Ky K) @k L = Deyis 1.(V) @1, L.

We deduce that the map (3.9)) is an L-filtered isomorphism of isocrystals and consequently
establish statement Statement is an immediate consequence of statement O

Remark. We can show that Proposition |3.2.23| remains valid for L = K by the remark
following Lemma [2.4.16] Hence every p-adic I'i-representation with a trivial Ix-action is
crystalline.

Example 3.2.24. Given a continuous character 7 : I'x — Q) such that (/x) is nontrivially
finite, we assert that Q,(n) is not crystalline. Since we have

Dcris(@p(n)) = (Qp(n) ®Qp Bcris)FK c (Qp(n) ®Qp Bcris)lKa

it suffices to show that (Q,(n) ®g, Beis)'® vanishes. Let us take a finite Galois extension L
of K with n(Iy) being trivial. By Proposition [3.2.23] we may replace K with an unramified
extension to assume that L is totally ramified over K. Theorem [3.1.14]shows that the fraction
field K™ of W (k) admits a natural isomorphism /BQIrLis = Kyn = Bclgs, which in particular
implies that Gal(L/K) = Ik /I, acts trivially on K™. Meanwhile, we obtain the identities
Qp(n)'t = Qu(n) and Q,(n)S N E/K) = 0 respectively from the triviality of n(Iz) and the
nontriviality of n(Ix). Hence we find

(@o(n) @g, Beis)'™ = ((Qp(n) B, Bers)™) ™" = (@) @, BLE,

___\ Gal(L/K) _
= (Qym) @, K5°) " = Q) mg, Kgh =0

)Gal(L/K)

as desired.

Remark. Example shows that Proposition fails for a ramified extension L of K.
Fontaine interpreted this fact as an indication for a tidy connection between crystalline rep-
resentations and abelian varieties with good reduction. In fact, an abelian variety A over K
has good reduction if and only if the rational Tate module V,(A[p™]) is crystalline, as proved
by Coleman-Iovita [CI99] and Breuil [Bre00]. Hence, in light of Theorem [1.1.2]in Chapter

we may regard crystalline representations as p-adic counterparts of unramified representations.
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For the rest of this section, we assume for simplicity that K is a finite extension of Q.

LEMMA 3.2.25. Given a unit u € W (k) and an integer r > 0, there exists a unit v € W (k)
with ¢"(v) = wv.
PROOF. For each a € W(k), we denote by @ its image in k = W (k)/pW (k). Since ¢" is

an isometry by construction, it suffices to present a sequence (v,) € W (k)™ with
©"(vy) € uvp + "W (k) and  vue1 — v, € p"TIW(R).

We take vg € W(k)* with 5o?" = @y and inductively construct v, for each n > 1. In

fact, as we have ¢"(vy—1) = uvp—1 + p" v, for some «,, € W(k), we choose 3, € W (k) with
Bn =, — &y, and set vy, := v,_1 + p" By, to find " (vy,) € uvy, + P TIW (k) as desired. O

PROPOSITION 3.2.26. Let 1 : 'k — Q. be a continuous character with 7(Ix) being trivial.

(1) The p-adic I'g-representation Q,(n) is crystalline with a Hodge-Tate weight 0.
(2) The isocrystal Deris(Qp(n)) over Ky has rank 1 and degree 0.

PROOF. Let us write r for the degree of k over [F,, and take an element o € I'x whose
image in I'y = T'x /I is the p’-th power map on k. We note that 7 takes values in Z, by
continuity and apply Lemma to obtain an element u € W (k)* with ¢"(u) = n(c) 1u.
The element 1 ® u € Qp(n) ®q, Bais is Ix-invariant by construction and is -invariant as
o acts on W (k) via ¢". Since the group generated by & has a dense image in 'y, = I'y /I,
we see that Deis(Qp(n7)) = (Qp(n) ®q, Beris)'* contains 1 ® u. Hence Theorem @ shows
that Qp(n) is crystalline, which in particular implies that Deis(Qp(n)) has rank 1. Moreover,
Deris(Qp(n)) has degree 0 as both u and ¢(u) are units in W (k). Now we use Theorem
Proposition and Propositionto find that Q,(n) has a Hodge-Tate weight 0, thereby
completing the proof. O

Remark. While our proof of Proposition [3.2.26] relies on the assumption that K is a finite
extension of Q,, Proposition [3.2.26| holds without the assumption as explained in the notes
of Brinon-Conrad [BC| Lemma 8.3.3].

PROPOSITION 3.2.27. Let n: 'k — Q, be a continuous character.

(1) Qp(n) is de Rham if and only if (nx™)(Ix) is finite for some n € Z.
(2) Qp(n) is crystalline if and only if (nx™)(Ik) is trivial for some n € Z.

PROOF. Let us begin with statement If Qp(n) is de Rham, (nx")(Ix) is finite for
some n € Z by Proposition |[1.1.13| and Proposition [2.4.3] For the converse, we now assume
that (nx™)(Ik) is finite for some n € Z. Take a finite extension L of K such that (nx™)(I1) is
trivial. Proposition and Proposition [3.2.26| together show that Q,(nx") is de Rham as
a ' -representation. Hence we deduce from Lemma [2.4.6| and Proposition that Qp(n)
is de Rham as desired.

It remains to establish statement If (nx™)(Ik) is trivial for some n € Z, we see by

Proposition [3.2.26 that Q,(nx™) is crystalline and in turn deduce from Lemma [1.2.10| that
Qp(n) is also crystalline. For the converse, we henceforth assume that Q,(n) is crystalline.

Proposition and statement together imply that (nx™)(Ix) is finite for some n € Z.
Meanwhile, Lemma|l.2.10[shows that Q,(nx") is crystalline. Hence we find by Example|3.2.24
that (nx™)(Ix) is trivial, thereby completing the proof. O

Remark. By Proposition [1.1.13] and Proposition being Hodge-Tate and being de
Rham are equivalent for Q,(n).




122 I11. PERIOD RINGS AND FUNCTORS
3.3. Admissible filtered isocrystals

In this subsection, we study filtered isocrystals over K which arise from crystalline
I'x-representations.

Definition 3.3.1. Let D be a filtered isocrystal over K.

(1) If D is nonzero, we define its filtration degree to be the unique integer deg®(D) with
grdee® (D) (det(Dg)) # 0.

(2) We say that D is weakly admissible if every nonzero filtered subisocrystal D’ of D
satisfies the inequality deg®(D’) < deg(D’) with equality for D' = D.

(3) We say that D is admissible if it admits an isomorphism D =~ Dg;s(V') for some
crystalline I'g-reprsentation V.

Remark. Theorem [1.2.22] implies that the category of I x-representation is equivalent to the
category of admissible filtered isocrystals over K.

LEMMA 3.3.2. The ring B, = B?Z! has a trivial intersection with Fil"(Bgr) for every n > 0.

cris

PRrOOF. We have Q, N Fil"(Bgr) = 0 as all nonzero elements of Q, are units in B:{R'
Hence the desired assertion follows from Lemma [3.2.201 O

PRroroOSITION 3.3.3. Every admissible filtered isocrystal D over K is weakly admissible.

PROOF. Since the assertion is evident for D = 0, we may assume that D is nonzero. Let
us take a crystalline I'i-representation V' with a K-filtered isomorphism of isocrystals

D =~ Dyis(V) = (V ®q, Beris) ¥ (3.10)

Proposition [3.2.16|shows that det(V') is crystalline with Deis(det(V)) ~ det(D). We see that
the Ix-action is trivial on det(V')(n) for some n € Z by Proposition [3.2.27| and in turn find

deg(Deris(det(V)(n))) = deg®(Deris(det(V(n)))) =0
by Proposition Since we have deg(D) = deg(det(D)) and deg®(D) = deg®(det(D)),
we use Example and Example to obtain the equality
deg(D) = deg(Deris(det(V))) = deg®(Deris(det(V))) = deg® (D).

Let us now consider an arbitrary nonzero filtered subisocrystal D’ of D. For notational
simplicity, we write d := deg(D’) and d® := deg®(D’). We wish to prove the inequality d* < d.
Proposition shows that A™(P) D is admissible. Since det(D’) = A™P) D' is naturally
a filtered subisocrystal of A™(P) D with deg(det(D’)) = d and deg®(det(D’)) = d°, we may
replace D' and D respectively by det(D’) and A™K(P)D to assume that D’ has rank 1. Let
us take a Ko-basis element e of D’ and a Q)-basis (v;) of V. The isomorphism (3.10) yields
a relation e = Y v; ® b; with b; € Beis. We take u € W(k)* with ¢(e) = p®ue and use
the identity ¢(e) = S v; ® (b;) to find p(b;) = plub; for each b;. Meanwhile, as we have
Fil™" (D)) # 0 and Fil¥" t1(D.) = 0, we see that e = 3. v; @ b; lies in V ®q, Fil** (Bgr) and
in turn deduce that each b; lies in Fil¢ (Byr). Now we choose v € W (k)* with p(v) = vl
by Lemma and observe that each b;t~%v belongs to B, N Fﬂd.*d(BdR). The desired
inequality d® < d follows from Lemma [3.3.2] and the fact that e is nonzero. g

Remark. As we will see in Chapter [[V] the converse of Proposition holds; in other
words, a filtered isocrystal over K is admissible if and only if it is weakly admissible. Hence
the category of crystalline p-adic I'g-representations is equivalent to the category of weakly
admissible filtered isocrystals over K.
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Definition 3.3.4. Let D be a filtered isocrystal over K.
(1) Given an integer n, the n-fold Tate twist of D is D(n) := D ®x, Deris(Qp(n)).
(2) A Hodge-Tate weight of D is an integer m with gr'™(Dg) # 0.
Example 3.3.5. Let V be a crystalline I'x-representation. Proposition[3.2.15]yields a natural
K-filtered isomorphism of isocrystals
Deyis(V)(n) = Deyis(V(n))  for each n € Z.

Moreover, Proposition and Proposition together show that the Hodge-Tate weights
of D¢is(V') coincides with the Hodge-Tate weights of V. For each Hodge-Tate weight m of V|
its multiplicity is equal to gr"(Deyis(V) i )-

Remark. If V is not crystalline, we can still show that there exists a natural K-filtered
isomorphism of isocrystals Deyis(V)(n) & Deyis(V(n)) for each n € Z. On the other hand,
if V' is not crystalline, the Hodge-Tate weights of Dcis(V) are in general not equal to the
Hodge-Tate weights of V'; indeed, it is possible that Dcis(V') vanishes and has no Hodge-Tate
weights at all.

PROPOSITION 3.3.6. Let D be a nonzero filtered isocrystal over K and n be an integer.
(1) D(n) is a filtered isocrystal over K with the Frobenius automorphism p~"¢p and
Fil"™(D(n)g) = FiI™*™(Dg) for each m € Z.
(2) D(n) satisfies the equalities
deg(D(n)) = deg(D) —nrk(D) and deg®(D(n)) = deg®(D) — nrk(D).

PROOF. Statement |[(1)|is straightforward to verify using Example m Statement |(2) -
is an immediate consequence of statement |(1) .

LEMMA 3.3.7. Let D be a filtered isocrystal over K and n be an integer.

(1) D is weakly admissible if and only if its Tate twist D(n) is weakly admissible.
(2) D is admissible if and only if its Tate twist D(n) is admissible.

PROOF. Every filtered subisocrystal D’ of D yields a filtered subisocrystal D’(n) of D(n).
Similarly, every filtered subisocrystal D" of D(n) yields a filtered subisocrystal D”(—n) of D.
Hence we deduce statement from Proposition In addition, we obtain statement
by Lemma and Example |3.3.5 0

ProrosiTiON 3.3.8. If a filtered isocrystal D over K has a Hodge-Tate weight n, its Tate
twist D(m) has a Hodge-Tate weight n —m

PRrOOF. The assertion is evident by Proposition [3.3.6 g

ProposiTION 3.3.9. A filtered isocrystal D over K with Hodge-Tate weights mq,--- ,m,
satisfies the equality

deg®(D Z m; dimg gr'" (D).
=1

PROOF. Since Dy is finite dimensional over K, we can construct a K-basis (e; ;) of Dg
such that each Fil"(Dg) has a K-basis (e;;)i>n; indeed, we take m € Z with Fil"(Dg) =0
and inductively extend a K-basis for each Fil*(Dg) to a K-basis for Fil" ! (Dg). Hence the
desired assertion is straightforward to verify by Proposition [2.3.6 U
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PROPOSITION 3.3.10. Given a filtered isocrystal D over K, every nonzero filtered
subisocrystal D’ of D yields a filtered subisocrystal D’ of D with the following properties:

(1) D’ contains D' as a filtered subisocrystal and satisfies the relations
k(D) = 1k(D'), deg(D') = deg(D’), deg®(D’) < deg®(D).
(ii) D’ gives rise to a short exact sequence of filtered isocrystals

0—>E/’—>D—>D/E/’%O.

PRrOOF. Take D’ to be the isocrystal D’ with the filtration on /DV’K given by
Fil"(ﬁK) :=Fil"(Dg) N Dy  for each n € Z.
We obtain property by obserf@ng that the identity map on D’ induces a K-filtered injective
morphism of isocrystals D’ < D’. In addition, we find
Fil" (D/D")) = Fil*(Dg)/(Fil"(Dy) N D'x) = Fil"(D)/ Fil"(D') ~ for each n € Z
and in turn verify property U

Remark. In general, a quotient of D by D’ does not necessarily exist in the category of
filtered isocrystals since the category of filtered K-vector spaces is not abelian.

Definition 3.3.11. For a filtered isocrystal D over K with a nonzero filtered subisocrystal D,
we refer to the filtered isocrystal D’ given by Proposition [3.3.10| as the saturation of D’ in D.

PropPOSITION 3.3.12. Given a short exact sequence of nonzero filtered isocrystals over K
0—D —D-—D"—0,
we have the equalities
deg(D) = deg(D') +deg(D") and deg®(D) = deg®(D’) + deg®(D").
PROOF. The assertion is evident as we have a natural K-filtered isomorphism of isocrystals
det(D) = det(D’) ®, det(D")
by a standard fact stated in the Stacks project [Sta, Tag 0B38|. O
ProprosITION 3.3.13. Let D be a nonzero filtered isocrystal over K.
(1) DV satisfies the equalities deg(DV) = — deg(D) and deg®(DV) = — deg®(D).
(2) D is weakly admissible if and only if DV is weakly admissible.

ProoF. For statement the first equality is evident by Lemma in Chapter
while the second equality follows from Proposition [2.3.9] and Proposition Let us now
consider statem Since we have a K-filtered isomorphism of isocrystals D = (DV)V
by Propositoin it suffices to prove that DV is weakly admissible when D is weakly
admissible. Take an arbitrary filtered subisocrystal D’ of DV. Its saturation D’ in DV gives
rise to a short exact sequence of filtered isocrystals

0— (Dv/ﬁ)v DD —.
Hence we use Proposition and statement to find
deg®(D') < deg®(D') = — deg®(D'") = — deg®(D) + deg® (D" /D')")
< —deg(D) + deg ((Dv/ﬁ)\/) =— deg(ﬁv) = deg(D’) = deg(D").
We see that DV is weakly admissible as we have deg®(D") = deg(DV) by statement O
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ProrosITION 3.3.14. Consider a short exact sequence of filtered isocrystals over K
0—D —D—D"—0.

(1) If D and D’ are weakly admissible, D" is also weakly admmissible.
an are weakly admissible, D’ is also weakly admmissible.

2) If D and D" kly admissible, D’ is al kly admmissibl
an are weakly admissible, D is also weakly admmissible.

3) If D" and D" kly admissible, D is al kly admmissibl

PROOF. Statement and statement are equivalent by Proposition [3.3.13} indeed, we
can deduce one from the other by replacing the given exact sequence with its dual sequence.
For statement let us assume that D and D” are weakly admissible. Every nonzero
filtered subisocrystal E’ of D’ satisfies the inequality deg®(E’) < deg(E’) for being a filtered
subisocrystal of D. Moreover, by Propsotion [3.3.12| we have

deg®(D’) = deg®(D) — deg®(D") = deg(D) — deg(D") = deg(D").
Therefore D’ is weakly admissible as asserted in statement
We now assume for statement that D’ and D" are weakly admissible. Let E be a
nonzero filtered subisocrystal of D. Take the filtered subisocrystal E' := D' N E of D’ with
Fil"(EY) = Fil"(D%) N Ex  for each n € Z.
We note that E’ gives rise to a filtered subisocrystal E” := E/E’ of D" = D/D’ and in turn
apply Proposition [3.3.12] to find
deg®(E) = deg®(E') + deg®(E") < deg(E’) + deg(E") = deg(FE).
Moreover, for E = D the inequality becomes an equality as we have £/ = D" and E” = D".
Therefore D is weakly admissible as asserted in statement O

Remark. Let WMF¥. denote the category of weakly admissible filtered isocrystals over K.
Although Rep?Qf;S(F &) and WMF?Y, are equivalent via an exact functor, their behaviors within
the ambient categories Repg, (I'x) and MFY, exhibit some differences as follows:

(1) WMFY%, is closed under taking extensions in MFY. as noted in Proposition [3.3.14
whereas Rep”(I'k) is not closed under taking extensions in Repg,(I'x) by the
remark after Example [1.1.12

(2) WMF%, turns out to be not closed under taking subquotients in MF%., whereas
Rep?Qf;S (T'k) is closed under taking subquotients in Repg, (T'x) by Proposition|3.2.14

PROPOSITION 3.3.15. Given filtered isocrystals D and D’ over K, their direct sum D & D’ is
weakly admissible if and only if both D and D’ are weakly admissible.

PROOF. If both D and D’ are weakly admissible, their direct sum D @ D’ is weakly
admissible by Proposition For the converse, we now assume that D & D’ is weakly
admissible. Let F and E’ respectively be nonzero filtered subisocrystals of D and D’. Since
D and D’ are filtered subisocrystals of D & D', we find

deg®(F) < deg(F) and deg®(E’) < deg(E').
Moreover, for E = D and E’ = D’, these inequalities become equalities as we have
deg® (D) + deg®(D') = deg®(D & D’) = deg(D & D’) = deg(D) + deg(D’)

by Proposition [3.3.12l We deduce that both D and D’ are weakly admissible as desired,
thereby completing the proof. O
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ProproSITION 3.3.16. A filtered isocrystal D over K of rank 1 is admissible if and only if it
is weakly admissible.

PRrooFr. If D is admissible, it is weakly admissible by Proposition|3.3.3] For the converse,
we henceforth assume that D is weakly admissible. By Proposition and Lemma, (3.3.7
we may replace D with D(deg(D)) to also assume that D has degree 0. Let us take a K(-basis
element e of D and write p(e) = ue with u € W(k)*. In addition, we denote by r the degree
of k over I, and choose an element ¢ € I'x whose image in I'y = ' /I is the p"-th power
map on k. We apply Lemma to obtain an element v € W (k)* with ¢(v) = uv and find

P (v) = ¢ H(w) - p(u)ur.
We observe that v € W (k)* is ¢"-invariant and thus deduce see that ¢"(v)v™! lies in Z for
being p-invariant. Since the group generated by ¢ has a dense image in I'y = ' /I, there
exists a continuous character 1) : I'x — ZX with n(Ix) being trivial and n(o) = ¢"(v)~*v. The
element 1 ® v € Qpu(n) ®Q, Bais is Ikx-invariant by construction and is o-invariant as o acts

on W (k) via ¢". Hence Proposition shows that Deris(Qp(n)) = (Qp(n) ®q, Beris) ¥ is
admissible of rank 1 with a basis element 1 ® v. Now we obtain a K-filtered isomorphism of
isocrystals D >~ Dis(Qp(n)) which maps e to 1 ® v and in turn deduce that D is admissible
as desired. g

Remark. While our proof of Proposition [3.3.16] relies on the assumption that K is a finite
extension of @, Proposition [3.3.16| holds without the assumption as explained in the notes
of Brinon-Conrad [BC| Lemma 8.3.3].

ProposITION 3.3.17. A filtered isocrystal D over K of rank 1 with a Hodge-Tate weight m
is weakly admissible if and only if it satisfies the following properties:
(i) Its Frobenius automorphism is the multiplication by p™wu for some u € W (k)*.
(ii) The filtration on D admits an identification
Dy forn < m,
0 for n > m.

Fil*(Dg) = {

PROOF. Since D has rank 1, we obtain the equality deg®(D) = m and consequently
establish the desired assertion. O

ProposiTION 3.3.18. Let V\/'l\/IF?rk:1 denote the set of isomorphism classes of weakly admis-
sible filtered isocrystals over K of rank 1.

(1) WMF}’?rk:l is naturally an abelian group under tensor products.
(2) WMF %rk:l gives rise to a canonical surjective group homomorphism
Z x W(k)* - WMFgH=!
whose kernel consists of the elements (0,0 (u)u™1)) with u € W (k).
PROOF. Both statements are straightforward to verify by Proposition O

Remark. Proposition[3.3.16|and Proposition [3.3.18|together provide an explicit classification
of one-dimensional crystalline I'g-representations. This classification is particularly simple
for K = Q, as we have a natural isomorphism

p,rk=1 ~, X ~ )X
WMFQP 7 xZL, =Q,
by the fact that the Frobenius automorphism on Q, is the identity map.
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LEMMA 3.3.19. Let D be an isocrystal over Q.
(1) The Frobenius automorphism ¢p is Qp-linear with v(det(¢p)) = deg(D).

(2) An element v € D spans a nonzero subisocrystal of D if and only if it is an eigenvector
of @D-

PROOF. Both statements are straightforward to verify. O

Definition 3.3.20. Let D be a filtered isocrystal over Q, of rank 2.

(1) D is normally weighted if its Hodge-Tate weights are 0 and deg(D) with 0 < deg(D).

(2) If D is normally weighted, its Hodge subspace refers to H(D) := Fill (D).

(3) D is indecomposable if it does not admit a direct sum decomposition into filtered
isocrystals over Q,, of rank 1.

LEMMA 3.3.21. Every weakly admissible filtered isocrystal over Q, of rank 2 admits a normally
weighted Tate twist.

PRrROOF. The assertion follows from Proposition [3.3.6] and Proposition [3.3.9 O

PROPOSITION 3.3.22. A normally weighted filtered isocrystal D over Q, of rank 2 is indecom-
posible if and only if pp does not admit an eigenbasis containing an element of H (D).

PROOF. If pp admits linearly independent eigenvectors v; and vy with vy € H(D), we
obtain an isomorphism D ~ D; & Dy where Dy and D5 are the filtered subisocrystals of D
respectively spanned by v; and vy with deg®(D;) = 0 and deg®(D2) = deg(D). Conversely, if
D admits an isomorphism D ~ D ¢ D» for some filtered subisocrystals D and Dy of rank 1
with deg(D;) < deg(D3), we apply Lemma to see that ¢p admits an eigenbasis given
by nonzero elements v; € Dy and vy € Ds with vy € H(D). O

Example 3.3.23. Let us consider the basis vectors e; := (1,0) and e3 := (0,1) of Q2.

(1) For a,b € Z, with (a® — 4b)'/2 ¢ Z,,, there exists a unique normally weighted filtered
isocrystal D;“;) over Q, of rank 2 with

0 —b irr
SODLY,% = (1 a> and H( a,b) = pr(b)elv

which is indecomposable by Proposition |3.3.22

(2) For nonzero Ai, Ay € Z), with A\ Ay € pZ,, there exists a unique a normally weighted

filtered isocrystal Df\hlai over Q, of rank 2 with

A1,A2

A O dia,
Ppding = <01 >\2> and H(DA1,§2) = Qp(e1 + e2),

which is indecomposable by Proposition |3.3.22

(3) For nonzero A € Z,, there exists a unique normally weighted filtered isocrystal Dief
over Q, of rank 2 with

Al
Pt = <0 )\> and  H(DSY) = Qur(Ner,
which is indecomposable by Proposition |3.3.22

Remark. H(D™) vanishes for b € Z, and has a basis vector e; for b € pZ,. Similarly,
H(DSet) vanishes for A € Z, and has a basis vector ey for A € pZ,.
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PROPOSITION 3.3.24. Let D be an indecomposable filtered isocrystal over QQ, of rank 2 with
two distinct Hodge-Tate weights.

(1) When ¢p has no Qp-eigenvalues, D is weakly admissible if and only if it is isomorphic
to a Tate twist of Dg’rb for some a € Z, and b € pZ, with (a> — 4b)'/? ¢ Z,,.

(2) When ¢p has two distinct Qp-eigenvalues, D is weakly admissible if and only if it is

isomorphic to a Tate twist of Di\hfi for some nonzero A1, Ay € Z, with A\ Ay € pZ,,.

(3) When ¢p has a unique Qp-eigenvalue, D is weakly admissible if and only if it is
isomorphic to a Tate twist of Dﬁef for some nonzero \ € pZ,.

PROOF. By Lemma [3.3.7 and Lemma [3.3.21 we may assume without loss of generality
that D is normally weighted. Since we have deg®(D) = deg(D) by Proposition the
filtered isocrystal D is weakly admissible if and only if every nonzero filtered subisocrystal D’
satisfies the inequality deg®(D’) < deg(D’). Meanwhile, the eigenvalues of pp are nonzero as
wp is an automorphism.

Let us first consider the case where ¢p admits no Q,-eigenvalues. Lemma shows
that D is irreducible and thus is weakly admissible. Take a nonzero element e; € H(D) and
set ez := pp(e1). We see that e; and ey form a Q,-basis for D, under which we may write

op = <(1) :2) for some a,b € Q,.

The characteristic polynomial of pp is f(z) = 2? — az +b. Since f is irreducible over Q,, the
element a? — 4b € Q, is a nonsquare. Moreover, we find v(b) = deg(D) > 0 by Lemma
and in turn obtain the inequality v(a) > 0 by observing that the roots of the irreducible
polynomial f over QQ, have the same valuation. Therefore we establish statement .

We now consider the case where ¢p has distinct nonzero Q,-eigenvalues A1 and A2. Choose
Qp-basis vectors e; and ep for D with pp(e1) = Ajej and pp(ez) = Azea. Since H(D) contains
neither e; nor ey by Proposition we may replace e; and ex with their Q,-multiples to
assume that H(D) contains e; + e2. We have

(A O
under our basis and find v(A;A2) = deg(D) > 0 by Lemma [3.3.19, Let us write D/ for the
filtered isocrystal over QQ, spanned by e; with

Fil"(D}) = Fil"(D) N D  for each n € Z.

For each D}, we find deg®(D}) = 0 and deg(D.) = v()\;). Meanwhile, for every filtered
subisocrystal of D with rank 1, its saturation in D is D} or D) by Lemma [3.3.19] Hence D is
weakly admissible if and only if we have v();) > 0 for each A;. Statement |[(2)|is now evident.

It remains to consider the case where ¢p has a unique nonzero Q,-eigenvalue A. Since
@p is not a scalar multiplication by Proposition [3.3.22] we may write

a1

with respect to some Qp-basis vectors e; and ey for D. Let D’ be an arbitrary filtered
subisocrystal of D with rk(D’) = 1. Since we have e; € D’ and deg(D’) = v()\) = deg(D)/2

by Lemma [3.3.19] the saturation D’ of D’ in D satisfies the inequality deg®(D’) < deg(D’) if
and only if e; lies in H (D). Hence D is weakly admissible if and only if e; lies in H (D). Now
we establish statement and in turn complete the proof. O
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PROPOSITION 3.3.25. Let D be an indecomposable filtered isocrystal over QQ, of rank 2 with
a unique Hodge-Tate weight.

(1) When ¢p has no Q,-eigenvalues, D is weakly admissible if and only if it is isomorphic
to a Tate twist of D;r’rb for some a € Zy and b € Z; with (a® —4b)Y/2 ¢ 7,

(2) When ¢p has a Q,-eigenvalue, D is weakly admissible if and only if it is isomorphic
to a Tate twist of Dief for some nonzero A € Z,.

Proor. By Lemma [3.3.7] and Lemma we may assume without loss of generality
that D is normally weighted. Since we have deg®(D) = deg(D) by Proposition the
filtered isocrystal D is weakly admissible if and only if every nonzero filtered subisocrystal D’
satisfies the inequality deg®(D’) < deg(D’). Meanwhile, the eigenvalues of ¢ are nonzero as
wp is an automorphism.

Let us first consider the case where ¢p admits no Qp-eigenvalues. Lemma [3.3.19| shows
that D is irreducible and thus is weakly admissible. Choose a nonzero element e; € D and
set ea := pp(e1). We see that e; and ey form a Q,-basis for D, under which we may write

Yp = <2 :2) for some a,b € Q).

The characteristic polynomial of ¢p is f(2) = 22 — az +b. Since f is irreducible over Q,, the
element a? — 4b € Q, is a nonsquare. Moreover, we find v(b) = deg(D) = 0 by Lemma
and in turn obtain the inequality v(a) > 0 by observing that the roots of the irreducible
polynomial f over Q, have the same valuation. Therefore we establish statement

We now consider the case where ¢p has a nonzero Q,-eigenvalue. Since D has a unique
Hodge-Tate weight 0, its Hodge subspace H (D) must vanish. Proposition implies that
@p does not admit an eigenbasis, which means that ¢p has a unique nonzero eigenvalue A
and is not a scalar multiplication. Hence we may write

!

with respect to some Qp-basis vectors e; and ey for D. Let D’ be an arbitrary filtered

subisocrystal of D with rk(D’) = 1. For its saturation D’ in D, we find deg®(D’) = 0 as
D has a unique Hodge-Tate weight 0. Moreover, Lemma |3.3.19| shows that D’ contains e;
and satisfies the equality

deg(D’) = v(\) = deg(D)/2 = 0.
We deduce that D is weakly admissible and in turn establish statement O

Remark. We have a complete classification for weakly admissible filtered isocrystals over Q,
of rank 2 by Proposition Proposition Proposition [3.3.24] and Proposition
In fact, up to Tate twists, the weakly admissible filtered isocrystals over Q, of rank 2 are
precisely the ones listed in Example [3.3:23] and the direct sums of weakly admissible fil-
tered isocrystals over Q, of rank 1 classified by Proposition [3.3.17] Since the category of
weakly admissible filtered isocrystals over QQ, is equivalent to the category of crystalline p-adic
['g,-representations as noted after Proposition we obtain a complete classification for
two-dimensional crystalline p-adic I'g,-representations by Proposition

If K is totally ramified over QQ,, we can establish a similar classification for weakly ad-
missible filtered isocrystals over K of rank 2, or equivalently for two-dimensional crystalline
p-adic I' g-representations. In the general case, however, such a classification is very difficult
to obtain. The main issue is that the Frobenius automorphism of an isocrystal over Ky is not
Ko-linear unless K is totally ramified over Q.
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Exercises

1. Let B be a (Qp, 'k )-regular ring and V' be a p-adic I'x-representation of dimension d.
(1) Show that V ®g, B naturally gives rise to an element [V]p € H'(I'x, GLq(B)).

(2) Show that V is B-admissible if and only if [V]p € H'(I'x, GLgq(B)) is the distin-
guished element.

2. Let V be a p-adic I' x-representation.

(1) Show that V is Cg-admissibile if and only if it is Hodge-Tate with a unique Hodge-
Tate weight 0.

(2) Show that V is K-admissible if and only if the I'x-action on V factors through a
finite quotient.

Hint. Use Theorem and Lemma [2.4.16| along with the fact that the I'k-action
on K is discrete.

3. Let A be an abelian variety over K of dimension g with good reduction.
(1) Find the multiplicity for each Hodge-Tate weight of the étale cohomology HZ (A%, Qp).
(2) Prove that the Ix-action on HY (A, Qp) does not factor through a finite quotient.

Remark. The second part shows that the Neron-Ogg-Shafarevich criterion (Theorem m
in Chapter [l|) fails for ¢ = p.

4. Let L be a complete nonarchimedean field with valuation vy,.

(1) Prove that L’ := lim L is naturally a perfect field of characteristic p which is
x—xP
complete with respect to a valuation induced by vy.

(2) If the p-th power map on O /pOp is surjective, prove that the residue fields of
L and L are naturally isomorphic.

(3) If L is a p-adic field, prove that L’ is naturally isomorphic to the residue field of L.

Remark. The last part shows that the value groups of L and L’ are not necessarily equal if
L is not perfectoid.

5. Let (p and pl/P™ respectively denote the sets of p-power roots of 1 and p in Qp.
(1) Show that the p-adic completions of Q,((pe) and Q,(p'/P™) are perfectoid fields.
(2) Show that the p-adic completions of Q,((ye) and Q,(p'/?™) are not isomorphic.
(3) Show that the p-adic completions of Q,((pe) and Q,(p'/P™) have isomorphic tilts.
Hint. For the p-adic completion of of Q,((ye), establish an isomorphism
ZplGore] = TP ]/ (1 4wt )

where u!/P™ denotes the set of p-power roots of the variable w.
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6. In this exercise, we study sections of the map HIR : BSFR — Cg.
(1) Show that 61 admits a section s}y : Cx — Bii.

Hint. Take a maximal subfield C of Bj;. Show that Ck is algebraic over 65 (C)
and use Hensel’s lemma to find Cx = 61 (C).

(2) Show that every section of 65 is neither continuous nor I g-equivariant.

7. Let V and W be filtered vector spaces over a field L.

(1) Show that Homp (V, W) is a filtered L-vector space where each Fil"(Homp(V,W))
consists of the L-linear maps f : V — W sending each Fil” (V) into Fil™*"(W).

(2) If V and W are finite dimensional, establish a natural filtered isomorphism
HOHIL(V, W) ~yV ®r W.

8. Let L be an arbitrary field.

(1) Find an L-linear filtered map f : V' — W with the following properties:
(i) The induced map gr(f) : gr(V) — gr(W) is bijective.
(ii) f is not a filtered isomorphism.

(2) Find a bijective L-linear filtered map which is not a filtered isomorphism.

9. Consider a short exact sequence of p-adic I' g-representations
0 —U—DV —W—0.

(1) If U and W are Hodge-Tate with no common Hodge-Tate weights, prove that V' is
Hodge-Tate.

(2) If U and W are de Rham with the Hodge-Tate weights of U being greater than all
Hodge-Tate weights of W, prove that V is de Rham.

10. Let V and W be p-adic I'g-representations.

(1) When V and W are Hodge-Tate, show that Dy (V) and Dyr(W) are isomorphic if
and only if V and W have the same Hodge-Tate weights with the same multiplicities.

(2) When V and W are de Rham, show that Dgr(V') and Dgr(W) are isomorphic if and
only if V and W have the same Hodge-Tate weights with the same multiplicities.

11. Let V be a p-adic I'k-representation and L be a finite extension of K.
(1) Show that there exists a natural L-linear graded isomorphism
Dyt (V) ®k L = Dyt (V)
where we set Dur x (V) := (V ®q, BHT)FK and Dyt (V) := (V ®q, BHT)FL.
(2) Show that V' is Hodge-Tate if and only if it is Hodge-Tate as a p-adic I'-representation.

12. Prove that Ais, Acris, B

cris?

and Bj are not (Qp, I'k)-regular.
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13.

14.

15.

16.

17.

18.

19.

20.
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[P —1
[el/P] —1

(1) Show that b lies in Fil°(Beis) = Beris N Bjjg-

Hint. Observe that b= lies in A,y and show that b/p(b™1) lies in Beys.

Consider the element b := € Bgr.

(2) Show that b does not lie in B\

cris”

Establish a natural isomorphism K" =~ K ® Ko W (K)[1/p].

gl N
<pn o 1)! € Bcris

(1) Show that the sequence (b,) does not converge to 0 in B

Consider the element b,, := for each n > 1.

+
cris’

(2) Show that the sequence (b,) converges to 0 in Beyis.
Hint. Observe that the sequence (£by,) converges to 0 in Beyis.

Prove that every p-adic I'i-representation V' yields a natural K-filtered isomorphism
Deyis(V)(n) = Deyis(V(n))  for each n € Z.

Let f: D — D’ be a bijective K-filtered morphism of isocrystals.
(1) Prove the relations deg(D) = deg(D’) and deg®(D) < deg®(D’).
(2) Prove that f is a K-filtered isomorphism if and only if we have deg®(D) = deg®(D’).

Let WMF?, denote the category of weakly admissible filtered isocrystals over K.
(1) Show that WMF?%. is not closed under taking subquotients in MF%..
(2) Show that WMF?. is abelian.

Assume that K is a finite extension of Q.
(1) Show that there exists a nonsplit extension of Q,(1) by Q,.
Hint. Use the local Tate duality to obtain the identification H*(T'x,Q,(—1)) & K.

(2) Show that every nonsplit extension of Q,(1) by Q, is not crystalline.

Assume that K is a finite extension of Q).

(1) Given a,b € Z;, and an integer r > 0, prove that there exists an element A\ € W (k)
with %" () + a@™(\) + bA = 0.
Hint. Write the desired relation in the form ¢"(¢"(A) — «) = B(¢"(A) — ).

(2) Prove that a p-adic I'k-representation V' of dimension 2 is crystalline with a unique
Hodge-Tate weight 0 if and only if the Ix-action on V is trivial.
Hint. Adapt the arguments in Proposition [3:2:26) and Proposition [3.3.16] possibly
by applying Proposition [3.2.21] and Proposition



CHAPTER IV

The Fargues-Fontaine curve

1. Construction and geometric structures

In this section, we construct the algebraic Fargues-Fontaine curve and establish its funda-
mental properties. Our discussion involves extensions of many notions from Chapter [TI} The
primary references for this section are the survey article of Fargues-Fontaine [FF12] and the
lecture notes of Lurie [Lur].

Throughout this chapter, we let F' be an algebraically closed perfectoid field of character-
istic p with valuation vp. In addition, we denote by mp the maximal ideal of Op.

1.1. Untilts of a perfectoid field

In this subsection, we introduce and study untilts of the perfectoid field F'. These objects
serve as our main tools for defining and investigating the key objects in this section.

Definition 1.1.1. An untilt of I is a perfectoid field C' together with a topological isomor-
phism ¢ : F ~ C? called the tilting isomorphism of C.

Example 1.1.2. The trivial untilt of F is the field F' with the natural isomorphism F = F°
given by Proposition in Chapter [[TI]

Remark. For a p-adic field K, the perfectoid field C% turns out to be algebraically closed
as we will prove in Hence we may regard Cg as a distinguished untilt of F' = C%(.

PROPOSITION 1.1.3. Every untilt C of F admits a unique valuation v with ve(c) = vo(c)
for each c € F.

PROOF. Choose a valuation v on C. By Proposition in Chapter [[TI} there exists a
valuation ” on F with v°(¢) = v(c?) for every ¢ € F. Since v and 1’ are equivalent, we
have a group isomorphism d : R — R with §(2°(c)) = vr(c) for every nonzero ¢ € F. Now we
obtain a desired valuation v¢ by setting vo(z) = d(v(x)) for each nonzero x € C.

It remains to verify that such a valuation is unique. Let v/, be another valuation on C
with vg(c) = v (c*) for each ¢ € F. Take an arbitrary element = € C. By Proposition [2.1.11
in Chapter [[TT] we obtain an element ¢ € F' with

vo(x) = vr(c) = vo(d).
Now we write z = uc for some u € Of and find
ve (o) = vo () = vr(e) = ve(d) = vo(@).
We deduce that v and v/, coincide, thereby completing the proof. O
Definition 1.1.4. Given an untilt C' of F, we refer to the valuation vo on C given by

Proposition as the normalized valuation on C.

133
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PROPOSITION 1.1.5. Let C be an untilt of F' and f(z) be an irreducible monic polynomial of
degree d over C'. For every x € C, there exists an element y € C' with

ve(z —y) 2vo(f(z))/d and  va(f(y)) 2 vo(p) +ve(f(x)).

PROOF. We may replace f(z) with f(z + x) to assume that x is zero. The irreducibility
of f implies that f(0) is nonzero. We wish to find an element y € C' with

ve(y) 2 ve(f(0))/d  and  ve(f(y)) = ve(p) +vo(f(0)).

Since F' is algebraically closed, the multiplication by d is surjective on the value group of F.
Hence Proposition in Chapter [[T]] implies that the multiplication by d is also surjective
on the value group of C. In particular, there exists an element a € C with dvc(a) = v (f(0)).
Now we aim to find an element y € C with

vely/a) =0 and v (flaly/a))/a®) = vo(p)

Let us take the monic irreducible polynomial g(z) := f(az)/a® over C. It suffices to present
an element w € O¢ with g(w) € pOc¢.

We assert that g(z) is a polynomial over O¢. Choose a finite Galois extension C’ of C
which contains all roots of g(z). The valuation vc on C extends to a Gal(C’/C)-equivariant
valuation vor on C’. Moreover, the roots of g(z) have the same valuation for being in the same
Gal(C’/C)-orbit. Since we have v (g(0)) = 0, we see that each root of g(z) has valuation 0
and consequently deduce that all coefficients of g(z) lie in O¢ as desired.

For each b € O¢, let us denote its image in O¢/pOc by b. In addition, we write
g(z) =24+ b2 4 by with b € Oc,

Lemma, [2.1.9[in Chapter shows that each b; € O¢ yields an element ¢; € Op with b; = c?.
Since F' is algebraically closed, there exists an element o € O with

ad—l—c1ad_1+~-—|—cd:0.
Now we apply Proposition in Chapter [[II] to find

—d  ——d— —  —d —d— -
glat) = ot + b1t 1—1—---+bd:ozﬁ —Fctiozti 1+---+c§l:(ad+clad*1+~-+cd)ﬁ:0
and in turn complete the proof by taking w = a. O

PRrROPOSITION 1.1.6. Every untilt C' of F' is algebraically closed.

ProoF. If C' has characteristic p, the assertion is evident as C' is isomorphic to F' by
Proposition in Chapter [[TI} Let us henceforth assume that C has characteristic 0. Take
an arbitrary monic irreducible polynomial f(z) of degree d over C. We wish to show that
f(2) has a root in C. We may replace f(z) by p™?@f(z/p™) for some sufficiently large m € Z
to assume that f(z) is a polynomial over O¢. Since we have v (f(0)) > 0, we set z := 0 and
apply Proposition to inductively construct a sequence (x,) in C' with

ve(Tp—1 —xp) > (n—Dve(p)/d  and  vo(f(zn)) > nve(p) for each n > 1.

The sequence (z,,) is Cauchy by construction and thus converges to an element x € C. Now
we obtain the identity

flz)=f ( lim xn) = lim f(z,) =0,
n—oo n—oo
thereby completing the proof. O

Remark. Proposition [1.1.6]is a special case of the tilting equivalence for perfectoid fields.
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Definition 1.1.7. The infinitesimal period ring associated to F'is Aj,s = Aine(F) := W(Op).

LEMMA 1.1.8. The ring Aj,r is an integral domain.

PROOF. The assertion follows from Lemma in Chapter [} ]
Definition 1.1.9. Let £ be an element in Ajy.

X
inf*

(1) We say that £ is primitive if it has the form § = [w] —up with w € mp and u € A
(2) We say that & is strongly primitive if it is primitive and not divisible by p.

PROPOSITION 1.1.10. An element { € Ajys with a Teichmiiller expansion & = > [¢,]p" is
primitive if and only if we have vp(cp) > 0 and vp(cy) = 0.

PROOF. The assertion follows from Proposition in Chapter [T} O
ProOPOSITION 1.1.11. Given a strongly primitive element £ in Aj¢, the ring Ajs/€Ains is
p-torsion free and p-adically complete.

PROOF. Lemma implies that Aj,s/EAins is p-torsion free as £ has a nonzero image
in Ajns/pAing = Op. Hence we only need to prove that Aj¢/€Ajns is p-adically complete. We
write Ajng/E Ains for the p-adic completion of Ajn¢/€ Ainr and obtain a surjective homomorphism

Ainf - liLnAinf/(pnAinf + EAinf) = @(Ainf/gAinf)/((pnAinf + gAinf)/gAinf) = Ainf/gAinf

n n

o
as Ajnr is p-adically complete. The kernel of this map is m (p" Aint + €Aing), which clearly

n=1

o0
contains £A;ns. Therefore it suffices to show that every c € ﬂ (p" Aing + EAins) lies in £ Ayt
n=1

Take sequences (a,) and (b,) in Ajys with ¢ = p"a, + &by, for each n > 1. We have
p"(an — pant1) = §(bpy1 — by)  for each n > 1.
Since ¢ has a nonzero image in Ajn¢/pAins = Op, each b,11 — b, is divisible by p" in Ajys.
Now we see that the sequence (b,,) converges to an element b € Ajyr and in turn find
¢ = lim (p"a, + &by) = lim p"ay, + € lim b, = &b,
n—oo n—oo n—oo
thereby completing the proof. O

Definition 1.1.12. Given a primitive element & € Aj.f, we refer to the natural projection
Oc : Aing = Aing/EAint as the untilt map associated to &.

LEMMA 1.1.13. Let £ be a strongly primitive element in Ajus.

(1) For every nonzero ¢ € Of, some power of p is divisible by 0¢([c]) in Ains/EAine.
(2) For every m € mp, some power of 0¢([m]) is divisible by p in Ajns/€Ain.

PROOF. Let us write { = [w] — pu for some w € mp and u € A%,;. Every nonzero ¢ € Op

gives rise to an expression @’ = cc’ for some i > 0 and ¢ € Op, thereby yielding an equality

P = (Oe(u™)be(up))" = Oe(u™") O ([])" = O (u™") e ([c])'bc (I'])".
Similarly, every m € mp admits an expression m? = wb for some j > 0 and b € Op, thereby
yielding an equality
B ([m])? = Be([])0¢ (b)) = B (pu)0e [b]) = pe () Be([8).

Hence we establish the desired assertions. O
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ProPoOSITION 1.1.14. Let £ be a strongly primitive element in Aj,s. An element ¢ € Op
divides another element ¢ € Op if and only if 0¢([c]) divides 8¢([']) in Aing/EAint.

PROOF. If ¢ divides ¢ in Op, we see that 0¢([c]) divides O¢([c]) in Aing/EAins as the
Teichmiiller lifts are multiplicative. Let us now assume that ¢ does not divide ¢’ in Op. We
wish to show that ¢([c]) does not divide 0¢([¢]) in Aing/EAine. Suppose for contradiction that
there exists an element a € Aine/§Ains with O¢([¢']) = 6¢([c])a. Since we have vp(c) > vp(c),
there exists some m € mp with ¢ = mc’. Hence we find

Oc([c']) = Oe([c)a = Oe([cT)0e([m))a.

Meanwhile, Proposition |1.1.11] and Lemma [1.1.13| together imply that 6¢([¢]) is not a zero
divisor in Aint/§Ains. Now we obtain the equality 6¢([m])a = 1, which yields a desired

contradiction as the image of f¢([m]) under the natural map Aine/§Aing = Aing/(§Aing +PAint)
is nilpotent by Lemma [1.1.13 g

PROPOSITION 1.1.15. Let & be a strongly primitive element in Aj¢. Every a € Ajg/EAins is
a unit multiple of ¢([c]) for some ¢ € Op which is unique up to unit multiple.

PROOF. If a is a unit multiple of 0¢([c1]) and ¢ ([c2]) for some ci,ca € OF, we see that
0¢([c1]) and O¢([c2]) are unit multiples of each other, which means by Proposition that
c1 and co are unit multiples of each other. Hence it remains to prove that a is a unit multiple
of 0¢([c]) for some ¢ € Op. Since the assertion is evident for a = 0, we henceforth assume that
a is nonzero. By Proposition[1.1.11] we may write a = p"a’ for some n > 0 and a’ € Ajng /€ Ajng
such that a’ is not divisible by p. Let us take w € mp and u € A with { = [@w] — up. We
find that a admits the identity

a=pd = (Gg(u_l)HE(up))n a = 9§(u)_10§([w])"a/.
Hence we may replace a by a’ to assume that a is not divisible by p.
We observe that there exists a natural isomorphism
Aint/(§Aint + pAint) = Aint/([@] Aint + pAing) = Or/wOF

and in turn obtain a commutative diagram

[4
Ainf : » Ainf/gAinf

l l (1.1)

OF = Ajng/pAint — Aint/(§Aint + pAint) = Op/wOFp

where all arrows are evidently surjective. Choose an element ¢ € Op whose image under
the bottom horizontal arrow coincides with the image of @ under the second vertical arrow.
We see that c is not divisible by w as a is not divisible by p. Hence we write w = c¢m for
some m € mg and find

P = Oe(u™")b¢ (up) = O (u) ™ 0¢([w]) = b¢(u) e ([e]) e ([m).
Moreover, the diagram yields an element b € Ajnr /& Aing with
a = 0¢([¢c]) + pb = O¢([c]) + bOe (u) " 0c([c])0e([m]) = bc([¢]) (1 + bOe(u) " 0c([m])) -
Now we complete the proof by noting that 1+ bf¢(u) " 10¢([m]) is a unit in Ajne/€Ains with

_ -1 > i _ %
(1 + b0 (w) " 0e(fm])) ™ =D (=1)" (bbe(u) " be([m]))
=0
where the convergence of the sum follows from Proposition [1.1.11] and Lemma [1.1.13 U
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PROPOSITION 1.1.16. Let £ be a primitive element in A;,ys.
(1) The ring Ajnt/EAins is an integral domain, whose fraction field C¢ is naturally an
untilt of F with Océ = Aine/EAins.
(2) Each element ¢ € O maps to 6¢([c]) under the sharp map associated to Ck.

PROOF. Let us write { = [w] — up with @ € mp and v € A,. In addition, we let O
denote the ring Ajnr /€ Ains. If w is zero, we have O = Aju¢/pAins = O and thus establish the
desired assertions by Example [1.1.20l We henceforth assume that w is nonzero.

For every nonzero ¢ € Op, Proposition and Lemma and together show that
0¢([c]) is not a zero divisor. Hence Proposition [I.1.15 implies that O is an integral domain.
In addition, Proposition [1.1.15 yields a function v : O — [0, o] with

vi(wle([c])) = vr(c) for every c € Op and w € O%.
It is evident that v is a monoid homomorphism with respect to the multiplication on O and
the addition on [0,00]. The image of vt is nondiscrete as the valuation vp is nondiscrete.
Moreover, for arbitrary nonzero a,b € O with v*(a) > v (b), we see by Proposition [1.1.14
that a is divisible b in O and in turn find
vi(a+b)=vt((a/b+1)b) =vT(a/b+1)+vT(b) > v (b) = min(v"(a), v (b)).
Therefore v+ naturally extends to a nondiscrete valuation v on the fraction field C¢ of O.
Proposition |1.1.14] implies that the valuation ring of C¢ is O; indeed, for every = a/b € C¢
with a,b € O, its valuation v(a) — v(b) is nonnegative if and only if a is divisible by b in O.
In addition, since we have
v(p) = v (Bg(u")be(up)) = v (0 (u) ™ b([w))) = vr(w) >0,
we see that C¢ has residue characteristic p and also find by Proposition [I.I.11] that C; is
complete with respect to the valuation v. Meanwhile, the surjectivity of the p-th power map
on Op/wOF yields the surjectivity of the p-th power map on Oc, /10(’)05 via the natural
isomorphism
Or/wOF = Aint/([@] Aint + PAint) = Aint/(§Aint + pAint) = Oc, /pC. (1.2)

Therefore C¢ is a perfectoid field with O¢, = Aint /€ Ajng.

By Proposition in Chapter the isomorphism ([1.2]) gives rise to a topological

isomorphism
(9Fg lin (’)Fg lgn (’)F/w(’)pg h&n OCE/pOCg = lln ch ’é(’)cg
TP TP TP TP
which uniquely extends to a topological isomorphism ¢ : F' ~ C’g. It is not hard to see that
each ¢ € Op maps to (0¢([c'/?"]) € OCE under ¢ and in turn maps to 6¢([c]) under the sharp
map associated to C¢. Therefore we have established the desired assertions. O

Remark. It is evident by our proof that the valuation v on C¢ coincides with the normalized
valuation on Ck.

Definition 1.1.17. For every primitive element { € Aj,, we refer to the untilt C¢ of F
constructed in Proposition [1.1.16| as the untilt of F' associated to €.

PROPOSITION 1.1.18. For a primitive element £ € Aj,¢, the untilt C¢ of F' has characteristic 0
if and only if £ is strongly primitive.

PROOF. The assertion is straightforward to verify by Proposition [1.1.11 O
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Definition 1.1.19. Two untilts C; and Cy of F' are equivalent if there exists a topological
isomorphism f : Cq ~ Cy with a commutative diagram

where f” is the isomorphism induced by f.

Example 1.1.20. Proposition in Chapter [[T]] implies that every untilt of F' in charac-
teristic p is equivalent to the trivial untilt of F.

PROPOSITION 1.1.21. Given a perfectoid field C, every topological isomorphism ¢ : F ~ C?
naturally induces an isomorphism 7 : Op /wOp ~ O¢/pO¢ for some w € OF.

PROOF. Let us regard C as an untilt of F via the topological isomorphism ¢ : F ~ C”
and write v for the normalized valuation on C. We apply Proposition in Chapter [[I]]
to find an element w € O with vp(w) = v(p). In addition, we note that ¢ restricts to an
isomorphism Or ~ O and in turn induces a map

O CHC 6%74—4% Oc/pOC

This map is a surjective ring homomorphism by Proposition [2.1.10] in Chapter [[TI} Its kernel
consists of the elements ¢ € O with v(c*) > v(p) or equivalently vg(c) > vg(w). Therefore
we obtain an isomorphism 7 : O /wOp ~ O¢/pO¢ induced by ¢ as desired. O

Remark. It is evident from our proof that the ring Op/wOp and the isomorphism 7 do not
depend on the choice of the element w € mp with vp(w) = v(p). Moreover, we can show
that Op/wOF depends only on the perfectoid field C.

Definition 1.1.22. Given a perfectoid field C' and a topological isomorphism ¢ : F' ~ C?, we
refer to the map 7 in Proposition [1.1.21] as the sharp map reduction of ¢.

Example 1.1.23. Let £ be a primitive element in A;j,¢. If we write w for the image of &
in Aine/pAint = Op, we apply Proposition [1.1.16| to identify ¢, with the natural isomorphism

Or/@wOF = Aint/([@]Aint + PAint) = Aint/(§Aint + pAing) = Oc, /pC.

Hence for each ¢ € O, the isomorphism 7¢, maps the image of ¢ in Or/@wOF to the image
of O¢([c]) in O¢, /pCs.

PROPOSITION 1.1.24. Given a perfectoid field C, two topological isomorphisms ¢; : F' ~ C?
and 9 : F ~ C” coincide if and only if their sharp map reductions coincide.

PRroor. If 11 and 9 coincide, their sharp map reductions evidently coincide. Let us now
assume for the converse that 77 and 7o are equal. Choose an element w € Op such that
Or/wOF is the source for 71 = 73. By Proposition in Chapter the map 77 = 7
induces a topological isomorphism

Op = hm Orp = lim Or/wOF = lim Oc/pOc = lim Oc = Ocs

z»—m?’ azb—mp xb—m:P z»—m?’
and in turn yields a topological isomorphism ¢ : F' ~ C”. Hence we see that ¢ coincides with
both ¢; and o by construction, thereby completing the proof. [

Remark. Proposition |1.1.24{shows that we can recover a topological isomorphism ¢ : F' ~ C?
from its sharp map reduction z, even though 7 is purely algebraic.
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PropPoOSITION 1.1.25. Let C be an untilt of F.

(1) There exists a surjective ring homomorphism ¢ : Ay — Oc¢ with

Oc (Z[cn]p”> = Zcﬁpn for every ¢, € Op. (1.3)

(2) The ideal ker(6¢) of Ajns contains a primitive element.
(3) Every primitive element in ker(6¢) generates ker(6¢).

PROOF. Given a p-adic field K, all results from the first part of in Chapter [[I]] rely
only on the fact that Cg is an algebraically closed perfectoid field. Since C' is algebraically
closed as noted in Proposition these results remain valid with C in place of Cg. In
particular, we obtain a surjective ring homomorphism 8¢ : Ajns — O¢ with the equality
by Proposition in Chapter [[II|and find a primitive element {¢ € Ay generating ker(6¢)

by Proposition [2.2.12] in Chapter [[II}

It remains to prove that every primitive element £ € ker(fc) generates ker(6c). Let us
choose a valuation v on Oc¢, and write {¢ for the image of ¢ in Ajyf JEAins = Oc,. The
surjective ring homomorphism 6¢ gives rise to an isomorphism

Oc, [€cOc, = Aint/EcAint = At/ ker(fc) ~ Oc.

If &o is nonzero, we see that every a € O¢, with 0 < v(a) < v({¢) yields a nilpotent element

in Oc, /@OC& ~ O¢, which is impossible. Therefore we find {¢ = 0 and in turn deduce that
& generates ker(6¢c) = o Ains as asserted in statement O

Remark. It is not hard to show that every generator of ker(6¢) is a primitive element.

Definition 1.1.26. Given an untilt C' of F', we refer to the map 0¢ in Proposition[1.1.25|as the
Fontaine map of C and let 0c[1/p] : Aine[1/p] — C denote the induced ring homomorphism.

THEOREM 1.1.27 (Kedlaya-Liu [KL15], Fontaine [Fon13]). There is a natural bijection
{ equivalence classes of untilts of F'} — { ideals of Aj,¢ generated by a primitive element }

which maps each untilt C' of F' to ker(6¢).

PrOOF. Take an arbitrary primitive element £ € A;,¢. By Proposition[1.1.16] each ¢ € Op
maps to O¢([c]) under the sharp map associated to C¢. We see that f¢ coincides with 0¢, and
consequently find A, = ker(0¢) = ker(@cg).

It remains to prove that every untilt C' of F' with ker(6¢c) = €A is equivalent to Cg.
Propositionshows that 0¢ yields a topological isomorphism f : Oce = Aing /EAins ~ O¢
with f (Oc([c])) = ¢t for each ¢ € Op. Moreover, the map f uniquely extends to a topological
isomorphism f : C¢ ~ C and gives rise to an isomorphism f : Oc, /p(’)cg ~ Oc/pO¢. Let us
take the topological isomorphism f” : C’g ~ C” induced by f and denote by w the image of &
in Ajng/pAint = Op. For each ¢ € Op, we apply Example to see that f o tc, maps the
image of ¢ in O /wOF to the image of f(f¢([c])) = cf. Hence we find

ic=7[foig, = [ ouc,

and in turn obtain the equality o = f? o tce by Proposition |1.1.24 thereby establishing the

desired assertion. O
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1.2. The algebraic Fargues-Fontaine curve

The main objective for this subsection is to construct the Fargues-Fontaine curve as a
scheme. For the rest of this chapter, we fix a nonzero element @w € mp and denote by ¥ = Yp
the set of equivalence classes of untilts of F' in characteristic 0.

Definition 1.2.1. Let C be an untilt of F' and z be an element of C.

(1) We define the normalized absolute value of x to be |z|, := p~c@).

(2) For C = F, we often refer to |z| := |z|, simply as the absolute value of x.

Remark. For the rest of this chapter, we will often use absolute values instead of valuations
for notational convenience, especially in arguments which involve analytic methods.

Example 1.2.2. Given an untilt C of F', Theorem [[.1.27] yields a primitive element & € Aju¢

which generates ker(0¢). If we write { = [m] — up for some m € mp and u € A, we have

ple = [0 () 6c((m)| ¢ = 6c(m) e = [m| | = |m].
PROPOSITION 1.2.3. The ring Ajn¢[1/p, 1/[w]] admits an identification
Au[1/p, /1) = { D lenlp" € W(E)[1/p) ¢ ea| bounded | .

PROOF. Given an element f = ) [c,|p" € W(F)[1/p], we have f € Ai[l/p,1/[w]] if
and only if there exists an integer i > 0 with [@'|f = > [e,@’]p" € Aine[1/p] or equivalently
|cn| < |@™| for each n € Z. O

Remark. Proposition shows that the ring A;u¢[1/p, 1/[w]] does not depend on our choice
of the nonzero element w € mp.

LEMMA 1.2.4. Given two equivalent untilts C and C” of F', we have [p|~ = [p|c.

PROOF. Since ker(f¢) and ker(6¢) coincide by Theorem [1.1.27, the desired assertion
follows from Example O

Definition 1.2.5. Let y be an element of Y and C be a representative of y.
(1) The absolute value of y is |y| := |p|c.

(2) The extended Fontaine map of C is the ring homomorphism fc : Aine[1/p, 1/[w]] — C
which extends the Fontaine map 0¢ : A — O¢.

(3) Given an element f € Ajy[l/p,1/[w]], its C-value at y is f(y)c = é\(;(f), often
denoted by f(y) if the context clearly specifies C.

Remark. In order to understand the structures of the Fargues-Fontaine curve, it is often
useful to regard Y as an analogue of the punctured unit disk D* :={2€ C:0< |z <1} in
the complex plane. Here we present a couple of similarities between Y and D*.

(1) For each y € Y represented by an untilt C' of F, its absolute value |y| = [p| is a real
number between 0 and 1. Similarly, for every z € D* its absolute value |z| is a real
number between 0 and 1.

(2) Every element in Aj¢[1/p, 1/[w]] is a “Laurent series in the variable p” with bounded
coefficients and gives rise to a function on Y as described in Definition Sim-
ilarly, every Laurent series > a,z" over C with bounded coefficients defines a holo-
morphic function on D*.
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LEMMA 1.2.6. Let p be a real number with 0 < p < 1 and f be an element in Aj,¢[1/p, 1/[w]]
with a Teichmiiller expansion f = [c,]p".

(1) The sequence (|c,| p™) is bounded.

(2) There exist finitely many integers m with sup(|c,| p"™) = |em| p™
nez

PROOF. Let us take an integer ng with ¢,, # 0. Proposition yields an integer I > 0
with [c,| p" < |eng| p™0 for each n > [. Moreover, there exists an integer m < 0 with ¢, = 0 for

each n < m. Hence the sequence (|c,| p™) is bounded with sup(|c,|p") = sup (Jen|p"). O
nez m<n<l

Definition 1.2.7. Let p be areal number with 0 < p < 1 and f be an element in Ajn¢[1/p, 1/[w]]
with a Teichmiiller expansion f = > [c,]p".

(1) We define the Gauss p-norm of f to be |f|, := sup(|en|p").
nez
(2) We say that p is generic for f if there exists a unique integer n with [f|, = [ca|p".
LEMMA 1.2.8. Given an element f € Aj[1/p, 1/[w]], the set
Sy :={pe(0,1):pis generic for f }
is dense in the interval (0, 1).

PROOF. Let us write f = Y [e,]p" with ¢, € F. If p € (0,1) is not generic for f, we
find [f|, = |em|p™ = |cp| p" for some distinct m,n € Z by Lemma and in turn obtain

the equality p = (|cm| / ea])?/ "™, Hence we deduce that the complement of Sy in (0,1) is
countable, thereby establishing the desired assertion. O

LEMMA 1.2.9. Let y be an element of Y and C be a representative of y. Given an
element f € Ain¢[1/p, 1/[w]], we have [f(y)|c < [f|,; with equality if |y| is generic for f.

PROOF. We write f = > [c,]p" with ¢, € F and find

J— ti 7 ﬂ n o ny __
Pl = |32 chw"| , < sup (|eh] Iple) = sup (leallo1") = 11
It is evident that the inequality becomes an equality if |y| is generic for f. O

PRrOPOSITION 1.2.10. For every p € (0,1), the Gauss p-norm on Ajy¢[1/p,1/[w]] is a multi-
plicative nonarchimedean norm.

PROOF. Let f and g be arbitrary elements in Ajn[1/p, 1/[w]]. We note that the value
group |F| of F' is dense in [0, 00) and in turn apply Lemma to see that the set

S:={7€(0,1)N|F|: T is generic for f,g, f+ g, and fg}
is dense in (0,1). Let us write p = lim 7, with 7,, € S and choose a sequence (my,) in mp
n—oo

with |my,| = 7,,. Since each &, := [m,| — p € Ay is strongly primitive, Theorem and
Example [1.2.2| together yield a sequence (y,) in Y with [y, | = 7,. For each n > 0, we take a
representative C,, of y,, and use Lemma to find

|f + g‘q—n = ’f(yn) + g(yn)‘cn < max(‘f(yn)‘cn ) |g(yn)|cn) = maX(Lﬂq—n ’ |g|7—n)7
lfgl,, = 1f(n)g(yn)le, = 1fn)le, l9yn)lc, = |11, 19, -
Hence we take limits to obtain the relations
|f+gl, <max(|f],,lq],) and [fgl,=1fl,lql,-
thereby completing the proof. O
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Definition 1.2.11. Let [a, ] be a closed subinterval of (0, 1).
(1) The [a,b]-annulus of untilts is
Vg ={yeY:a<ly<b}.

(2) The ring of holomorphic functions on Y4, denoted by By, is the completion
of Aine[1/p, 1/[w]] with respect to the Gauss a-norm and the Gauss b-norm.

LEMMA 1.2.12. Given a closed subinterval [a,b] of (0,1), every f € Aine[l/p,1/[w]] satisfies
the inequality | f|, < sup(|f|,,|f],) for each p € [a, b].
PROOF. If we write f = ) [c,]p™ with ¢, € F, we find
len| P < len| 0" < |f],  for each n >0,
len| " < len|a™ < |f],  for each n < 0.
Hence we obtain the desired assertion. O

Remark. Since the value group |F| of F' is dense in (0, 00), we find

s (7)) = 7], for cach p € [FI0 (0.1
yl=p

by Lemma and Lemma, Hence we may regard Lemma [1.2.12] as an analogue of the
maximum modulus principle for holomorphic functions on D*.

PROPOSITION 1.2.13. Let [a, b] be a closed subinterval of (0,1).
(1) The ring B,y is the completion of Aju¢[1/p, 1/[w]] with respect to all Gauss p-norms
with p € [a, b].
(2) For every closed interval [a/,V/] with [a,b] C [a’,b'] C (0,1), there exists a natural
ring homomorphism By, y) — Bg p)-

PROOF. Statement is evident by Lemma [1.2.12] Statement is an immediate con-
sequence of statement [l
Definition 1.2.14. We define the ring of holomorphic functions on' Y = Yp to be

B = BF = liLnB[a,b}
where the transition maps are the natural homomorphisms given by Proposition [1.2.13

Remark. A sum ) [¢,]p"™ with ¢, € F converges in B if and only if it satisfies the relations

limsup e,V <1  and  lim |c_,|Y™ = 0.
n>0 n—00

Similarly, a Laurent series Y _ a,,2™ over C converges on D* if and only if it satisfies the relations

limsup|an|/" <1 and lim \a_n|1/" =0.
n>0 n—00

However, an arbitrary element in B does not necessarily admit a “Laurent series expansion”,
whereas every holomorphic function on D* admits a unique Laurent series expansion.

LEMMA 1.2.15. Let n: Ry — Rs be a continuous homomorphism of normed rings.

(1) The map n uniquely extends to a continuous ring homomorphism 7 : ]/%\1 — ]/%\2 where
Ry and Rs respectively denote the completions of R; and Rs.
(2) If n is a homeomorphism, 7 is also a homeomorphism.

PRrROOF. The assertions are straightforward to verify. O
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PROPOSITION 1.2.16. Let C' be an untilt of F' in characteristic 0. The map 6c uniquely
extends to a surjective continuous open ring homomorphism 6 : B — C.

PRrROOF. Lemma and Lemma show that ¢ uniquely extends to a continuous
ring homomorphism 55 : By, ) — C with p := |p|s. Take 5(\; to be the composition of 55 with
the natural map B — By, ;. It is evident that ¢ is surjective and continuous. Moreover, the
open mapping theorem implies that 8¢ is open. Hence we establish the desired assertion. [

Definition 1.2.17. Let y be an element in Y and C be a representative of y.

(1) The completed Fontaine map of C'is the ring homomorphism 55 : B — C constructed

in Proposition [I.2.16]
(2) For every f € B, its C-value at y is f(y)c = ég(f), often denoted by f(y) if the
context clearly specifies C.

ProproSITION 1.2.18. The Frobenius automorphism of Aj,s uniquely extends to topological
isomorphisms ¢ : B >~ B and @, 4 : Blqp) = Bjap pr) for every closed interval [a,b] C (0, 1).

PROOF. The Frobenius automorphism on A;,y = W(OpF) extends to the Frobenius auto-
morphism on W (F'). Since we have

OW(F) (Z[cn]pn> = Z[cﬁ]pn for each ¢, € F, (1.4)

Proposition implies that ¢y () restricts to an automorphism on Aju¢[1/p, 1/[w]], which
we denote by @iye. By the identity (1.4)), we find

]cpinf(f)]pp = \f]’; for every f € Aiye[l/p,1/[w]] and p € (0,1). (1.5)

Consider an arbitrary closed interval [a,b] C (0,1) and choose a real number r € [a,b].

Lemma [1.2.15| and the identity (1.5 show that the automorphism @iy on Aine[1/p, 1/[w]]
uniquely extends to a topological isomorphism ¢y, : By} =~ B ,». Moreover, by the

identity a sequence (fy) in Aine[1/p, 1/[w]] is Cauchy with respect to the Gauss a-norm
and the Gauss b-norm if and only if the sequence (@int(fn)) in Ain[1/p, 1/[w]] is Cauchy with
respect to the Gauss a-norm and the Gauss bP-norm. Hence we deduce that ¢, ,) restricts
to a topological isomorphism @, g @ Blgp) =~ Blar pr) With an inverse given by the restriction
of (‘0[:‘,11'] on Bi,s pp). It is evident by construction that ¢y, is an extension of pins.

By our discussion in the preceding paragraph, the automorphism @i,s on Ajne[1/p, 1/[w]]
extends to a topological isomorphism

¢ : B =lim B,y ~ lim By 1) = B.

In fact, by continuity ¢ is a unique topological isomorphism on B which extends ¢j,s. Hence
we establish the desired assertion. 0

Definition 1.2.19. We refer to the map ¢ constructed in Proposition [1.2.18| as the Frobenius
automorphism of B and define the algebraic Fargues-Fontaine curve to be the scheme
X = Xp:=Proj(P) with P:={pHB*""
n>0

Remark. In Chapter [V], we will present another incarnation of the Fargues-Fontaine curve
using the theory of adic spaces developed by Huber [Hub93, Hub94].

ProprosITION 1.2.20. The Fargues-Fontaine curve X is a Q,-scheme.

PRroOOF. The assertion is evident as Q, naturally embeds into B¥=1, O
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1.3. Legendre-Newton polygons

In this subsection, we study the structures of the ring B via invariant polygons which
encode the Gauss norms. For a continuous real-valued function A defined on an interval in R,
we denote its left derivative and right derivative respectively by 0_h and 04 h.

Definition 1.3.1. Let log, denote the real logarithm for base p.

(1) Given an element f € B, we define the Legendre-Newton polygon of f to be the
function L¢ : (0,00) — RU { oo } with

Ly(s) := —log, <|f]p,s> for each s € (0, 00).

(2) Given an element f € B,y for some [a,b] C (0,1), we define the Legendre-Newton
polygon of f to be the function ng’b] : [~ log,(b), —log,(a)] — RU{ oo } with

££?’b](s) = —log, (]f|p,s) for each s € [—log,(b), —log,(a)].

Remark. Let us provide some motivation for studying the Legendre-Newton polygons. For
a polynomial g(z) = > a,z" over a field L with valuation vz, a useful invariant is the Newton
polygon N given by the lower convex hull of the points (n, vy (an)) € R x (RU{ oo }); indeed,
N} contains much information about the roots of g. For an element f € Ajn¢[1/p,1/[w]] with
a Teichmiiller expansion f =) [¢,]p", we can similarly define the Newton polygon to be the
largest decreasing convex function Ny : R — RU { oo } with Ny(n) < vp(c,) for each n € Z.
It turns out that £y coincides with the (concave) Legendre transform of Ny; in other words,
L admits the identity

Ls(s) = ing&(Nf(r) +rs) for each s € (0,00).

Hence the Legendre-Newton polygons serve as analogues of the Newton polygons for elements
in B which do not necessarily admit Teichmiiller expansions. In fact, as we will see in this
section, the Legendre-Newton polygons turn out to be very useful for studying the elements
in B via their zeros and their behavior under the Gauss norms.

LEMMA 1.3.2. For an element f € Ajy¢[1/p,1/[w]] with a Teichmiiller expansion f = > [c,]p",
its Legendre-Newton polygon Ly satisfies the equality

Ls(s) = in%(yp(cn) +ns) for every s € (0,00).
ne

PRrROOF. The assertion is evident by definition. U

Example 1.3.3. For a primitive element { € A;,r with a Teichmiiller expansion £ = ) [, ]p",
Proposition and Lemma [I.3.2] together yield the identity

Le(s) = min(vp(cp),s) for each s € (0,00).
Remark. In fact, an element f € Ajy¢ is primitive if and only if there exists r € (0, co] with
L¢(s) =min(r,s) for each s € (0, 00).
LEMMA 1.3.4. Given elements f,g € B, we have
Lg(s) =Lys(s)+ Ly(s) and Lpig(s) > min(Ls(s),Ly(s)) for each s € (0,00).
PrOOF. The assertion is straightforward to verify by Proposition [1.2.10 U

Remark. Given a closed interval [a, b] C (0,1), we can prove a similar statement for elements
of B, with the Legendre-Newton [a, b]-polygons.
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PROPOSITION 1.3.5. Let f be a nonzero element in Ajn¢[1/p,1/[w]] with a Teichmiiller ex-
pansion f = ) [e,]p™.
(1) The function Ly is concave and piecewise linear with integer slopes.
(2) For each s € (0,00), the one-sided derivatives O_Lf(s) and 0, Lf(s) of Ly are re-
spectively equal to the maximum and minimum elements of the set
Ts:={neZ:Lss)=vr(cn) +ns}.

PROOF. Let us fix a real number s > 0. Lemma [1.2.6] and Lemma together imply
that T is a nonempty finite set. Let [ and r respectively denote the minimum and maximum
elements of T. For each n € Z, we obtain the relation

vie(c) +1s =vp(e,) +rs <vp(e,) +ns (1.6)

with equality precisely when n belongs to Ts. It suffices to show that for every sufficiently
small € > 0 we have the equalities

Li(s+e€)=Ls(s)+1le and Lys(s—e)=Ls(s)—re.

Take an integer m < 0 with ¢, = 0 for each n < m and set

5 inf((Up(cn)+n5)—(I/F(Cl)—i—ls)): . ((VF(cn)+ns)—(VF(cl)+ls)>‘

n<l l—n m<n<l l—n

We see that 07 is positive as the inequality in the relation ([1.6)) is strict for each n < [.
Consider an arbitrary real number € with 0 < ¢ < §;. For each n <[, we find
e(l—=n) <d(l—n) < (vr(en) +mns)— (ve(a) +1s)
and in turn obtain the inequality
vi(e) +1U(s+e€) <vp(ep)+n(s+e). (1.7)
For each n > [, we use the relation (1.6 to also deduce the inequality ((1.7)). Therefore the
Legendre-Newton polygon Ly satisfies the identity

Li(s+e€) = %Ié;(VF(Cn> +n(s+e) =vr(a)+1(s+e) =Ls(s)+le

Let us now apply Proposition to choose A € R with vp(c,) > A for each n € Z. In
addition, we set

) — A
U= % +r and dp:= inf <
8/2 r<n<u

(vr(cn) +ns) — (vr(er) +1s)
n—r ’
We see that dy is positive as the inequality in the relation ([1.6)) is strict for each n > r.
Consider an arbitrary real number € with 0 < € < min(s/2,d2). For each n > u we have

vp(ey) —vp(en) <vpe(e) —A=(u—r7r)s/2< (n—71)(s—€)
and thus establish the inequality
vi(er) +r(s—e) <vp(ep) +n(s—e). (1.8)
For each n € Z with r < n < u, we find
e(n—r) <dan—r) < (vp(cn) +ns) — (vp(c,) +rs)

and in turn obtain the inequality (|1.8)). For each n < r, we use the relation (1.6) to also
deduce the inequality (1.8). Therefore the Legendre-Newton polygon L satisfies the identity

Li(s—€)= iIelg(I/F(Cn) +n(s—¢€) =vp(c,)+r(s—e€) = Ls(s) —re.

The desired assertion is now evident. O
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PROPOSITION 1.3.6. Let f be a nonzero element of B,y for some [a,b] C (0,1).

(1) For a sequence (fy,) in Ain¢[1/p,1/[w]] which converges to f under the Gauss a-norm
and the Gauss b-norm, there exists an integer m > 0 with

Egﬁi’b] = ng’b} for each n > m.

(2) The function L'Eca’b] is concave and piecewise linear with integer slopes.

PRrOOF. We write | := —log,(b) and r := —log,(a). For a sequence (f,) in Aint[1/p, 1/[w]]
which converges to f under the Gauss a-norm and the Gauss b-norm, Lemma [1.2.12] yields
the equality

ggf“b](s) = lim Ly, (s) foreach s € [l,r]. (1.9)

In addition, either Cgf’b](l) or Lgfb’b} (r) is finite as f is nonzero. Let us only consider the case

where ng’b] (1) is finite, as the same argument works for the case where E?’b] (r) is finite. Take

an integer u > 0 with
L, —f. (1) > ﬁgf’b](l) +1> Ly (1) for each n > u.

For every integer n > u, we apply Proposition to choose a real number 4,, > 0 with

Ls 5. (l4€) > ngb’b}(l) +1> Ly (I+¢€) for each € € (—0p,0p)
and in turn use Lemma [[.3.4] to find

Ly (I+€) =Ls(l+€) foreach e € (—0y,0,).

Hence we obtain the equalities

Ly, (1)=Ls, (1) and 04Ly, (1) =04Ly, (1) for every n > u.
Let us now set

w = max(Ly, (1), L7, (1) + 04 Ly, (1)(r — D).
Proposition implies that each L, with n > u satisfies the inequality
L, (s) <w forevery s e[l,r].
Moreover, if we take an integer m > u with
L. (1)>w and Ly, 5. (r)>w for each n >m,
we see by Lemma [[.2.12)that each Ly, with n > m satisfies the inequality
Lf,—f.(s)>w forevery s e [l,r]
and in turn deduce from Lemma that each Ly, with n > u admits the identity
Ly, (s) =Ly, (s) foreverysell,r].

Hence we establish statement by the equality (1.9)). Statement immediately follows
from statement and Proposition O

PRroPOSITION 1.3.7. For every nonzero f € B, the function L is concave and piecewise linear
with integer slopes.

PRroor. It suffices to show that L is concave and piecewise linear with integer slopes on

every closed interval [a,b] C (0,1). If we write fq; for the image of f under the natural ho-

momorphism B — By, ), we identify Egﬁl’i] with the restriction of L; on [—log,(b), —log,(a)].

Therefore we deduce the desired assertion from Proposition [1.3.6 U
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PROPOSITION 1.3.8. The natural map Or — B sending each ¢ € Op to [c¢| € B is continuous.

PROOF. Let us choose an untilt C' of F in characteristic 0. The natural map O — B

composed with 55 coincides with the sharp map associated to C' on Op, which is continuous
by Proposition in Chapter [, Hence we deduce the desired assertion from the fact that
f¢ is continuous and open by construction. O

oo
Remark. We can extend Proposition [1.3.8to get a continuous map H Op — B which sends

n=0

o0 o0
each (¢p) € H Or to Z[cn]p” € B.
n=0 n=0

PROPOSITION 1.3.9. Given an element f € B and an integer n > 0 with |f[, < p" for
every p € (0,1), there exists an element ¢ € Op with [f — [c]p"[, < p"*1 for every p € (0,1).

PROOF. We may replace f by f/p" to assume the equality n = 0. Since the asser-

tion is evident for f = 0, we may also assume that f is nonzero. Choose a sequence (ﬁ;)
in Aine[1/p, 1/[w]] which converges to f under all Gauss norms. For each m > 1, we write

Fon = fim + Z[sz]pl with ¢, ; € F and fp, € Aing[1/[w]].
i<0
We see that the sequence (f,,) converges to f under all Gauss norms; indeed, if we consider

arbitrary real numbers p,e € (0,1), for each m > 0 we obtain the equality ’};) = |fle,
ep
by Proposition and in turn find

’fm - fm) = sup (|emyi| p) < sup (€77) sup (|em,i| €p") < e fm’ =elfl,<e
p 1<0 1<0 1<0 €p

For each m > 1, let us denote by ¢,, the image of f,,, under the natural map W (F) — F.

Each fp,4+1 — fim has the first term in the Teichmiiller expansion given by [¢4+1 — ¢ and

thus satisfies the inequality
lemt1 = em| < [fmt1 — fml,  for every p € (0,1).

We see that the sequence (¢,,) converges to an element ¢ € F for being Cauchy. Moreover,
since each f,, has the first term in the Teichmiiller expansion given by [¢,,], for every p € (0,1)

we apply Proposition to find
lem| < | fml, = If], <1 for every m > 0.

Hence we deduce that c lies in Op.

Let us now set gm, := fm — [cm] € Aing[l/[w]] for each m > 1 and take g := f — [c] € B.
We wish to establish the inequality |g|, < p for every p € (0,1). If g is zero, the inequality
evidently holds. We henceforth assume that g is nonzero. Proposition implies that the
sequence (g,,) converges to g under all Gauss norms. Hence we may remove finitely many
terms from the sequence (g,,) to assume that each g, is nonzero. Since the Teichmiiller
expansion of each g,, only involves positive powers of p, each L, is piecewise linear with
positive integer slopes by Proposition [I.3.5] Now Proposition [I.3.5 and Proposition [1.3.7]
together show that L, is piecewise linear with positive integer slopes. Meanwhile, we apply
Lemma [1.3.4] to find

L4(s) > min (Cf(s),ﬁ[c](s)) = min (— log,, <|f|p75) , —log, (]c|)> >0 for each s € (0,00).
Hence we have L,(s) > s for every s € (0, 00), or equivalently |g|, < p for every p € (0,1). O
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ProprosITION 1.3.10. Let f be a nonzero element in B.

(1) The element f lies in Ay if and only if we have |f|, <1 for every p € (0, 1).

(2) The element f lies in Ajn¢[1/p] if and only if there exists an integer n with |f[, < p"
for every p € (0,1).

(3) The element f lies in Aju¢[1/[w]] if and only if there exists a real number A > 0 with
| fl, < A for every p € (0,1).

(4) The element f lies in Ain¢[1/p, 1/[w]] if and only if there exist a real number A > 0
and an integer n with [f|, < Ap™ for every p € (0,1).

PROOF. If f lies in Ajuf, it evidently satisfies the inequality |f| , < 1forevery p € (0,1).
Conversely, if we have |f| , < 1forevery p € (0,1), we apply Proposition m to inductively
construct a sequence (¢;) in Op with

n—1
= lelp’
=0 o

and in turn find f € A;,¢. Therefore we establish statement In addition, f lies in A;n¢[1/p]
if and only if there exists an integer n with p"f € Ajnr, or equivalently |f|, < [p| ;" = p™"
for every p € (0,1) as asserted in statement Similarly, f lies in Ajp¢[1/[w]] if and only if
there exists an integer n with [@"]f € Ajns, or equivalently |f|, < [[@]|" = [@|™" for every
p € (0,1) as asserted in statement Likewise, f lies in Aju¢[1/p, 1/[w]] if and only if there

<p" foreveryn>0andpe (0,1)

exist integers m and n with p"[@]™f € Ay, or equivalently |f|, < |[]™"p™"|, = || " p7"
for every p € (0,1) as asserted in statement O

LEMMA 1.3.11. Every f € B satisfies the equalities
(Nl = 1fl;, and |pfl,=plf], foreach pe(0,1).
PrOOF. If f lies in Ain¢[1/p,1/[w]], the assertion is evident by construction. For the

general case, we obtain the assertion by continuity. O

PROPOSITION 1.3.12. The Qp-vector space B#=P" ig trivial for every n < 0.

PROOF. Take an arbitrary element f € B¥=P". Lemma yields the equality
pLy(s) = Ly5)(ps) = Lyny(ps) = nps + Ly(ps)  for each s € (0, 00).
If f is nonzero, we apply Proposition to obtain the relation
pO+Lf(s) =np+p0yLr(ps) < np+pdiLy(s) for each s € (0,00),
which is impossible as n is negative. Hence we deduce that B¥=P" is trivial as desired. O

PROPOSITION 1.3.13. The ring B#~! is canonically isomorphic to Qp.

PROOF. The field Q, embeds into B#=! via an identification Q, = Aj¢[1/p, 1/[w]]¥=" as
easily seen by Teichmiiller expansions. Hence it suffices to show that every nonzero f € B¥=!
lies in Q,. We apply Lemma to find

pLy(s) = Lys)(ps) = Ly(ps) for each s € (0,00)

and in turn obtain the equality pdyLs(s) = p0iLy(ps) for each s € (0,00). Now we see
by Proposition that L is linear with an integer slope, which means that there exist
some n € Zand r € R with L¢(s) = ns+r for each s € (0, 00), or equivalently |f[, = p~"p" for

each p € (0,1). Hence Proposition [1.3.10| implies that f lies in Ajy¢[1/p,1/[@]]¥=t 2 Q,. O



1. CONSTRUCTION AND GEOMETRIC STRUCTURES 149
PROPOSITION 1.3.14. Let [a, b] be a closed subinterval of (0,1).
(1) The ring B,y is an integral domain.

(2) The natural ring homomorphism B — By, ;) is injective.

PROOF. Consider arbitrary nonzero elements f, g € By, ). Proposition implies that

both E?’b] and Eéa’b] take finite values, which means that both |f|, and |g|, are nonzero for
each p € [a,b]. Hence we deduce from Proposition [1.2.10| that fg is nonzero and in turn
establish statement

It remains to prove statement Take an arbitrary nonzero element h € B and denote
by hgp its image under the natural map B — By, ). We may identify E%ﬂ’bj with the restriction

of Ly, on [—log,(b), —log,(a)]. Since Ly, takes finite values by Proposition we see that
hap is nonzero and thus obtain statement

Remark. For every closed interval [/, V'] with [a,b] C [a’,V] C (0,1), we can similarly show
that the natural ring homomorphism B, ) — Bjg ) 18 injective.

LEMMA 1.3.15. Let f and g be elements in B. If f is divisible by g in B,y for every closed
interval [a,b] C (0,1), then f is divisible by ¢ in B.

PROOF. For every closed interval [a,b] C (0,1), we deduce from Proposition [1.3.14] that
there exists a unique element hgp, € Blgy with f = ghgp. Hence we obtain an element h € B
with f = gh as desired. O

ProPOSITION 1.3.16. Let y be an element in Y and C' be a representative of y. Every f € B
with f(y) = 0 is divisible by every primitive element { € ker(6¢).

PROOF. Take an arbitrary closed interval [a,b] C (0,1). By Lemma it suffices
to prove that f is divisible by £ in Bj,). Choose a sequence (f,,) in Aju[1/p,1/[w]] which
converges to f with respect to the Gauss a-norm and the Gauss b-norm. Proposition [I.1.6
shows that each f,, admits an expression f,(y) = ¢, for some ¢, € F. Since we have

c,

lim [e,| = Tim o= Jm fn@Wle = 1fWle =0,

the sequence ([c,]) converges to 0 with respect to the Gauss a-norm and the Gauss b-norm.
Hence we may replace each f,, by f, — [¢,] to assume the equality f,(y) = 0.

Proposition [1.1.25| yields an element g, € Ain¢[1l/p, 1/[w]] with f,, = £gp for each n > 1.
Moreover, for every p € [a, b] we apply Proposition [1.2.10| to obtain the relation

. 1 . 1 .
lim [gni1 = gnl, = 77~ im [£(gnt+1 — gn)l, = - Hm |foy1 — ful , =0,
n—o00 |€’p n—00 |€’p n—00
which means that the sequence (g, ) is Cauchy with respect to the Gauss p-norm. Now the
sequence (gp,) gives rise to an element g € Biap with f = &g as desired. O

PROPOSITION 1.3.17. Given an untilt C' of F in characteristic 0, every primitive £ € ker(6¢)
generates ker(6¢).

PROOF. The assertion immediately follows from Proposition [I.3.16] O
Remark. Theorem and Proposition together show that Y admits a natural

embedding into the set of closed maximal ideals in B. It turns out that this embedding is a
bijection.
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PRrorosITION 1.3.18. Given an untilt C of F' in characteristic 0, we have

Aint[1/p] N ker(ég)i = ker(Ac[1/p])"  for each i > 1.

PROOF. The assertion for i = 1 is evident by the fact that O restricts to Oc[1/p]. Let us
now proceed by induction on ¢. Since we have

Aing[1/p] Nker(80)' 2 ker(6c[1/p)),
we only need to prove that every a € Aj[l/p] N ker(ég)i belongs to ker(0c[1/p])’. By
Proposition and Proposition there exists a primitive element { € Ay which
generates ker(6¢) and ker(0c[1/p]). We write a = £'b for some b € B and use the relation
Aunt[1/p) Nker(8c)" € Aint[1/p] Nker(8c)™ ! = ker(8c[1/p])"
given by the induction hypothesis to find ¢ € Aj¢[1/p] with a = ¢~ 1c. Now we have
O=a—a=Eb—E"te=¢"1(¢b—c)
and thus apply Proposition to obtain the relation
¢ = €b € Aune[1/p] Nker(Bc) = er(6c(1/p]),
which in particular implies that a = £~ !¢ lies in ker(6¢[1/p])? as desired. O

Definition 1.3.19. Given an element y € Y represented by an untilt C' of F', we define the
de Rham local ring at y to be

B (y) = lim Aune[1/p])/ ker(6c[1/p])'.

Remark. Theorem [1.1.27/shows that By (y) does not depend on the representative C.

PrOPOSITION 1.3.20. Let y be an element in Y and C be a representative of y.
(1) The ring Bj;(y) is a complete discrete valuation ring with residue field C.
(2) Every primitive element in ker(f¢) is a uniformizer of BJjj (y).
(3) There exists a natural isomorphism
By (y) = lim B/ ker(30)'
i
PROOF. Given a p-adic field K, all results from the first part of in Chapter [[I]] rely

only on the fact that Cg is an algebraically closed perfectoid field. Since C' is algebraically
closed as noted in Proposition these results remain valid with C in place of Cx. Hence

we establish statement by Proposition [2.2.17| in Chapter and deduce statement
from Proposition [1.1.25

It remains to verify statement By Proposition [1.1.25 and Proposition [1.3.17] there

exists a primitive element { € A,y which generates ker(6¢) and ker(6¢[1/p]). Hence we obtain
a natural map

By (y) = lim Aune[1/p] /€ Ae[1/p] — lim B/E'B = lim B/ker(Bc)’.  (1.10)

[ (2

Proposition [1.3.18 shows that the map (|1.10) is injective. Moreover, since we have

Aint[1/p]/€Aine[1/p] = C = B/¢B,

the map (|1.10)) is surjective by a general fact stated in the Stacks project [Stal Tag 0315]. Now
we deduce that the natural map ([1.10]) is an isomorphism, thereby completing the proof. [


https://stacks.math.columbia.edu/tag/0315
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Definition 1.3.21. Given a nonzero element f € B, we define the vanishing order of f at
an element y € Y to be the valuation of f in BJg(y), denoted by ord,(f).

LEMMA 1.3.22. Given nonzero elements f,g € B, we have
ordy(fg) = ordy(f) +ordy(g) foreachy €Y.

PRrROOF. The assertion is evident by definition. O

PRrROPOSITION 1.3.23. Let y be an element in Y and C' be a representative of y. For every
nonzero f € B, we have f(y) = 0 if and only if ord,(f) is positive.

PrOOF. The assertion immediately follows from Proposition [L.3.20 g

Remark. By Proposition [1.3:23] we can make sense of whether f vanishes at y without
choosing a representative.

PROPOSITION 1.3.24. Let f be a nonzero element in B and [a, b] be a closed interval in (0, 1).

(1) The vanishing order of f at every y € Y, is finite.
(2) The set Zjqy = {ye Yiap s ordy(f) #0 } is finite.

PROOF. Let us write [ := —log,(b) and 7 := —log,(a). Proposition implies that
n:=0_Ly(l) — 01 Lf(r) is a nonnegative integer. It suffices to prove the inequality

Z ordy(f) < n. (1.11)
YEZ[q,p)
Suppose for contradiction that this inequality does not hold. We apply Proposition [1.3.16]

Proposition [1.3.20, and Lemma [1.3:22] to write
f=&& &g
for some g € B and primitive elements &1, - , &1 € Ajng. Since each &; vanishes at a unique
element in Y}, 5, Example and Example together yield the identity
0_Le¢ (1) —04+Leg(r)=1-0=1.
In addition, by Proposition [1.3.7] we have
0_Ly(l) — 04Ly(r) > 0.

Now we use Lemma [[.3.4] to find
n+1
n=0_Ls(l)—04Lf(r) = Z (0—Le; (1) = 04 Le, (1)) + (0-Ly(1) — 04 Ly(r)) > n+ 1,
i=1
thereby obtaining a contradiction as desired. O

Remark. It turns out that the inequality (1.11]) is an equality.

ProposITION 1.3.25. The ring B is naturally a subring of B:R(y) for every y € Y.

PROOF. Since ord,(f) is finite for each nonzero f € B as noted in Proposition [1.3.24} the
assertion follows from Proposition [1.3.20 O

Definition 1.3.26. Given a nonzero element f € B, its Weil divisor on Y is the formal sum
Divy (f) := Y ordy(f)-y.
yey
Remark. We may regard Divy (f) as a locally finite sum by Proposition |1.3.24
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1.4. The logarithm and closed points

In this subsection, we study the graded ring P = @ B¥~" to establish some fundamental
properties of the Fargues-Fontaine curve. Throughout this section, we write m}, := mp\ {0 }.

PROPOSITION 1.4.1. There exists a group homomorphism log : 1 + mp — B¥~P with

[e.e]

log(e) = Z(—l)"ﬂ([g];l)n for every e € 1 + mp. (1.12)
n=1

PROOF. Given ¢ € 1+mp and p € (0,1), we write [g] — 1 = > [¢,|p"™ with ¢, € OF to find
6] — 1], < max(feo] , p) = max(le — 1],p) < 1.

Hence we obtain a map log : 1 + mp — B with the identity (1.12). Moreover, since we
have log(uv) = log(u) + log(v) as formal power series, we deduce from the multiplicativity of
Teichmiiller lifts that log is a group homomorphism. Now for every € € 1 + mp we find

pliog(e)) = (-1 PEDZDY s gyt 1200 g o) — proge),
n=1 n=1
thereby completing the proof. O

Remark. We will see in Proposition that log is a Q-linear isomorphism.

Definition 1.4.2. We refer to the map log : 1 + mp — B¥=P given by Proposition [1.4.1] as
the tilted logarithm.

PROPOSITION 1.4.3. Let C' be an untilt of F' and denote by m¢ the maximal ideal of O¢.
(1) An element ¢ € O lies in 1 + mp if and only if ¢f lies in 1 + m¢.
(2) If C is in characteristic 0, there exists a commutative diagram

1+mp _ o8 . pe=p

meul bc
logﬂpOO
1+mg ———» C
where all maps are group homomorphisms.
PROOF. Take an arbitrary element ¢ € Op. Proposition [2.1.10] in Chapter [[I]] yields an
element a € O¢ with ¢ —1 = (¢ — 1)ti + pa. If ¢ belongs to 1 + mp, we have
vo(ct — 1) > min (v ((c — 1)), vo(pa)) = min(vp(c — 1), ve(pa)) > 0
and consequently see that ¢ lies in 1 + me. Conversely, if ¢! belongs to 1 + m¢, we find
vp(c—1) = ve((c — 1)F) > min (vo(¢f — 1), ve(pa)) > 0

and in turn see that ¢ lies in 1 + mp. Hence we establish statement

Now statement and Proposition together show that 1 + mp maps onto 1+ mg
under the sharp map. If C is in characteristic 0, every € € 1 + mp yields the identity

. o 0. _1\n o0 f_1\n
Folog(e)) = Y (-1 G =Dt s gy Ty e
n=1 n=1

where the last equality follows from Example [3.2.18] in Chapter [[Il Moreover, since C' is
algebraically closed by Proposition the map logupoo is a surjective homomorphism by

Proposition [3.2.20| in Chapter [lI. Therefore we obtain statement O
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Definition 1.4.4. For every ¢ € 1 4+ m},, its associated cyclotomic element in Ajy¢ is
€] -1
[51/19] -1

PRroOPOSITION 1.4.5. Let € be an element in 1 + m7.

fa = =1+ [51/p] + -4 [8(17*1)/17]'

(1) The element & € Ay is strongly primitive.
(2) The element & € Ay, divides [¢] — 1 but not [¢1/7] — 1.
(3) The element y. € Y represented by C¢, admits the equality ord,, (log(e)) = 1.

PROOF. Let us write k := Op/mp for the residue field of F'. In addition, for every ¢ € Op
we denote by ¢ its image under the natural map Op — k. Theorem [2.3.1]in Chapter [[I] yields
a ring homomorphism 7 : A,y — W (k) with

U] (Z[Cn]pn) = Z[@]p" for each ¢,, € O.

We find n(&.) = p by the identity £1/p = £1/P = 1 and thus obtain a Teichmiiller expansion

& = [mo] + [m1 + 1]p+ Z[mn]p" with m,, € mp.
n>2

Since we have .
= Up -0/ _ _E7 %
mo=1+¢e/P4+...+¢ Y
we deduce statement from Proposition |1.1.10
It is evident by construction that & divides [e] — 1. If & divides [e1/P] — 1, we see that
& =1+ [P + - + [eP=D/P] should divide p, which contradicts Proposition [1.1.11] Hence

we deduce that & does not divide [¢'/?] — 1 and in turn obtain statement
Now Proposition [1.3.20| shows that [¢] — 1 = & ([e1/P] — 1) is a uniformizer of B (y.). In

addition, log(¢) is divisible by [e] — 1 but not by ([g] —1)2. Therefore we find ord,, (log(¢)) = 1
as asserted in statement g

#0,

Remark. The main insight behind Proposition [1.4.5] is that € should give rise to a system
of p-power primitive roots of unity in some untilt of F', as foreshadowed by our discussion
in Chapter [ITI}

Definition 1.4.6. Given an element € € 1 + m},, the untilt class of I associated to ¢ is the
element y. € Y represented by Ck,.

PROPOSITION 1.4.7. There exists a bijection (1+m},)/Zy — Y which maps the ZX-orbit of
an element e € 1 +mp toy. €Y.

PROOF. Let y be an arbitrary element in Y and C be a representative of y. Since C' is
algebraically closed as noted in Proposition [1.1.6} it admits a system of primitive p-power
roots of unity which is unique up to Z; -multiple. This system yields a unique Z; -orbit of an
element ¢ € O with ¢! = 1 and (51/7’)ﬁ # 1 via the tilting isomorphism F ~ C”. We note
that € lies in 1 + m}, by Proposition and in turn find y = y. by the equality

Oc(e] — 1) ef -1
&) Oo([eVP] = 1) (el/p) —1
In addition, every ¢ € 1+ m}p with y = y, should be a Z -multiple of ¢ as it satisfies the
relations ¢f = 1 and (¢ p)ti # 1 by Proposition Now the desired assertion is evident. [
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Definition 1.4.8. Let ¢ denote the Frobenius automorphism of F'.

(1) Given an untilt C of F, its Frobenius twist ¢(C) is the perfectoid field C' with the
topological isomorphism gy = to © ¢F.
(2) The Frobenius action on Y is the bijection ¢ : Y — Y induced by Frobenius twists.

LEMMA 1.4.9. For every untilt C' of F' in characteristic 0, we have 0/¢>E\C) = 55 %)

PrOOF. We observe the identity 9/;(/0) = éE o ¢ by construction and in turn obtain the
desired assertion by continuity. O

PROPOSITION 1.4.10. Every € € 1 + m}, yields the identity ¢~ (y:) = yer.

PROOF. Let us write C; := Cg, for notational symplicity. We find

Op-1(c.)(Eer) = O5-1(c)(9(&:)) = Oc. (&) =0
by Lemma and in turn establish the desired assertion by Theorem [1.1.27] O

~

PROPOSITION 1.4.11. There exists a natural bijection (1 + m%)/Q; — Y/¢? which maps
the Q, -orbit of an element ¢ € 1+ mJ to the ¢-orbit of y. € V.

PROOF. The assertion is evident by Proposition [T.4.7] and Proposition O

PROPOSITION 1.4.12. Every nonzero f € B#=P" with n > 0 satisfies the equality
ordy(f) = ordy,)(f) for each y €Y.
PROOF. Choose a representative C' of y. By Proposition and Proposit
1.1.10| and

there exists a primitive element £ € Aj,s which generates ker(f¢). Proposition
Lemma together show that ¢(§) € Ay, is primitive and lies in ker(fyc)). Let us write
i := ordy(f) and j := ordy,)(f). By Proposition [1.3.20) we may write
f=¢&g9=9(&)’h with g,h € B.
We obtain the equalities
F=p7"0(f) = e&)'p "p(g) and f=¢ N e(f) =p"¢ (f) = D" (),
which respectively yield the inequalities ¢ < j and 7 > j. Hence we find i = j as desired. [

ProOPOSITION 1.4.13. Every € € 1 + m} yields the identity
Divy (log(e)) = D> ¢" (ue).
nez
PROOF. Proposition [1.4.5| and Proposition [1.4.12] together yield the equality
ordgn(y,y(log(e)) =1  for each n € Z.

Hence we only need to show that log(¢) does not vanish outside the ¢-orbit of y.. Let us
take an arbitrary element y € Y at which log(e) vanishes and choose a representative C' of y.
Proposition [3.2.20[ in Chapter [[I| shows that ker(logupoo) is the torsion subgroup of 1+ mg¢,

where m¢ denotes the maximal ideal of O¢. We apply Proposition [T.4.3] to find an integer n
with (don)jj =1 and (e 71)ﬁ # 1. Now we have
Oc(”"]—1) (") -1
gc(éapn) - n—1 = 1 jj
Oc([eP" ] 1) (e -1
and thus obtain the identity y = ¢"(y.) by Proposition [1.4.10 O

=0
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In order to study closed points on the Fargues-Fontain curve, we invoke the following
technical result without a proof.

PROPOSITION 1.4.14. A nonzero element f € B divides another nonzero element g € B if and
only if we have ordy(f) < ordy(g) for every y € Y.

Remark. Proposition [1.4.14] is one of the most difficult results from the original work of
Fargues-Fontaine [FF18]. Its proof makes heavy use of the Legendre-Newton polygons and
also introduces a complete ultrametric on the set Y:=YU { 0}, where o denotes the equiva-
lence class of the trivial untilt of F'. Curious readers can find a complete proof in the article
of Fargues-Fontaine [FF18|, Chapitre 2| or the notes of Lurie [Lur, Lectures 13-16]. Here we
state two interesting facts about the Legendre-Newton polygons used in the proof.

(1) An element h € B is a unit if and only if £}, is linear.

(2) Every h € B with 0_Ly(s) # 0+Lp(s) for some s € (0,00) must vanish at some
element y € Yj,—s ;-5

LEMMA 1.4.15. Every f € B¥=P" with n > 1 vanishes at some element in Y.

ProoFr. If f does not vanish at any element in Y, we deduce from Proposition [1.4.14|that
f admits a multiplicative inverse in B#=P" ", which contradicts Proposition |1.3.12, Hence we
obtain the desired assertion. U

LEMMA 1.4.16. Let f be an element in B¥=P" with n > 1 and ¢ be an element in 1 + mp. If
both f and log(e) vanish at some y € Y, there exists some g € B#=P""! with f =1log(e)g.

PROOF. By Proposition we have
ordgi(,)(f) = ordy(f) > 1  for each i € Z.

Hence Proposition [1.4.13| and Proposition |1.4.14] yield an element g € B with f = log(e)g.

Since B is an integral domain by Proposition |1.3.14] we deduce that g lies in B#=P""" and in

turn establish the desired assertion. O

ProrosITION 1.4.17. The map log : 1 +mpr — B¥P is a continuous Q-linear isomorphism.

PrROOF. Choose an untilt C of F' in characteristic 0. The sharp map associated to C
is continuous on Op by Proposition @ in Chapter @ In addition, the map log, .. is

continuous by Proposition in Chapter [I[Il Since both 55 and ¢ are continuous and open
by construction, we deduce from Proposition that log is continuous.

Let us now consider an arbitrary element ¢ € Q,. We may write ¢ = m/ p? with m € Ly,
and d € Z. Choose a sequence (m;) in Z which converges to m under the p-adic norm. For
every € € 1 + mp, we apply Proposition [I.4.1] to find

log(e€) = log(am/pd) = 11£go log(emi/pd) = lim ﬁdl log(e) = clog(e).

1—00 P
Hence we deduce that log is Q,-linear.

It remains to prove that log is an isomorphism. Proposition shows that log(e) is
nonzero for every € € 1 4+ m}. and in turn implies that log is injective. Now we only need to
establish the surjectivity of log. Take an arbitrary element f € B¥=P. Proposition [1.4.7] and
Lemma together imply that f vanishes at y. € Y for some € € 1 + m},. Since log(e)
also vanishes at y. € Y by Proposition [1.4.5] we apply Proposition and Lemma [1.4.16
to obtain an element g € B#~! =~ Q, with f = log(e)g = log(¢). Hence we deduce that log
is surjective as desired. O
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PROPOSITION 1.4.18. For every € € 1 4+ mp, the element log(e) € B¥=P is a prime in P.

PROOF. Proposition shows that B and P are integral domains, which in particular
implies that log(1) = 0 is a prime in P. Let us henceforth assume that ¢ lies in 1 +mJ,. Take
arbitrary elements f,g € P with fg divisible by log(e). We wish to show that log(e) divides
either f or g in P. Since log(e) is homogeneous, we may assume without loss of generality
that both f and g are homogeneous. We note by Proposition that log(e) vanishes
at y- € Y and in turn find by Lemma that either f or g vanishes at y.. Hence the
desired assertion follows from Lemma [1.4.76] O

PROPOSITION 1.4.19. Let f be a nonzero element in B¥=P" for some n > 1.

(1) The map ¢ uniquely extends to an automorphism ¢ on B[1/f].
(2) The element f admits an expression

f=1log(e1)---log(en) withe; € 14+ mp (1.13)

where the factors are unique up to Q,-multiple.

PRrROOF. Statement is straightforward to verify. Let us now consider statement
If we have n = 1, the assertion is evident by Proposition [[.4.17] Hence we may assume
the inequality n > 1. Proposition [[.4.7] and Lemma [1.4.15] together show that f vanishes
at y., € Y for some ¢, € 1+ m}. Since log(e,) also vanishes at y., by Proposition m,
we apply Lemma to obtain an element g € B#=P""" with f =log(en)g. Now a simple
induction yields the desired expression where the factors are unique up to Q; -multiple
by Proposition and Proposition [1.4.18 O

Definition 1.4.20. For every nonzero f € B¥=P" with n > 1, we refer to the map ©F
in Proposition |1.4.19| as the Frobenius automorphism on B[1/f] and often write ¢ = 7.

ProOPOSITION 1.4.21. Let x be a nongeneric point on X.

(1) The point z is closed and corresponds to a prime log(e) € P for some ¢ € 1 4+ m7,.

(2) The residue field of z is naturally isomorphic to the representatives of every y € Y
at which log(e) vanishes.

PrOOF. By Proposition [1.4.19] there exists a nonzero element ¢t € B¥~P such that z lies
in the standard open subscheme Spec (B[1/t]*=") of X = Proj (P). Let us denote by p the

prime ideal of B[1/t]*=! which corresponds to z. If we take a nonzero element f € B#=F" for
some n > 1 with f/t"™ € p, we use Proposition [1.4.19| to find

I log(e1) log(e2)  log(en)
tn t t t
and thus obtain an element ¢ € 1 4+ m}, with log(e)/t € p.

Consider an element y € Y at which log(e) vanishes and choose a representative C' of y.
If t vanishes at y, we see by Proposition [1.3.13| and Lemma [1.4.16| that log(e)/t is invertible
for being in B¥=! = Qp, which is impossible as p is a prime ideal. Hence we deduce that

with g; € 1 + mF.

t does not vanish at y and in turn obtain a map 6, : B[1/t]*~" — C induced by fc.

Proposition shows that 55 restricts to a surjective map B¥=P — (', which in par-
ticular implies that 6, is surjective. Moreover, given an element g € B¥=P" for some n > 1
with g/t" € ker(6,), we note that g vanishes at y and accordingly find by Lemma that
log(e)/t divides g/t™. Since log(e)/t lies in ker(f,.), we see that log(e)/t generates ker(6,) and
thus deduce that p coincides with the maximal ideal ker(6,) in B[1/t]*='. Now the desired
assertions are evident. U
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THEOREM 1.4.22 (Fargues-Fontaine [FF18]). Let |X| denote the set of closed points on X.

(1) There exists a natural bijection |X| — Y/¢? which maps the point on X given by
a prime log(e) € P for some € € 1 + m}, to the ¢-orbit of y. € Y.

(2) X is a Dedekind scheme such that the open subscheme X\ { z } for every x € |X| is
the spectrum of a principal ideal domain.

(3) For every = € | X|, its completed local ring (7):,; admits a natural identification
Oxe = BchrR(y)
where y is an arbitrary element in the image of 2 under the bijection | X| — Y/¢%.

PROOF. Proposition [1.4.21 yields a surjection 1 + m}. — |X| sending each ¢ € 1 +m}, to

the point on X given by the prime log(e) € P. By Proposition [1.3.13| and Proposition [1.4.17
two elements €1 and €2 in 1 + m7% map to the same point on X if and only if €1 and €3 lie in

the same Q, -orbit. Therefore we deduce statement from Proposition

Let us now fix a closed point z on X which corresponds to the the prime log(e) € P
for some & € 1 + m%. The scheme X\ { z } is naturally isomorphic to Spec (B[1/log(e)]#=).
In addition, Proposition shows that every prime ideal of B[1/log(e)]?=" is principal.
Hence we obtain statement |(2)| by a general fact stated in the Stacks project [Stal Tag 05KH].

It remains to establish statement Let us take an element y € Y in the ¢-orbit of y.
and choose a representative C' of y. Proposition [1.4.19| yields a nonzero element ¢t € B¥=P
such that x lies in the open subscheme Spec (B[1/t]*~") of X. We see by Proposition [1.4.21
that « corresponds to the maximal ideal m, of B[1/t]*=" generated by log(e)/t and in turn
get a natural isomorphism

O 2= lim B[1/]*~) /.
i
Meanwhile, since t is not a Q;-multiple of log(e), Proposition |1.3.13| and Lemma |1.4.16
together show that ¢ does not vanish at y. Let 55[1/t] : B[1/t] — C denote the surjective
ring homomorphism induced by 6c. We apply Proposition |1.3.20] to identify Bd+R(y) with
the completed local ring of the closed point on Spec (B) given by ker(f¢) and thus obtain a
canonical isomorphism

B (y) = lim B[1 /1] ker(Bo 1 /1))

)

If we consider an integer i > 1 and an element f € B#=P" for some n > 1 such that f/t" lies
in B[1/t]*=' Nker(f¢[1/t]), we find ord,(f) > i and in turn deduce from Lemma [1.4.16| that
log()?/t* divides f/t". Hence the ideal m, generated by log(e)/t admits an identification

m’ = B[1/t]?~  Nker(6c[1/t])"  for each i > 1.
Now we obtain a natural injective ring homomorphism

Ox., = lim B1/4)7= /m}, — lim B[1/#]/ ker(Bo[1/4]))" = B (v).

(2 (2
Moreover, since both B[1/t]~!/m, and B[l/t]/ker(ég[l/t]) are isomorphic to C, this map
is surjective by a general fact stated in the Stacks project [Stal Tag 0315]. Therefore we
establish the desired assertion. O

Remark. Theorem shows notable similarities between the Fargues-Fontaine curve X
and the complex projective line P(lc, although X is not of finite type over the base field Q,.
In the subsequent section, we will present many additional similarities between X and IP’(%:.
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2. Vector bundles

Our main objective in this section is to discuss several key properties of vector bundles
on the Fargues-Fontaine curve. The primary references for this section are the survey article
of Fargues-Fontaine [FF12] and the lecture notes of Lurie [Lur].

2.1. Line bundles and their cohomology
Throughout this subsection, we denote by | X| the set of closed points on X.

LEMMA 2.1.1. The group of Weil divisors on X is the free abelian group generated by |X|.

PROOF. The assertion is an immediate consequence of Theorem [1.4.22] O

Definition 2.1.2. The divisor degree map of X is the homomorphism deg : Div(X) — Z
with deg(z) = 1 for every x € |X|, where Div(X) denotes the group of Weil divisors on X.

LEMMA 2.1.3. There exists a natural bijection |X| — (B*=P\{0})/Q) which maps the
point on X given by a prime log(e) € P for some € € 1+m}. to the Q;-orbit of log(e) € B#7P.

PRrOOF. The assertion is evident by Proposition [1.4.17] and Theorem [1.4.22 U
PROPOSITION 2.1.4. A Weil divisor D on X is principal if and only if we have deg(D) = 0.

PROOF. If D is a principal divisor of a rational function f on X, we have f = g/h for
some g, h € B#=P" with n > 0 and thus apply Proposition [1.4.19| to obtain the identity
Lttty
tn+1tn+2 +otop
which in turn yields the equality deg(D) = 0 by Lemma Conversely, if D satisfies the
equality deg(D) = 0, we write
D=(xi1+zo+ - +a,) — (Tnt1 +Tpi2+ -+ x2) with 2; € | X]
and use Lemma to get a rational function f on X whose principal Weil divisor is D. [

with t; € BP=P,

Definition 2.1.5. Given an integer d, the d-fold Serre twist of Ox is the quasicoherent
Ox-module O(d) = Ox(d) associated to P(d) := @B‘p:pd+n.
n>0

Remark. For Pl = Proj (C|[z1, 22]), we can similarly define the Serre twist Op1 (d) of Op1.

PROPOSITION 2.1.6. The divisor degree map of X induces a natural isomorphism Pic(X) = Z
whose inverse maps each d € Z to the isomorphism class of O(d).

PROOF. We may identify Pic(X) with the class group of X by Theorem [1.4.22| and a
general fact stated in the Stacks project [Stal Tag OBE9]. Hence Proposition% shows
that the divisor degree map of X induces a natural isomorphism Pic(X) = Z. Let us now
consider an arbitrary integer d. Since the elements in B¥~? generate the Q,-algebra P as noted
in Proposition the Ox-module O(d) is a line bundle on X by a general fact stated
in the Stacks project [Stal, Tag 01MT]. Take a nonzero element ¢t € B¥=P, which induces a
closed point x on X by Lemma We observe that ¢ yields a global section of O(d) and
in turn find that O(d) is isomorphic to the line bundle given by the Weil divisor dz on X.

~

Hence the isomorphism class of O(d) maps to d under the isormorphism Pic(X) = Z. O

Remark. Similarly, Pic(P{) admits a natural isomorphism Pic(PL) & Z whose inverse maps
each d € Z to the isomorphism class of Opy (d).
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PropPoSITION 2.1.7. Let d be a nonnegative integer and ¢ be a nonzero element in B¥=P.
Denote by tO(d) the quasicoherent Ox-module associated to tP(d).

(1) There exists a natural commutative diagram

0 . By=p" . ge=pit! \ Bgo=pd+1/tBso=pd . 0

| | |
0 — HX,0(d) — H°(X,0(d+1)) — H(X,O0(d+1)/tO(d)) — 0

where both rows are exact.
(2) The Ox-module O(d + 1)/tO(d) is a skyscraper sheaf at = € | X| induced by t.

PrROOF. Since P is an integral domain by Proposition [1.3.14] the multiplication by ¢t
on P induces an exact sequence

0 — P(d) — P(d+1) — P(d+1)/tP(d) — 0 (2.1)
which gives rise to an exact sequence of coherent O x-modules
0— 0@ —O0d+1) — O(d+1)/tO(d) — 0. (2.2)

The top row in the diagram comes from the sequence and is exact. The bottom row in
the diagram comes from the sequence and is left exact. Moreover, a general fact stated in
the Stacks project [Stal Tag 01M7] yields the vertical maps in the diagram and subsequently
establishes the commutativity of the diagram.

Meanwhile, Lemma yields an element y € Y at which ¢ vanishes. Let us choose a
representative C' of y. Propositionshows that 55 restricts to a surjective map B¥™P — (.
We see that 55 also restricts to a surjective map Be=r""' o ¢ ; indeed, for every a € C, we
take f,g € BP=P with 0 (f) = 1 and 6c(g) = a to find O (flg) = a. In addition, we find by
Lemma that the kernel of the surjective map B#=P""" _ C is tB¥=P". Therefore the
map éE gives rise to an isomorphism

pe=r""! ppe=rt 2, ¢ (2.3)

Now we apply Lemma to take x € | X| induced by ¢ and use Proposition to
identify C' with the residue field of x. Proposition implies that O(d) and O(d + 1) are
respectively isomorphic to the line bundles given by the Weil divisors dz and (d + 1)z on X.
Hence the injective Ox-module morphism O(d) — O(d + 1) in the sequence induces
an isomorphism on the stalks at every 2/ € | X| with 2/ # 2. We see that O(d + 1)/tO(d) is
isomorphic to the skyscraper sheaf at z with value t=410 X2/ ) x,» >~ C and in turn use
the isomorphism to find that the right vertical map in the diagram is an isomorphism.
Moreover, we obtain the exactness of the bottom row in the diagram by the commutativity
of the right square. Therefore we establish the desired assertion. O

Remark. For d = 0, our proof of Proposition yields a short exact sequence
0—Q, — B —C—0.

In fact, the work of Colmez [Col02] shows that many key objects in p-adic Hodge theory
arise as extensions of a finite dimensional C-vector space by a finite dimensional Q,-vector
space, referred to as Banach-Colmez spaces. Moreover, the result of le Bras [LB18] presents
a classificaiton of Banach-Colmez spaces in terms of coherent Ox-modules. We refer curious
readers to the book of Scholze-Weinstein [SW20, §15.2] for details.
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THEOREM 2.1.8 (Fargues-Fontaine [FF18]). For the cohomology of line bundles on X, we
have the following statements:

(1) There exists a canonical isomorphism H°(X, O(d)) = B#=P" for every d € Z.

(2) The cohomology group H'(X,O(d)) vanishes for every d > 0.

PRrOOF. Let us take a nonzero element t € BY~P. By Lemma there exists a closed
point  on X induced by t. We note that the scheme U := X\{x} admits a natural
isomorphism U 2 Spec (B[1/t]¥=1).

Since P is an integral domain by Proposition[I.3.14] for every d € Z the multiplication by ¢
on P yields an injective map P(d) < P(d + 1) and in turn induces an injective O x-module
morphism O(d) < O(d+1). Meanwhile, Proposition [2.1.6]shows that each O(d) is isomorphic
to the line bundle given by the Weil divisor dx on X. We see that li_r)n(’)(d) is naturally
isomorphic to the pushforward of Oy via the embedding U — X and thus obtain natural
isomorphisms

H (X,lim O(d)) = H°(U, Op) = B[1/1]*~}, (2.4)
H' (X,lim O(d)) = H'(U,0p) = 0.
Let us now prove statement For every d € Z, Proposition m yields a natural

homomorphism ag : B¥=*" — H 0(X,0(d)). We wish to show that each o is an isomorphism.
The sequence (o) gives rise to a homomorphism

B[1/4#=" = 1im BY" — lim HY(X, O(d)) = H® (X,lim O(d)) .

It is straightforward to verify that this map coincides with the isomorphism ([2.4). Moreover,
Proposition [2.1.7| and the snake lemma together yield isomorphisms

ker(ag) ~ ker(agy1) and  coker(ay) ~ coker(agy1)  for each d > 0.
Therefore oy is an isomorphism for each d > 0. Now by Proposition [1.3.13| we have
HY(X,0x) = B~ 2 Q,.

For each d < 0, we see that H°(X,Ox) does not contain a nonzero element with vanishing
order —d at z, which means that H°(X, O(d)) is trivial. Hence Proposition [1.3.12|shows that

g is an isomorphism for each d < 0 as well.

It remains to establish statement For every d > 0, Proposition implies that the
cohomology group H'(X,O(d + 1)/tO(d)) vanishes and in turn yields a long exact sequence

H(X,0(d+1)) — H°(X,0(d+ 1)/tO(d)) — H'(X,0(d)) — H'(X,0(d+ 1)) — 0.
where the first map is surjective. Now we find

HY(X,0(d)) ~ H'(X,0(d+ 1)) for each d >0
and thus use the isomorphism to establish the desired assertion. O
Remark. Theorem m provides analogues of the following facts about IP’(%::

(1) For every d € Z, the cohomology group HY(PL, (9[% (d)) is naturally isomorphic to
the group of homogeneous polynomials of degree d in C[z, 22].

(2) For every d > 0, the cohomology group H'(PL, (91% (d)) vanishes.



2. VECTOR BUNDLES 161
2.2. Harder-Narasimhan filtration

In this subsection, we introduce a general formalism for studying vector bundles on alge-
braic curves and similar objects.

Definition 2.2.1. A complete abstract curve is a scheme Z with the following properties:

(i) Z is connected, separated, noetherian and regular of dimension 1.

(ii) Z admits a homomorphism degy : Pic(Z) — Z, called a degree map, which takes a
positive value on every line bundle given by a nonzero effective Weil divisor on Z.

Example 2.2.2. Below are two important examples of complete abstract curves.
(1) Every regular proper curve over a field is a complete abstract curve by a general fact
stated in the Stacks project [Stal Tag 0AYY].
(2) The Fargues-Fontaine curve is a complete abstract curve by Theorem [1.4.22 and
Proposition [2.1.6]
PROPOSITION 2.2.3. Let Z be a complete abstract curve.

(1) The scheme Z is integral.
(2) Every line bundle on Z given by a principal Weil divisor maps to 0 under deg.
(3) The cohomology group H%(Z, Oz) is naturally a field.

PRrROOF. The first two statements are consequences of standard facts stated in the Stacks
project [Stal Tag 033N and Tag 0BE9|. For the last statement, let us denote the function field
of Z by K(Z) and the Weil divisor of an element f € K(Z)* by Divz(f). The cohomology
group H%(Z,0y) is naturally a subring of K(Z) via the identification H°(Z,0y) = Oz(2);
indeed, an element f € K(Z)* yields a global section of Oy if and only if Divz(f) is effective.
Meanwhile, by the second statement, a principal Weil divisor on Z is effective if and only if
it is trivial. Hence we find

H%(Z,02)\{0} = { f € K(2)* : Divz(f) =0}
and in turn identify H(Z, Oz) with a subfield of K(Z). O

PROPOSITION 2.2.4. Let £ and M be line bundles on a complete abstract curve Z.

(1) If we have deg, (L) > deg; (M), every Oz-module map from £ to M is zero.

(2) If we have deg, (L) = deg, (M), every nonzero Oz-module map from £ to M is an
isomorphism.

PROOF. Let us assume that there exists a nonzero Oz-module map f : £L — M. Denote
the dual bundle of £ by £Y. We may identify f with a nonzero global section of £Y ®p, M
via the identification

Home, (£, M) = H*(Z, LY @0, M). (2.6)
Hence £Y ®p, M arises from an effective Weil divisor D on Z by a general fact stated in the
Stacks project [Stal Tag 01X0]. Now we find

degz (M) — degz (L) = degz (LY ®0, M) >0
and in turn obtain statement

For statement we henceforth assume the equality deg, (L) = deg;(M). Since we
have deg, (LY ®p, M) = 0, we see that the effective Weil divisor D on Z is zero, which
means that £Y ®p, M is trivial. Hence the isomorphism and Proposition together
imply that f is an isomorphism as desired. O
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For the rest of this subsection, we let Z be a complete abstract curve.
Definition 2.2.5. Let V be a nonzero vector bundle on Z.
(1) We define the degree of V to be deg(V) := degy (det(V)).

d
(2) We write rk(V) for the rank of V and define the slope of V to be u(V) := r(:i(;}))

Remark. If we define the degree of the zero bundle to be 0, many results about nonzero
vector bundles in this subsection are valid for zero bundles.

LEMMA 2.2.6. For nonzero free modules M and N over a ring R respectively of rank r and s,
there exists a natural isomorphism

det(M ®@p N) =2 det(M)®* @p det(N)®". (2.7)

PROOF. Let us choose R-bases (m;) and (n;) respectively for M and N. We obtain the
isomorphism by mapping A(m; ®@n;) to (A m;)®*®(An;)®". This map does not depend
on the choice of R-bases for M and N; indeed, if we take R-module automorphisms f and g
respsectively for M and N, we obtain the equalities

N\ (F(mi) @ g(ny)) = det(f)* det(g)" \(m; @ ny),
(A sem) " (Notny) ™" =det(r)y desto) (Ami) @ (Ams)

Therefore we establish the desired assertion. O
PROPOSITION 2.2.7. Given nonzero vector bundles V and W on Z, we have
deg(V ®0p, W) = deg(V)rk(W) + degW)rk(V) and p(V ®@0, W) = p(V) + u(W).
PRrROOF. The first equality is evident by Lemma [2.2.6] The second equality follows from
the first equality as we have rk(V ®0, W) = rk(V)rk(W). O
ProproSITION 2.2.8. Let U, V, and W be nonzero vector bundles on Z with an exact sequence
0—U—V —W—0.
(1) U, V, and W satisfy the equalities
rk(V) = rk(U) + rk(W) and  deg(V) = deg(U) + deg(W).
(2) U, V, and W satisfy the inequality
min (u(U) , p(W)) < p(V) < max (u(U), p(WV))
with equality precisely when pu(U) and p(W) are equal.
PrOOF. The first identity in statement is evident, whereas the second identity in state-

ment follows from a general fact stated in the Stacks project [Sta, Tag 0B38|. Moreover,
by statement we have

(V) = deg(V) _ deg(U) + deg(WV)
rk(V) rk(U) + k(W)
and thus obtain statement O

Remark. We can define the degree of an arbitrary nonzero coherent Oz-module such that
Proposition [2.2.8| extends to nonzero coherent Oz-modules U, V, W with an exact sequence

0O—U—YVY —W—0.
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PROPOSITION 2.2.9. Let V be a vector bundle on Z and W be its coherent O z-submodule.

(1) W is a vector bundle on Z.
(2) If W is nonzero, there exists a subbundle W of V with the following properties:

(i) W contains W as a coherent Oz-submodule and satisfies the relations
rk(W) = rk(W),  deg(W) < deg(W).
(i) W coincides with W if and only if it satisfies the equality deg(W) = deg(W).

PROOF. The scheme Z is integral as noted in Proposition 2.2.3] By a general fact stated
in the Stacks project [Stal Tag 0CC4], a coherent Oz-module is a vector bundle if and only
if it is torsion free. Hence we deduce that W is a vector bundle on Z.

Let us henceforth assume that JV is nonzero. We write 7 for the torsion subsheaf of the
quotient V/W and take W to be the preimage of 7 under the natural surjection ¥V — V/W.
We see that W is a subbundle of V as V/ W is torsion free. Moreover, W contains W as a
coherent Oz-module with W/W ~ T being a torsion sheaf. Hence we find rk(W) = rk(W)
and in turn obtain a nonzero Oz-module homomorphism f : det(W) — det(W) induced by
the embedding W — W. Now Proposition yields the inequality deg(W) < deg()/N\/).
In addition, if we have deg(WW) = deg(W), the embedding W < V) is an isomorphism as its
determinant f is an isomorphism by Proposition indeed, since the induced maps on
the stalks are injective, they are isomorphisms precisely when the determinant is invertible.
Therefore we establish the desired assertions. U

Remark. In general, W is not necessarily a subbundle of V as the quotient V/W may have
a nonzero torsion subsheaf.

Definition 2.2.10. For a vector bundle V over Z with a nonzero coherent Oz-submodule W,
we refer to the vector bundle W on Z given by Proposition as the saturation of W in V.

ProrosiTION 2.2.11. Given a nonzero vector bundle V on Z, there exists an integer dy
with deg(WW) < dy for every nonzero subbundle W of V.

PROOF. If V is a line bundle, we obtain the desired assertion with dy = deg(V) as V is
its only nonzero subbundle. Let us now assume the inequality rk()) > 1 and proceed by
induction on rk(V). If V is its only nonzero subbundle, the assertion is evident. Hence we
may also assume that there exists a nonzero subbundle & of V with & # V. Consider an
arbitrary nonzero subbundle W of V. We write P := W ﬂl/{ and denote by Q the image of W
under the natural surjection V — V/U. Proposition shows that P and Q are vector
bundles on Z. Hence by the induction hypothesis, we have

deg(P) < dy and deg(Q) < dyy
for some integers dyy and dy, ;4 which do not depend on V. Since we have an exact sequence
0—P—W-—Q—0,
we apply Proposition to find
deg(W) = deg(P) + deg(Q) < dy + dy ju,
thereby completing the proof. O

Remark. On the other hand, unless V has rank 1, we don’t necessarily have an integer d,

with deg(W) > dj, for every subbundle W of V.
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Definition 2.2.12. Let V be a nonzero vector bundle on Z.

(1) V is semistable if we have p(W) < u(V) for every nonzero subbundle W of V.
(2) Vis stable if we have (W) < p(V) for every nonzero subbundle W of V with W # V.

Example 2.2.13. Every line bundle on Z is stable as it is its only nonzero subbundle.

ProprosITION 2.2.14. Given a semistable vector bundle V on Z, every nonzero coherent
Oz-submodule W of V is a vector bundle on Z with u(W) < pu(V).

PROOF. Since W is a vector bundle on Z as noted in Proposition [2.2.9] we take the
saturation YW of W in V and find p(W) < u(W) < u(V). O

PRroPOSITION 2.2.15. Let U, V, and W be nonzero vector bundles on Z with an exact sequence
0 —U—YV —W—0.
(1) If U and V are semistable of slope A, then W is also semistable of slope .

(2) If V and W are semistable of slope A, then U is also semistable of slope .
(3) If U and W are semistable of slope A, then V is also semistable of slope .

PROOF. Let us first assume for statement that U and V are semistable of slope A.
Proposition [2.2.§ implies that W has slope A\. Take an arbitrary subbundle Q of W and
denote by Q' the preimage of Q under the map V — W. We have a short exact sequence

0—U— 9 — 9 —0.
Moreover, Proposition [2.2.14] shows that Q' is a vector bundle on Z with u(Q’) < p(V) = A.
Hence we find 1(Q) < A by Proposition and in turn see that W is semistable of slope .

We now assume for statement that VY and W are semistable of slope A. Propositionm
implies that U has slope A. Since every subbundle of U/ is a coherent Oz-submodule of V, we
deduce from Proposition [2.2.14] that U is semistable of slope .

Finally, let us assume for statement that & and W are semistable of slope A.
Proposition implies V has slope A\. Take an arbitrary subbundle R of V and denote
by R’ the image of R under the map V — W. We have a short exact sequence

0—UNR—R—R —0,
Moreover, Proposition [2.2.14] shows that &/ N'R and R’ are vector bundles on Z with
pUNR) <pU) =1 and  p(R') < pW) =

Hence we find u(R) < A by Proposition and in turn see that V is semistable of slope A,
thereby completing the proof. O

PROPOSITION 2.2.16. Given semistable vector bundles V and W on Z with u(V) > pu(W),

every Oz-module homomorphism from V to W is zero.

PROOF. Suppose for contradiction that we have a nonzero Oz-module map f:V — W.
Let Q denote the image of f. Proposition shows that Q is a vector bundle on Z with

1(Q) < p(W) < p(V). (2.8)
Moreover, Q fits into a short exact sequence
0—>ker(f)—>Vi>Q—>0.

We have ker(f) # 0 as Q and V are not isomorphic by the inequality (2.8)). Hence we obtain
the inequality p(ker(f)) < p(V) by the semistability of V and in turn find pu(Q) > u(V) by
Proposition thereby deducing a desired contradiction by the inequality (2.8)). O
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Definition 2.2.17. Given a vector bundle V on Z, its Harder-Narasimhan filtration is a finite
chain of vector bundles

o=YyCcWViC---CV,=V

which satisfies the following properties:

(i) Each V; is a subbundle of V1.
(ii) The vector bundles Vi /Vy, - -+, V,/Vs—1 are semistable with

/L(Vl/VO) > > ,u(Vn/Vn_l).
Remark. It is not hard to see that each V; must be a subbundle of V.

LEMMA 2.2.18. Every nonzero vector bundle V on Z admits a semistable subbundle V; with
p(V1) > u(V) and p(Vy) > p(W) for each nonzero subbundle W of V/V;.

PROOF. Proposition [2.2.11]yields an integer dy such that each nonzero subbundle U/ of V
satisfies the inequalities 0 < rk(U) < rk(V) and deg(Uf) < dy. Hence the set

S:={qe€Q:q= pU) for some nonzero subbundle U of V }

is discrete and bounded above. In particular, S admits the maximum element A. Let us
take V; to be an element of maximal rank in the set of subbundles of V with slope A. The
maximality of A implies that V; satisfies the inequality p(V1) > (V). Moreover, since every
subbundle of V; is a coherent Oz-module of V', we use Proposition [2.2.9] and the maximality
of A to see that V; is semistable. Let us now consider an arbitrary nonzero subbundle W
of V/V; and denote by W' the preimage of VW under the natural map V — V/V;. We observe
that W' is a subbundle of V and also obtain a short exact sequence

00—V —W — W —0.
In addition, we find p(W’) < X\ = p(V1) by the maximality of A and V;. Hence we deduce the
inequality (W) < u(Vy) from Proposition thereby completing the proof. O

Remark. Our proof of Lemma [2.2.18| relies on the fact that the degree map takes values in
the discrete group Z. However, in the general context where the degree map takes values in
an arbitrary totally ordered abelian group, we can still prove Lemma [2.2.18 and consequently
show that all results from this subsection remain valid. We refer curious readers to the notes
of Kedlaya [Ked19), Lemma 3.4.10 and Example 3.5.7] for details.

LEMMA 2.2.19. Let V be a nonzero vector bundle on Z with a Harder-Narasimhan filtration
0O=VoCWViC---CV,=V.
For every semistable vector bundle W on Z with Homep, (W, V) # 0, we have u(W) < u(V1).

PROOF. Let us take a nonzero Oz-module map f : W — V and denote its image by Q.
Since Q is a nonzero coherent Oz-submodule of V, we can find the smallest integer i > 1
with @ C V;. We see that f induces a nonzero Oz-module map W — V; - V;/V;_; and in
turn apply Proposition [2.2.16] to obtain the inequality

pW) < p(Vi/Vie1) < p(W),
thereby completing the proof. O

Remark. Lemma [2.2.19] does not hold without the semistability assumption on W; for ex-
ample, if we take W = V; @ L for some line bundle £ on Z with u(L£) > u(V1), we obtain a
nonzero Oz-module map W — Vi — V and also find (W) > u(V1).
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THEOREM 2.2.20 (Harder-Narasimhan [HN75]). Every vector bundle V on Z admits a unique
Harder-Narasimhan filtration.

Proor. If V is the zero bundle on Z, the assertion is trivial. Let us now assume the
inequality rk(V) > 0 and proceed by induction on rk(V). Lemma yields a semistable
subbundle V; of V with u(V1) > u(U) for every nonzero subbundle ¢ of V/V;. By the induction
hypothesis, the vector bundle V/V; on Z admits a unique Harder-Narasimhan filtration

OZLﬁC-"CZ/[n:V/Vl. (2.9)

For each ¢ € Z with 2 < i < n, let us set V; to be the preimage of /; under the map V — V/V.
We see that each V;/V;—; with ¢ > 2 admits a natural isomorphism V;/V;—1 = U;/U;—;.
Moreover, we have p(V;) > pu(Uz) whenever the Harder-Narasimhan filtration (2.9) is not
trivial. Therefore V admits a Harder-Narasimhan filtration

0=YVoCVIC---CV,=V. (2.10)

It remains to show that the chain (2.10) is a unique Harder-Narasimhan filtration of V.
Let us assume that V admits another Harder-Narasimhan filtration

0=WoCW1 C---CWy,=V. (2.11)
We note that V/W; admits a Harder-Narasimhan filtration
0:W1/W1C---Vm/W1:V/W1. (2.12)

Since Vi and W are nonzero semistable subbundles of V, Lemma [2.2.19] yields the inequalities
pW1) < p(Vi) and p(V1) < u(Wh). Hence we have

pW1) = p(V1) > p(Vo/V1) = u(Us/Un)

unless the Harder-Narasimhan filtration is trivial. We deduce from Lemma that
the natural map W; < V — V/V) is zero and in turn see that V; contains Wi. Similarly, we
find that W contains V;. Now we obtain the identity V; = Wi, which in particular implies
that the Harder-Narasimhan filtrations and must coincide. We see that each W;
with ¢ > 1 is the preimage of W; /W) = U; under the natural surjection V — V/W; = V/V; and
consequently deduce that the Harder-Narasimhan filtrations ([2.10)) and (2.11]) coincide. O

Remark. A careful examination of our discussion shows that Theorem 2.2.20]is a formal con-
sequence of Proposition [2.2.8 and Proposition 2.2.9] Hence we can extend Theorem to
every additive category which admits reasonable notions of rank and degree with appropriate
analogues of Proposition and Proposition We refer curious readers to the notes
of Kedlaya [Ked19, Definition 3.3.1] for a precise characterization of such a category, often
referred to as a slope category.

Slope categories are prevalent in p-adic Hodge theory. We have already introduced two
important examples, namely the category of filtered isocrystals over a p-adic field and the
category of vector bundles on the Fargues-Fontaine curve. In the next section, we will ex-
plore the relationship between these categories to prove that every weakly admissible filtered
isocrystal over a p-adic field is admissible.

It is worthwhile to mention that a slope category does not need to admit tensor products;
indeed, our proof of Theorem does not involve tensor products. Moreover, even for a
slope category with tensor products, the Harder-Narasimhan filtrations may behave unfavor-
ably under tensor products; for example, when Z is a projective curve over a field of positive
characteristic, a result of Gieseker [Gie73| shows that the tensor product of semistable vector
bundles on Z is not necessarily semistable. However, most slope categories in practice admit
tensor products which exhibit nice properties in relation to the Harder-Narasimhan filtrations.
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2.3. Classification of vector bundles

Our main goal for this subsection is to provide an explicit classification of vector bundles on
the Fargues-Fontaine curve. For every integer h > 0, we write Ej, for the degree h unramified
extension of Q.

Definition 2.3.1. Given an integer h > 0, the degree h unramified cover of X is the scheme

Xy, = Proj (P,)  with Py := B
n>0

LEMMA 2.3.2. Let m and n be integers with m > 0. Given a positive integer A and a nonzero
homogeneous element f € P, there exists a canonical isomorphism

B/fIP" " @q, B = B/ £

PRrROOF. The group Gal(Ey/Q,) is cyclic of order h and admits a canonical generator ~y

induced by the p-th power map on F,». We see that B[1/f]?
Gal(E}/Qp)-module with the action of v given by p™"¢™. Hence we find

m_p,n mh _,nh Gal(Eh/QP)
B[/ [ =" = (Bl
and in turn obtain the desired isomorphism by Lemma [2.4.16] in Chapter [[T]] O

Remark. Proposition [1.3.13| and Lemma together imply that B¥"=1 ig canonically
isomorphic to Ej,.

mh:pnh . o1e
is naturally a semilinear

PRrorosITION 2.3.3. For every integer h > 0, there exists a natural isomorphism
Xn = X Xgpec (@,) SPec (Ep).
PROOF. Since Lemma yields a canonical isomorphism
Bf=P" ®q, En = B for every n € 7,

we obtain a natural isomorphism

Xy, =Proj [ @B | 2 Proj | @ B """ | = Proj (P ®q, En)
n>0 n>0

and consequently establish the desired assertion. O

LEMMA 2.3.4. Given an integer h > 0, the scheme X} = Proj (P}) admits an affine open cover
given by the standard open subschemes associated to homogeneous elements in P.

ProoF. Take an arbitrary point x on X;. We wish to show that x lies in a standard open
subscheme of X} = Proj (F},). Proposition yields a natural morphism
Th Xh =X XSpec(Qp) Spec (Eh) — X.
Let us take a nonzero homogeneous element f € P such that 7, (z) lies in the standard open

subscheme U(f) := Spec (B[1/f]*="') of X = Proj(P). We apply Lemma to obtain a
canonical isomorphism

B[1/f]%=" ®q, E» = B[1/f]*"=!

and in turn identify W;I(U(f)) with the standard open subscheme Uy (f) := Spec (B[l/f]"gh:l)
of X}, = Proj (P). Now the desired assertion is evident as z lies in 7T}:1(U (f))- O

Remark. In fact, by Proposition [1.4.19| we can take f to be an element in B¥=P.
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We state the following generalization of Proposition [1.4.19| without a proof.
ProproSITION 2.3.5. Given integers h,n > 1, every nonzero f € B¥"=P" admits an expression
f=fi-fo with f; € B¥"=P
where the factors are unique up to E; -multiple.

Remark. Let us briefly sketch the proof of Proposition The theory of Lubin-Tate
formal groups yields a unique 1-dimensional p-divisible formal group law ppr over O, with
(D] ppr () = pt + " Denote by Gir the associated p-divisible group over Of,. By means of
the logarithm for Gy, we can construct a group homomorphism

log  Gur(Or) = lim Grx(Op fm Or) — B,

It turns out that all results from §1.4] remain valid with Q,, log, 1 + m%, ¢, ¢, P, and X
respectively replaced by Ej, log,, Grr(OF), ¢, ¢", Py, and X;,. We refer readers to the
article of Fargues-Fontaine [FF18| §6.2] or the notes of Lurie [Lur), Lectures 22-26] for details.

Definition 2.3.6. Given integers d and h with h > 0, the d-fold Serre twist of O, is the

quasicoherent Oy, -module Op(d) = Ox, (d) associated to Pp(d) := @ pe ="t
n>0

LEMMA 2.3.7. Given integers d and h with h > 0, the Ox,-module Op(d) is a line bundle
on X}, with a canonical isomorphism Oy (d) = O, (1)®4.

PROOF. The assertion follows from Proposition 2.3.5 and a standard fact stated in the
Stacks project [Stal, Tag 01MT]. O
Definition 2.3.8. Let h be a positive integer.

(1) Given an integer r > 0, we refer to the morphism ., 5, : X,, — X}, induced by the
natural embedding P}, — P, as the standard projection from X, to Xj.

(2) Given integers d,r with r > 0, we refer to Op(d, r) := (7,4,4)«Orn(d) as the standard
Ox, -module of type (d,r).

PROPOSITION 2.3.9. Given integers d, h, and r with h,r > 0, the Ox,-module O (d,r) is a
vector bundle on X}, of rank 7.

PROOF. Proposition [2.3.3shows that the morphism 7, is finite of degree r. Hence the
desired assertion follows from Lemma [2.3.7 O

ProposITION 2.3.10. Given integers d, h, and r with h,r > 0, we have a natural isomorphism
(Thnh) On(d,r) = Opp(dn,r)  for every n > 0.

PROOF. Let us take an arbitrary nonzero homogeneous element f € P. We write Up(f)
and Upy,(f) respectively for the standard open subschemes of X} and X}, associated to f.

We apply Lemma and Proposition to find
(ﬂ-hn,h)*oh(dv ’I”) (Uhn(f)) = Oh(d7 T) (Uh(f)) ®B[1/f]¢h:1
hr_, d h_
= BU/fT T @ e (B11/717"=" @0, En)
~ B[l/f]whnr:pdn

= Ohn(dna 7") (Uhn(f)) :
Hence we establish the desired assertion by Lemma O

Bl1/f]¢"


https://stacks.math.columbia.edu/tag/01MT
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ProrosITION 2.3.11. Given integers d, h, and r with h,r > 0, we have a natural isomorphism
On(dn, dn) = Oy (d,r)®"  for every n > 0.
PROOF. Proposition yields a natural isomorphism
On(dn,™n) = (Thr 1) s (Thor hr )« Ohnr (A1) = (T 1)+ (Thinr b )+ (Thnr i) Oner (d).
Moreover, we use the projection formula and Proposition to find
(T b )« (T )" Onre (d) = (Thinr i )+ O, @0, Onr(d)
= 0% @oy, Onr(d) = Ope(d)*"
Now the desired assertion is evident. O
PRrROPOSITION 2.3.12. Given an integer h > 0, there exists a canonical isomorphism
On(dy,r1) ®0x, On(da,re) = Op(dirg + dor1, m172)

for every dy,ds, 1,70 € Z with r1,79 > 0.

PRrROOF. Let g and [ respectively denote the greatest common divisor and the least common
multiple of r; and 73. Since ] := r1/g and 14, := ra/g are relatively prime integers, the field
extensions F, j and E,,p of E}, yield a natural isomorphism Ej, = B, ), @ ” E,,n. Hence by
Proposition [2.3.3 we obtain a cartesian diagram

Tlh,roh
Xin Xroh
7Tlh,'r1 hl J’ﬂrzh,gh
Trih,gh
Xm h Xgh

where all arrows are finite étale. Moreover, we apply the Kiinneth formula, Lemma and
Proposition [2.3.10| to obtain an identification

Ogn(d1,71) @0x , Ogn(da,5) = (Trihgh)s(Orin(d1)) @ox , (Trshgh)s(Oran(dz))

IIZ

(Tih,gh)« ((Mhrlh Orin(dh) ®oy,, (WZh,rQh)*OrQh(d2)>

Wlh,gh O lel ®(9X Olh(dgré)>

= (mp,gh )« O (dir] + dors)
= (’)gh(dlrﬂ + darh, rirh).
Now we use the projection formula, Proposition [2.3.10] and Proposition [2.3.11] to find
On(di1, 1) ®oy, Onldz,2) = (Tgh,n)«Ogn(d1, 1) ®ox, On(dz,r2)

(T gh,h) (Ogh(d1,r'1) ®oy,, (7Tgh7h)*0h(d2,’l“2)>

IIZ

I

= (mgn)e (Ogn(di, ) B0y, Ogn(dag,2))
= (Tgh,h ) < gn(d1,m1) ®ox, Ogh(dZaTZ)@g)
= (Tgh,h)« gh(lel + d2T2,r1r2)®9

= Op(diry + daorly, grirh)®?

= Op(dyr1 + darg, r172),

thereby completing the proof. O
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PROPOSITION 2.3.13. Given integers d, h, and r with h,r > 0, the dual Op(d,r)" of Op(d, )
admits a canonical isomorphism

On(d,r)" =2 On(—d,r).
PROOF. Proposition and Proposition together yield a natural isomorphism
On(d. 1) ®oy, On(—d,r) = 0"
In addition, since Oy, is isomorphic to its dual, there exists a canonical perfect pairing
(’)??Z ®0x, O%; — Ox,,.

Hence we use the natural isomorphism (’)E’?’: = O?@Z ®ox, O%; to obtain a perfect pairing

Oh(d, T‘) ®(9Xh Oh(—d,T) — OXh,
thereby establishing the desired assertion. O

ProprosITION 2.3.14. Let d and r be integers with » > 0.

(1) The vector bundle O(d,r) := O1(d,r) on X is semistable of rank r and degree d.
(2) If d and r are relatively prime, the vector bundle O(d, r) is stable.

PROOF. Proposition [2.3.11] and Proposition [2.3.12] together yield a natural isomorphism
O(d,r)®" = O(dr",r") = O(d)®"".
In addition, we find deg ((’)(d)@“ = dr” by Proposition Therefore we deduce from
Proposition and Proposition that O(d,r) has rank r and degree d.

Let us now consider an arbitrary nonzero subbundle V of O(d,r) with V # O(d,r). We
may regard V" as a coherent Ox-submodule of O(d,r)®". Moreover, Example [2.2.13| and
Proposition [2.2.15| together show that O(d,r)®" = O(d)®"" is semistable. Hence we apply

Proposition and Proposition [2.2.14] to find

p(V) = p(V) /r < (O, r)*") /1 = u(O(d, 1)),
thereby deducing that O(d,r) is semistable. If d and r are relatively prime, we also find
u(V) # d/r by the inequality rk(V) < rk(O(d,r)) = r and in turn see that O(d, r) is stable. [

Remark. Proposition [2.3.14] remains valid if we replace O(d,r) and X respectively with
Oy(d,r) and X}, for an arbitrary integer h > 0, as X} turns out to be a complete abstract
curve.

Definition 2.3.15. Given a rational number A = d/r written in a reduced form with r > 0,
we refer to O(A) := O1(d,r) as the canonical stable bundle of slope X\ on X.

PROPOSITION 2.3.16. Let A be a rational number.
(1) The dual O(N\)Y of O(A) admits a canonical isomorphism O(\)Y =2 O(=\).
(2) Given a rational number X', there exists a natural isomorphism
O\) ®o, O(N) =2 O+ N)®"  for some n > 1.
PROOF. Statement is a special case of Proposition Statement follows from
Proposition and Proposition 2.3.12] O

Remark. In Statement if we write A = d/r and N = d’'/r in reduced form, n is equal to
the greatest common divisor of dr’ + d'r and rr'.
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In order to explain the classification theorem for vector bundles on the Fargues-Fonaine
curve, we invoke the following crucial result without a proof.

ProrosiTION 2.3.17. Let A be a rational number.

(1) A vector bundle on X is semistable of slope A if and only if it is isomorphic to O(\)®"
for some n > 1.

(2) If we have A > 0, the cohomology group H'(X,O()\)) vanishes.

Remark. Statement is relatively easy to prove. Let us write A\ = d/r in reduced form.
We can adjust our argument in to show that Theorem is valid with O,(d) and X,
respectively in place of O(d) and X. Hence if \ is nonnegative, we find

HY(X,0\) = HY(X, (7,):+0,(d)) = H'(X,, 0,(d)) = 0.
On the other hand, statement|(1)|is one of the most technical results from the original work
of Fargues-Fontaine [FF18]. Its proof employs a series of dévissage arguments to deduce the
assertion from some deep results about Lubin-Tate p-disivible groups due to Drinfeld [Dri76],

Laffaille [Laf85], and Gross-Hopkins [GH94]. We refer curious readers to the survey article
of Fargues-Fontaine [FF14, §6] for an excellent exposition of the proof.

THEOREM 2.3.18 (Fargues-Fontaine [FEF18]). Every vector bundle V on X admits a direct
sum decomposition

V~Pon)®™  with \i € Q.
=1

PRrROOF. Theorem [2.2.20 shows that V admits a unique Harder-Narasimhan filtration
O=YoCViC---CV,=V.

We wish to show that the Harder-Narasimhan filtration splits. If we have n = 0, the assertion
is trivial. Let us henceforth assume the inequality n > 0 and proceed by induction on n.
Proposition [2.3.17| implies that each V;/V;_1 admits an isomorphism

Vi/vi—l ~ O()\Z)Eeml with \; € Q.
In addition, by the induction hypothesis, the Harder-Narasimhan filtration
0=VoCViC---CVp

splits into a direct sum decomposition
n—1
Vi1~ o).
i=1
Meanwhile, for each ¢ = 1,--- ,n, we apply Proposition to find

Exté, (O(An), O(N)) = H (X, 0(\) ®ox O(A)Y) = HY(X, 0N — A)®™)  with n; > 0

and in turn use Proposition [2.3.17|to see that Extbx (O(An), O(\;)) vanishes. Hence we deduce
that Ext}QX(V/ V-1, Vn—1) also vanishes, thereby establishing the desired assertion. O

Remark. Theorem [2.3.18|is an analogue of the fact that every vector bundle V on IP’%: admits
a direct sum decomposition

Vo (P Opy (d)®™  with d; € Z
=1

as proved by Grothendieck [Gro57].
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3. Applications to p-adic representations

In this section, we establish some fundamental results about p-adic representations and pe-
riod rings by means of the Fargues-Fontaine curve and related objects. The primary references
for this section are the survey articles of Fargues-Fontaine [FF12] and Morrow [Mor19].

3.1. Geometrization of p-adic period rings

Throughout this section, we let K be a p-adic field with absolute Galois group I'x and
residue field k. In addition, we write K for the fraction field of W (k).

ProprosITION 3.1.1. The tilt of Cg is algebraically closed.

PROOF. Let f(z) be an arbitrary monic polynomial of degree d > 0 over (Cz(. We wish
to show that f(z) has a root in C%. Take a nonzero element a in the maximal ideal of OC'}( .

We may replace f(z) by a™?f(z/a™) for some sufficiently large m € Z to assume that f(z) is
a polynomial over OCEK . Let us write

f(z):zd+clzd_1—|—---+cd with CiGO(Cz(.
Proposition in Chapter [[T]] yields a natural isomorphism
O(CEK = l&l O(CK/pO(CK7 (31)

r—xP
via which we identify each ¢; with a sequence (¢;pn)n>0 in Ocy /pOcj - Choose alift ¢; , € Oc,
of each ¢; ,,. In addition, for each n > 0 we set
fa(2) =24 c1 2 4 g, and };(Z) =2 4o e

For each n > 1, we have

fno1(2P) = 2 4 clljmz(d—l)p 4t CZ _ (zd + 01,n2d_1 4ot cd’n)p = fn(2)P. (3.2)

\

Meanwhile, since Cg is algebraically closed by Proposition [3.1.10in Chapter each jf;(z)
admits a factorization
};(z) =(z—ap1) (2 —anq) with a,; € Ocy.

Let us denote by @, ; the image of each «, ; under the natural surjection Oc, — Oc, /pOc -
The identity (3.2]) shows that each @, ; with n > 1 satisfies the equality

Jn-1(@n;?) = fa(@n )P =0

and in turn yields the relation
fn_l(afl,,j> = (O‘Z,j —p—11) (ai,j — an—1,4) € pOgy.
Now for each v, ; with n > 1, we find m € Z with of . — ap—1.m € pl/d(’)(cK and thus obtain
the identity an,jpd = ozn,l,mpdi1 by Proposition in Chapter We deduce that there
d

exists a sequence of integers (j,) with osznpd = 0n—1,j,_1" ! for every n > 1. Let us take the

element @ € O‘Cﬁx given by the sequence <an+d,17jn N dilpd_1>n>0 via the isomorphism (3.1).
We apply the identity (3.2)) to find -
d—1
fn (an+d—1,jn+d_1p ) = fa+d—1 (@ngd=1j,.4,) =0 for every n >0
and in turn see that @ is a root of f, thereby completing the proof. O

Remark. Proposition is a special case of the tilting equivalence for perfectoid fields.
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For the rest of this section, we take ' = C'}{ and regard Cx as an untilt of F'. In addition,
we fix a distinguished element & = [p’] — p € Ay for some p° € Op with (pb)ﬁ = p.
PROPOSITION 3.1.2. There exists a refinement of the discrete valuation topology on B:{R with
the following properties:
(i) The subring Aj,¢ of BCTR is closed.
(ii) The map Oc,[1/p] : Ant[l/p] - Ck is continuous and open with respect to the
p-adic topology on Cg.
(iii) The tilted logarithm yields a continuous map log : Z,(1) — B(TR via natural injective
maps Zp(l) — 1+ mp and B¥=P — B(J{R.

(iv) The ring BJ; is complete.

PROOF. Proposition [1.3.20|shows that B:{R is a discrete valuation ring with uniformizer £.
Proposition [1.3.20] also yields a natural isomorphism

By = lim B/ ker(fc,.)',
i
via which we endow B:{R with the topology induced by B. This topology refines the discrete
valuation topology as £ generates ker(fc, ) by Proposition [1.3.17]

We observe by Proposition [1.3.10| that Aj.¢ is closed in B and thus obtain property
In addition, we establish property as an immediate consequence of Proposition [1.2.16
Meanwhile, since Proposition yields a continuous Zj-linear injective map Zy(1) — 1+mp,

we deduce property from Proposition |1.3.25|and Proposition |1.4.17, Therefore it remains
to verify property

Proposition [1.2.16 implies that ¢B = ker(ﬁ/@;) is closed in B. We deduce that each
€'B = ker(fc,. )" is closed in B and in turn find that each B/ker(fc, ) is complete. Hence
we conclude that B:{R is complete as desired. O

Remark. Proposition establishes Proposition [2.2.20]in Chapter [[TI} Our proof does not
rely on any results which we stated without a proof.

PrRoOPOSITION 3.1.3. There exists a unique closed point oo on X whose associated prime ideal
in P contains every cyclotomic uniformizer of B(TR as a generator.

PROOF. Proposition [2.2.25| in Chapter shows that a cyclotomic uniformizer of BSFR
is unique up to Zg—multiple. In addition, Proposition implies that every cyclotomic

uniformizer of B:{R is an element in B¥=P. Therefore we establish the desired assertion by
Proposition |[1.4.17] and Theorem [1.4.22 O

Definition 3.1.4. We refer to the closed point co on X given by Proposition [3.1.3] as the
distinguished point on X and write U := X\ { oo }.

ProprosiTION 3.1.5. The completed local ring at oo is naturally isomorphic to BJR.

PROOF. Given a Z,-basis element € € Z,(1), we find @(log(s)) = 0 by Proposition m
and in turn deduce from Proposition [1.4.13| that Cx represents ¢"(y.) € Y for some n € Z.
Hence the assertion follows from Theorem [1.4.22 O

Remark. Proposition [1.3.20| and Proposition together show that the residue field of oo

is naturally isomorphic to Cg.
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Definition 3.1.6. Given a real number p with 0 < p < 1, we refer to the closure of Ajn¢[1/p]
in By, ) to be the ring of Gauss normally integral elements in By, ,, denoted by B:{.

LEMMA 3.1.7. Given a closed interval [a,b] C (0, 1), there exists a real number A > 0 with

Ifl, <|fla for every f € Awe[1/p].

PROOF. Let us take the positive real number A < 1 with a* = b. For every f € Ai¢[1/p]
with a Teichmiiller expansion f = > [c,]p"™, we find

|f1, = sup(|en| b") = sup (|en| @) < sup (|ea]* a™) = sup ((en| a™)*) = | f[2
nez nez nez nez
as desired. n

PROPOSITION 3.1.8. Given a closed interval [a,b] C (0, 1), there exists a canonical continuous
embedding B — B;.

PrROOF. By Lemma every Cauchy sequence in Ajn¢[1/p| under the Gauss a-norm is
Cauchy under the Gauss b-norm. Therefore we obtain a canonical continuous ring homomor-
phism B — B;r . It remains to show that this map is injective. Take an arbitrary nonzero
element f € B, and denote by f its image in Bg“ . Lemmalmimplies that f is naturally an

element in Bj, . Since ﬁgfa’b} takes finite values by Proposition |1.3.6, we find |f'|, = |f|, # 0
and in turn deduce that f’ is nonzero, thereby completing the proof. O

LEMMA 3.1.9. The completion of a normed Qp-space V' is naturally isomorphic to X//B[l /1],
where Vj denotes the p-adic completion of the closed unit disk Vp in V.

PROOF. Since p is topologically nilpotent in Q,, a sequence (vy,) in V' is Cauchy under
the norms if and only if (p~™wv,,) is p-adically Cauchy in Vj for some m > 0. O

PROPOSITION 3.1.10. For every ¢ € OF, there exists a canonical topological isomorphism

—

Byl 2= Aue[c] /pl[1/p]
where Aimp] denotes the p-adic completion of Aj.¢[[c]/p].

ProoOF. The ring B‘Jg‘ is naturally isomorphic to the completion of Ajn¢[1/p] under the
Gauss |c|-norm. In light of Lemma it suffices to establish the identification

Auellel/p] = { f € Awil1fp) ¢ £l <1}

Since we have |[c]/p|, =1, every f € Aine[[c]/p] satisfies the inequality |f[,, < 1. Hence it
remains to show that every f € Aine[1/p] with ||, <1 lies in Ain¢[[c]/p]. Let us write

f= Z[Cn]pn + Z[cn]p” with ¢, € Op. (3.3)
n<0 n>0

For every n € Z, we have |c,||c|" < | fli¢) < 1 or equivalently cnc € Op. Hence we find

[en]p™ = [enc”] - ([]/p)™" € Awgl[c]/p] for every n < 0

and in turn deduce that the first sum in the identity (3.3) yields an element in Aju¢[[c]|/p] for
having finitely many nonzero terms. Now we obtain the desired assertion by observing that
the second sum in the identity (3.3 yields an element in Ajp. O
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PROPOSITION 3.1.11. There exist natural continuous injective maps

+ + + +
Bl/pp R Bcris and Bcris - Bl/p'

PROOF. Proposition [3.1.10] yields natural isomorphisms

B}y Al @))/pl1/p]  and B, = Aullp?)/pl[1/p),

where Ai[[(p°)P]/p] and Aine[[p°]/p] respectively denote the p-adic completions of Ag¢[[(p°)?]/p]
and Aiy¢[[p°]/p]. Meanwhile, we have the identification BY.. = Agis[1/p] where Agig is the

cris
p-adic completion of Agris. Hence it suffices to establish the relation

A[[(P°)")/p] € Alsis S Aine[[P°]/]-
We see that A%, contains A[[(p°)?]/p] as we have

PP (E+p)P & E P\ i1y
= =(p—1)!'p!+;<i>p et e A,

p p

In addition, we find

n b1 _ o \n n b "
% - W - % (by — 1) c Ainf[[pb]/p] for each n >0

and in turn deduce that A%, lies in Ain¢[[p°]/p]- O

cris

PROPOSITION 3.1.12. Given a real number p € (0,1), the Frobenius automorphism of Aj,¢
uniquely extends to a continuous injective endomorphism ¢} on B with ¢f (B) = B;;.

PROOF. The Frobenius automorphism of A;,s = W(Op) uniquely extends to an automor-
phism on Ajn¢[1/p], which we denote by @i,. Since we have

Dinf (Z[cn}pn) = Z[Cﬂ]p” for each ¢, € Op,

we obtain the equality

‘Soinf(f)‘pp = !f\ﬁ for each f € Aine[1/p].

Hence Lemma [1.2.15] and Proposition together show that s extends to a continuous
injective homomorphism

goj : B; = B;; — B;
as desired. 0

Definition 3.1.13. Given a real number p € (0, 1), we refer to the map ap; constructed in
Proposition [3.1.12| as the Frobenius endomorphism on B;r and often write ¢ = goj;.

PROPOSITION 3.1.14. The Frobenius endomorphism of B is injective.

PROOF. Lemma [3.1.15|in Chapter ﬁ shows that the Frobenius endomorphism on Bf/p
_l’_

s Via the natural embedding B:;is — Bf/p

given by Proposition |3.1.11] Hence we deduce that the Frobenius endomorphism is injective
on Bctis. Now we obtain the desired assertion as we have Bis = B;is[l /t] for every cyclotomic
uniformizer t € B;'R. O
Remark. Proposition establishes Proposition in Chapter [T} Our proof does not

rely on any results which we stated without a proof.

restricts to the Frobenius endomorphism on B
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Definition 3.1.15. We refer to the closure of A ¢[1/p] in B to be the ring of Gauss normally
integral elements in B, denoted by B™T.

PROPOSITION 3.1.16. The ring B" is naturally a subrlng of BT. with

Cris
=) ¢"(BL)

n>0

PROOF. Proposition [3.1.11] yields a natural injective homomorphism

+ + +
Bl/pp Bcrls Bl/p

Moreover, Lemma [3.1.15| in Chapter [[II] shows that the Frobenius endomorphism on B

restricts to the Frobenius endomorphism on B, . Hence we find

S"(B},) C 0" (B) € ¢"(BY)

and in turn apply Proposition [3.1.8] to obtain the identity
+_ +_
B m B ﬂ Bl/ppn m SD CI‘lS
p>0 n>0 n>0
as desired. 0

Remark. By Proposition [3.1.16, we may identify B* as the largest subring of chs on which
© is an automorphism.

1/p

) =B for every n > 0

+ p—
1/pp" 1/pr"

PROPOSITION 3.1.17. The rings B, , BT, and B satisfy the equality

cris?

(BL )PP = (BT)#=P" = B*™"  for every n € Z.

PROOF. It is not hard to see by Proposition[3.1.16{that (B, )¥=P" and (BT)?="" coincide.
In addition, (B%)?=P" is evidently a subset of B#=P". Hence we only need to prove that
(BT)$=P" contains B#=P". If we have n < 0, the assertion is evident by Proposition [1.3.12
and Proposition [1.3.13] If we have n > 1, we find

o0

m+1 ([‘E] B 1)m +
log(e) = Z(—l) ~—————— € B" foreverye€l+mp,
m=1 m
as each summand lies in Aj,¢[1/p], and in turn apply Proposition [1.4.19| to establish the
assertion. U

ProposITIiON 3.1.18. The scheme X admits an identification
X =Proj | P(BL)7"
n>0
PrOOF. The assertion is evident by Proposition O

Remark. If we write Bén) := B.NFil™"(BqgR) for every n > 0, we can use Proposition|3.1.18
to obtain a natural isomorphism

X = Proj [ @ B™

n>0

as described in Chapter [I
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ProrosiTiON 3.1.19. The ring B, = B?~lis a principal ideal domain with a canonical

cris
isomorphism B, & B[1/t]*=" for every cyclotomic uniformizer ¢ € Bl

PROOF. Proposition yields a natural identification
B, = B} [1/97" = B[1/1)7=".
Hence we obtain a canonical isomorphism U = Spec (B.) and in turn establish the desired
assertion by Theorem O

Remark. Fontaine originally deduced Proposition [3.1.19| from the result of Berger [Ber08],
which shows that B, is Bézout. As briefly mentioned in Chapter [, Fontaine’s proof of Propo-
sition [3.1.19| directly led to the constrution of the Fargues-Fontaine curve.

PROPOSITION 3.1.20. There exists a natural isomorphism B = Q.

PROOF. Since we have B, = B[1/t]¥=" for every cyclotomic uniformizer ¢ B, as noted
in Proposition [3.1.19] the assertion is straightforward to verify by Proposition [1.4.19 O

THEOREM 3.1.21 (Fontaine [Fon94a]). The ring B, = B?=" fits into a natural exact sequence

cris

0 — Q, — B, — Bar/Biz — 0. (3.4)

PRrooOF. Fix a cyclotomic uniformizer t € B:{R. We assert that each B¥=P" with n > 1
canonically fits into a short exact sequence

0 — Qut" — B¥P" — Bir/t"Bizr — 0. (3.5)

Proposition in Chapter implies that both Q,t" and BSFR / t"B:{R do not depend on
our choice of ¢. In addition, we apply Proposition and Lemma [T.4.16] to identify Q,¢"
with the kernel of the natural embedding B#=P" — B 4R given by Proposition 1.3.25} Hence
it remains to prove that the map B¥=P" — B;fR / t”B:{R is surjective. For n = 1, the assertion
is evident by Proposition Let us now proceed by induction on n. Take an arbitrary
element b € B:{. Since Cg is algebraically closed by Proposition in Chapter we
use Propositionm to obtain an element s € B¥~F with b — s™ € tBjg. By the induction

hypothesis, we find f € B#="""" and b/ € Bj with
b=s"+t(f+t" M) = (s" +tf) + "V

We observe that s +tf lies in B#=P" and thus deduce that the map B¥=P" — B&LR / t”BCTR is
surjective.

Our discussion in the preceding paragraph shows that for every n > 1 there exists a
canonical short exact sequence

0 —Q, — "B tinBcTR/Bc_l'_R — 0.
Moreover, by Proposition [3.1.17| we have natural isomorphisms
B, = B[1/t]*=' 2 limt "B*" and Bar/Bjy = limt "B, /By,

where the transition maps for the colimits are the canonical embeddings. Therefore we obtain
the natural short exact sequence (3.4)) as desired. U

Remark. Theorem [3.1.21] establishes Theorem [3.2.19] in Chapter [[IIl Our proof invokes
Lemma [1.4.16] and thus relies on Proposition [1.4.14], which we stated without a proof. We
note that the exact sequence (3.5 coincides with the short exact sequence

0 — HY%X,0x) — H°(X,0x(n)) — H(X,0x(n)/t"Ox) — 0,

where t"Ox denotes the quasicoherent Ox-module associated to t"P.
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3.2. Geometrization of isocrystals

Throughout this subsection, we fix a cyclotomic uniformizer ¢ € B:{R and generally write ¢
for a map naturally induced by the Frobenius endomorphism on B.;s or an isocrystal. In
addition, we denote the completed stalk of an Ox-module V at oo by 17; Let us state the
following generalization of Proposition [3.1.17] without a proof.

PROPOSITION 3.2.1. Given integers d and r with r» > 0, we have
(B+ )l,Drfp (B+) rfpd _ B@T:pd‘

Cris

Remark. The first equality is not hard to verify by Proposition The second equality
follows from the fact that the map log, described in the remark after Proposition takes
values in (B1)¥ =P, as explained in the article of Fargues-Fontaine [FF18, §6.3] or the notes
of Lurie [Lur, Lectures 24].

Definition 3.2.2. Given an isocrystal D over Ky, its crystalline Ox-module is the quasico-
herent Ox-module £(D) associated to P(D) := @(D ®K, B)?P".

n>0
LEMMA 3.2.3. Let r and d be integers with » > 0. For every homogeneous f € P the
B[1/f]*= -module B[1/f]*" =" is free of rank r with a basis (¢(g)) for some g € B[1/f]?"

PRrROOF. By Lemma there exists a basis element g of B[1/f]? =" * over B[1/f]7 =

Moreover, Lemma [2.3.2] ylelds a canonical isomorphism
B[1/f)*~ ®q, E, = Bl1/ {7~
Hence we deduce that B[l/f]“f:pid admits a basis (¢%(g)) over B[1/f]¥=". O

PROPOSITION 3.2.4. Let D be an isocrystal over K of rank r and degree d.

(1) The Ox-module (D) is a vector bundle on X of rank r and degree —d.
(2) There exist natural isomorphisms

HO(U,£(D)) 2 (D ®5, Bais)?~"  and (D) = Dx @k Bz

PROOF. Slnce K i = W (k)[1/p] naturally embeds into B and Bes, we may replace D

by D ®k, K ) to assume that k is algebraically closed. By Theorem |2 in Chapter
we may further assume that D is isomorphic to a simple isocrystal D) Wlth A =d/r. Let
us choose a Ko-basis (¢'(e)) of D =~ Dy with e € D and ¢"(e) = p?e. For every nonzero
homogeneous element f € P, the open subscheme U(f) := Spec (B[1/f]?=") of X = Proj (P)
yields a canonical isomorphism

_ T _p—d
E(D)U(f)) = (D @K, BIL/f)*~ = BL/f]7 7"
Hence we find £(D) =2 O(—A\) and in turn establish statement
It remains to prove statement By Proposition we have a natural isomorphism

HOU,&(D)) = B[1/4¢ =" = Bt [1/]" """ = (D @k, Beris)?~"

Cris

Moreover, if we take a nonzero homogeneous element f € P with oo € U(f), we apply
Proposition and Lemma to obtain an identification

— T _p—d
E(D)so = ED)U(f)) ®pp/pe=1 Bir = B[1/f]77F D p /o=t Biz & Dk ®k Bjy.

Therefore we establish the desired assertion. O
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Definition 3.2.5. A (B, B:{R)-pair is a pair (M, M(;FR) consisting of a free B.-module M,
of finite rank and a BSFR—lattice Md+R in M, ®p, B4r.
ProproSITION 3.2.6. There exists a equivalence of categories
{ (Be, Bjg)-pairs } — { vector bundles on X }
which maps each (B, B:{R)—pair (M., M;R) to a vector bundle ¥V on X with identifications
HOU, V)= M., Voo =M}, H(X,V)= M, N M.
PRrROOF. Proposition |3.1.5(and Proposition respectively yield natural isomorphisms
(’)/XT.O ~ B, and U = Spec(B.).

Moreover, by Theorem [1.4.22] the closed point oo lies in an open subscheme of X which is the
spectrum of a principal ideal domain. Hence the desired assertion is straightforward to verify
by the theorem of Beauville-Laszlo [BL95| stated in the Stacks project [Stal, Tag 0BP2]. O

PROPOSITION 3.2.7. Every filtered isocrystal D over K naturally yields a vector bundle F(D)
on X with identifications

HY(U,F(D)) 2 (D ®k, Bais)?~'  and  F(D)so = Fil®(Dg ®k Bar).
PROOF. Proposition [3.2.4 and Proposition [3.2.6] together yield an isomorphism
(D ®kK, Beris)?~' @B, Bar = D @k Bar.

Meanwhile, we see by Proposition in Chapter [IT1| that Fil®(Dx ® Bqr) is a BGJ{R—lattice
in Dg @k Bqr. Hence we deduce the desired assertion from Proposition [3.2.6] O

Definition 3.2.8. Given a filtered isocrystal D over K, we refer to the vector bundle F(D)
on X given by Proposition as the modified crystalline Ox-module of D.

LEMMA 3.2.9. Given a line bundle £ on X and a coherent nonzero Ox-submodule M of £
with the quotient £/ M supported at oo, there exists a natural isomorphism

B/ W = By st 0esM)
PROOF. The assertion is straightforward to verify. O

ProprosITION 3.2.10. Every filtered isocrystal D over K satisfies the equalities
tk(F(D)) =rk(D) and deg(F(D)) = deg®(D) — deg(D).

PROOF. The first equality is evident by Proposition [3.2.4] and Proposition [3.2.7] Hence
it remains to establish the second equality. Let us take the Hodge-Tate weights mq,- -, m,
of D in ascending order and write m := min(0,m;). We can construct a K-basis (v; ;) of Dk
such that each Fil™*(Dg) has a K-basis (v; j)i>s; indeed, we choose a K-basis for Fil"'" (D)
and inductively extend a K-basis for each Fil™*(Dg) to a K-basis for Fil™*~'(Dg). For
every n € Z, we deduce from Proposition in Chapter that Fil’(D(n)x ®x Bar)
admits a B:{R—basis (v5,; ®t"~™). Therefore Proposition and Proposition together
imply that £(D) and F(D) are naturally coherent Ox-submodules of F(D(m)) with their
quotients supported at co. Moreover, we apply Proposition in Chapter [[TI] to find

det(F(D(m)))oc/det(€ (D))o = " KPP pl /B
det(F(D(m)))oo/det (F (D)oo = t" ™ P B /B
Now the assertion is straightforward to verify by Proposition and Lemma [3.2.9 O
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ProrosSITION 3.2.11. The I'k-action on Bggr naturally induces a I'k-action on X, under
which both U and oo are stable.

PROOF. We note that ¢ is I'g-equivariant on B, and in turn find that each (B}, )#="

cris cris
is stable under the I'i-action on Bgr. Hence Proposition [3.1.18| implies that the I'i-action

on Bggr naturally gives rise to a I'g-action on X. Moreover, both U = X\ { oo} and oo
are stable under the I'x-action on X as 'k acts on t via the cyclotomic character of K by

Theorem [2.2.26] in Chapter [ITI} O
Definition 3.2.12. A I'k-equivariant vector bundle on X is a vector bundle V on X with an
isomorphism ¢y : v*V ~ V for each v € 'k, called a ~y-twist map, satisfying the relation
Cyy =Cy 0 (7) (cy) for every 7,7 € T'k.

ProOPOSITION 3.2.13. Let D be a filtered isocrystal over K.

(1) The Ox-module F(D) is naturally a I'x-equivariant vector bundle on X.

(2) The Q,-vector space H(X, F(D)) admits a natural I'x-action with an identification

H°(X,F(D)) = (D ®g, Beris)?~* NFil®(Dg ®p Byr).

PROOF. Theorem [2.2.26|in Chapter |[1I|shows that each Fil"(Bgr) = t" By, is stable under
the I'i-action on Bgr. Moreover, ¢ is I'g-equivariant on B.,js by construction. Hence we see
that I'g naturally acts on HO(U, F(D)) = (D ® g, Beis)¥~" and F(D)oo = Fil°(Dg ® ¢ Byr).
Now the desired assertions are straightforward to verify by Proposition [3.2.6 U

LEMMA 3.2.14. Every vector bundle V on X satisfies the equalities
rk(v*V) =1k(V) and deg(y*V) =deg(V) for each v €T'k.

PROOF. Since the first equality is evident, we only need to establish the second equality.
Let us write d := deg(V). We apply Proposition to see that det()) is isomorphic to the
line bundle give by the Weil devisor doo on X. Moreover, we deduce from Proposition [3.2.11
that det(v*V) = v* det(V) is also isomorphic to the line bundle give by the Weil devisor doo
on X. Hence we obtain the second equality as desired, thereby completing the proof. U

LEMMA 3.2.15. Given an element v € 'k, a vector bundle V on X is semistable if and only
if ¥*V is semistable.
PRrROOF. There exists a natural bijection
{ subbundles of V } — { subbundles of v*V }

which sends each subbundle W of V to v*WW. Hence the assertion is an immediate consequence

of Lemma [3.2.14] O

PRroOPOSITION 3.2.16. Given a I"x-equivariant vector bundle V on X with a Harder-Narasimhan
filtration
0=YVoCViC---C V=V,

each V; is naturally a I'g-equivariant vector bundle on X.
PrOOF. For every v € I', we apply Lemma |3.2.14] and Lemma |3.2.15| to see that the
vector bundle v*V on X admits a Harder-Narsimhan filtration
0=Vo CY V1 C- - CYV, =~"V.

Since V admits a unique Harder-Narasimhan filtration by Theorem [2.2.20, we deduce that
each V; is a I'g-equivariant vector bundle with a y-twist map ¢,; : v*V; ~ V; given by the
y-twist map ¢y : y*V ~ V for V. O
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PrOPOSITION 3.2.17. Let V be a I'kx-equivariant vector bundle on X.
(1) The Ko-vector space D(V) := (H°(U,V) ®p, Beris) ¥ is naturally an isocrystal and
gives rise to a canonical injective Bepis-linear I' g-equivariant map
ay : D(V) @Ky Beris — H(U,V) ®p, Beis-
(2) D(V) satisfies the inequality
rk(D(V)) < rk(V) (3.6)

with equality precisely when ay, is an isomorphism.

PROOF. Let us consider the natural Bgs-linear I' g-equivariant map
Qy . D(V) ®K0 Bcris — HO(U7 V) X B, Bcris ®B, Bcris — HO(U7 V) X B, Bcris

We assert that ay is injective. Denote by Ce.is the fraction field of Beis. It suffices to prove
the injectivity of the induced Cl.is-linear map

By : D(V) @k, Coris — HY(U,V) @5, Ceyis.-

Suppose for contradiction that ker(3y) is not trivial. Take a Ky-basis (e;) of D(V) and choose
a nontrivial Ces-linear relation ) ¢;e; = 0 with minimal number of nonzero terms. We may
set ¢; = 1 for some j. For every v € I'r, we find

Z('y(ci) —ci)e; =7y (Z ciei> - Zciei =0 and ~(¢)—c¢j=7(1)—1=0.
By the minimality of our relation, each ¢; satisfies the equality ¢; = v(¢;) for every v € T'k.
Hence Theorem in Chapter shows that each ¢; lies in C’};{; =~ Ky. Now we have a
nontrivial Ko-linear relation ) c;e; = 0 for the Ky-basis (e;) of D(V), thereby obtaining a
desired contradiction.
The injectivity of vy implies that the Ky-vector space D(V) is finite dimensional. Mean-
while, for arbitrary v € H°(U,V), b € Beyis, and ¢ € Kg, we find

(1@p)(c(ved) =1e)(v@be) =v&eb)p(c) =¢(c) - (12 ¢)(veb).
Since ¢ extends the Frobenius automorphism o of Ky, the additive map 1® ¢ is o-semilinear.
In addition, the map 1 ® ¢ is injective on D(V) by Proposition Hence we deduce from
Lemma in Chapter that D(V) is an isocrystal over Ky with Frobenius automorphism
1 ® ¢ and in turn establish statement

It remains to verify statement Since the inequality is evident by statement
we only need to consider the equality condition. If «y is an isomorphism, the inequality
becomes an equality. For the converse, we henceforth assume the identity rk(D(V)) = rk(V).
Let us choose a Ko-basis (u;) of D(V) and a Be-basis (v;) of H(U,V). We may represent
by a r x r matrix My with r :=rk(D(V)) = rk(V). We wish to show that det(My) is a unit
in Beis. We have det(My) # 0 as the Cepig-linear map [y induced by ay is an isomorphism
for being an injective map between vector spaces of equal dimension. Meanwhile, I'x acts
trivially on uw; A --- A uqg and by some B.-valued character n on vy A --- A vg. Since the
I'k-equivariant map ay yields the identity

(/\dav)<’u,1 A ANug) = det(Mv)(’Ul JANEERIVAN ’Ud),
we deduce that I'ic acts on det(My,) by n~1. Now we observe by Proposition [3.1.20| that 7 is

Qp-valued and in turn find by Theorem |3.1.14]in Chapter that det(My) is a unit in Beyis,
thereby completing the proof. O

Definition 3.2.18. Given a I'kg-equivariant vector bundle V on X, its associated isocrystal
is the isocrystal D(V) constructed in Proposition (3.2.17].
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LEMMA 3.2.19. Every isocrystal D over Ky admits a natural isomorphism
D= ((D ®K0 Bcris)‘p:1 ®Be Bcris)FK-

PROOF. Since @1 naturally embeds into Beis, we may replace D by D® KO@’I to assume
that k is algebraically closed. By Theorem in Chapter [T, we may further assume that
D is isomorphic to a simple isocrystal D). Let us write A = d/r in reduced form and choose
a Ko-basis (¢'(e)) of D ~ Dy with e € D and ¢"(e) = p’e. We have an identification

d

(D ®5 Beris)¥~" = B2, =P "

cris

In addition, Proposition and Lemma together show that B, " = BY. [1/t)¢ =P

admits a basis (¢'(g)) over B, = BE. [1/{]#=! for some g € B " ". Hence we obtain a
canonical isomorphism

d

d

(D ®K0 Bcris)<'0:1 ®Be Bcris = B@T:p* (83e Bcris =D ®Ko Bcris-

cris
It is straightforward to verify that this map is I'x-equivariant. Now we deduce the desired
assertion from Theorem [3.1.14] in Chapter [TI] O

ProposiTION 3.2.20. Given a weakly admissible filtered isocrystal D over K, the vector
bundle F(D) on X is trivial with rk(F (D)) = rk(D).

PROOF. Let us write V := F(D) for notational convenience. By Proposition we
find rk(F (D)) = rk(D) and deg(F(D)) = 0. In light of Proposition it suffices to show
that V is semistable. Suppose for contradiction that V is not semistable. Theorem [2.2.20
yields a Harder-Narasimhan filtration

0o=YVosCViC---CV,=V withn > 1.

Let us set V' := V; and V" := V/V'. We find pu(V') > pu(V) = 0 by Proposition In
addition, Proposition [3.2.16|implies that both V' and V" are naturally I x-equivariant vector
bundles on X. Hence we have a short exact sequence

0— DOV') — D) — DOV").
Since Proposition yields the inequalities
tk(D(V')) <1k(V') and tk(D(V")) <1k(V"),
we obtain the relation
tk(D(V)) < tk(D(V')) + tk(D(V")) < tk(V') + tk(V") = 1k(V).

Meanwhile, we see that D admits a natural isomorphism D = D(V) by Lemma [3.2.19and in
turn find rk(D(V)) = rk(V) by Proposition [3.2.10, Therefore all nonstrict inequalities are in
fact equalities. Now Proposition [3.2.17] yields a canonical isomorphism

HY(U, V) = (H(U,V') ®p, Beris)?~ = (D(V') @k Beris)?~ (3.7)
Take D’ to be the isocrystal D(V') with the filtration on D’ given by
Fil"(DY) := Fil"(Dg) N Dy  for each n € Z,
where we regard D(V’) as a subisocrystal of D 2 D(V). We obtain a natural isomorphism
Vi, = Fil' (D ®k Bag)-
and in turn identify V' with F(D’). Hence we apply Proposition to find
p(V') = deg®(D') — deg(D") <0

as D is weakly admissible, thereby obtaining a desired contradiction. O
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PropoSITION 3.2.21. Given a weakly admissible filtered isocrystal D over K, the Q,-vector
space HY(X, F(D)) is naturally a p-adic ' x-representation with

dimg, H(X, F(D)) = rk(D). (3.8)

PROOF. Since we have H(X,0x) = Q, by Proposition and Theorem we
obtain the equality by Proposition Moreover, we deduce from Proposition
that the I'g-action on H(X, F(D)) given by Proposition is continuous with respect
to the p-adic topology, thereby completing the proof. O

THEOREM 3.2.22 (Colmez-Fontaine [CF00]). A filtered isocrystal D over K is admissible if
and only if it is weakly admissible.

ProOOF. If D is admissible, it is weakly admissible by Proposition in Chapter [[TI}
For the converse, we now assume that D is weakly admissible and write V := H°(X, F(D)).
Proposition |3.2.13| yields a natural Bg,is-linear map

ay :V ®Q, Beris — D ®k, Beris XQ, Beris — D Q@ Beris

which is compatible with the I'x-actions and the Frobenius endomorhpisms. Let us denote
the fraction field of B.s by Ceis and concider the induced Clis-linear map

By V ®Qp Ceris — D R Ky Cleris-
We note that By (V ®q, Clis) is stable under the I'g-action and thus apply Theorem [3.1.14
in Chapter to obtain a Ky-subspace D’ of D with Sy (V ®q, Ceris) = D' ®k, Ceris; indeed,

if we identify By (V R®q, Ceris) as a Ceg-point of a Grassmannian for D, it descends to a
Ky-point for being I' g-invariant. Moreover, D’ is naturally a filtered subisocrystal of D with

Fil"(DY) := Fil"(Dg) N Dy  for each n € Z.
Since By is injective on V' by construction, we find
V C (D ®ky Beris) N (D' @k, Ceris) = D' @k Beris
and in turn establish the identification V = H°(X, F(D')) by Proposition
Choose a Ky-basis (e;) of D' and a Ces-basis (v (vj)) of By (V ®q, Ceris) with v; € V.
Each Sy (v;) admits an identity Sy (vj) = > b;je; with b; j € Bais. Let us write 7 := rk(D")

and denote by M the r x r matrix whose (i, j)-entry is b; ;. We find det(M) # 0 by observing
that M represents a Cgpis-linear isomorphism. In addition, we obtain the equality

(A"By)(v1 A+ Avp) =det(M)(er A--- Ney) (3.9)

and consequently use Proposition [3.2.13|to identify (A"Sy)(vi A« -+ Awv,) as a nonzero element
of HY(X, F(det(D"))). Since Proposition [3.2.10[ shows that F(det(D’)) is a line bundle with

deg(F(det(D'))) = deg®(D') — deg(D') < 0,

we have deg®(D’) = deg(D’) by Proposition[1.3.12]and Theorem [2.1.8] Hence we deduce that
D' is weakly admissible. Now Proposition [3.2.21] yields the identity rk(D’) = rk(D), which

implies that D’ and D coincide. We see that 3y is an isomorphism for being a surjective map
between vector spaces of equal dimension. Meanwhile, since I'x acts trivially on e; A--- Ae,
and via some Qp-valued character 7 on v1 A --- A v, we note by the equality that I'g
acts on det(M) via n~! and in turn find det(M) € B, by Theorem in Chapter m
Therefore oy is an isomorphism and gives rise to an identification D = Dgis(V). Now we
observe by Proposition that V is crystalline, thereby deducing that D is admissible as
desired. O



184 IV. THE FARGUES-FONTAINE CURVE
Exercises
1. Let & be an element in Ajys.

(1) Show that an element & € Ajy¢ is primitive if and only if it satisfies the following
equivalent conditions:

(i) ¢ is a unit multiple of [m] — p for some m € mp.
(ii) & generates ker(f¢) for some untilt C' of F.

(2) If ¢ is primitive, show that £ Aj,s contains infinitely many primitive elements.

2. Let £ be a primitive element in Aj,¢.
(1) Show that & is irreducible in Ajys.
(2) Show that every f € Ajyr admits an identity f = g€ + [¢] with g € Ajr and ¢ € Op.

3. Given a primitive element £ € Ay, prove that Aj, is -adically complete.

Hint. Prove that each Ajn¢/p™Ains is {-adically complete.

4. Let f be an element in Aj,¢[1/p,1/[w]] with a Teichmiiller expansion f = > [c,]p™.

(1) Show that the Newton polygon of f, given by the largest decreasing convex function
Ni:R—=RU{ oo} with Ny(n) < vp(c,) for each n € Z, yields the equality

Ly(s) = inlf&(./\ff(r) +rs) for each s € (0,00).
re
(2) Show that an integer n is a slope for the piecewise linear function £y if and only if
N is not differentiable at n.

(3) Show that a rational number X is a slope for the piecewise linear function Ny if and
only if L is not differentiable at n.

5. Let f be a nonzero element in Ajys.
(1) Show that f is a unit if and only if L is the zero function on (0, c0).
(2) Show that f is strongly primitive if and only if there exists r € (0, 00) with
s for s <m,
Li(s) = {

r for s >r.

6. Given a closed interval [a,b] C (0, 1), let y be an element in Y, ;) and C' be its representative.
(1) Prove that the map f¢ uniquely extends to a surjective continuous open ring homo-
morphism ng : Bigp) — C.

(2) Prove that there exists a natural isomorphism

—

Bia(y) = lim By, yy/ ker (93:")".
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7. Let n be a positive integer.
(1) Show that the Q,-vector space Ainf[1/p,1/[w]]?=P" vanishes.

(2) Show that the Q,-vector space B#=P" is infinite dimensional.

8. Given an element y € Y and a nonzero element ¢t € B¥=P vanishing at y, establish a natural
isomorphism

HY(X,0(d)) = B;'R(y)/(t_dB:R(y) +Qp) for every d < 0.

Remark. For d = —1, we see that H'(X,O(—1)) does not vanish whereas H'(PL, O]%(—l))
vanishes.

9. Let V be a nonzero vector bundle on a complete abstract curve Z and write VV for the
dual bundle of V.

(1) Verify the equality u(VY) = —u(V).
(2) Show that V is semistable if and only if V¥ is semistable.

10. Given a complete abstract curve Z and a rational number A, show that the zero bundle
and the semistable vector bundles of slope A on Z together form an abelian category.

11. Let Z be a complete abstract curve.

(1) If the degree map deg, is not an isomorphism, prove that there exist semistable
vector bundles V and W on Z with (V) < pu(W) and Homp, (V, W) = 0.

(2) If Z is either Pl or X, for arbitrary semistable vector bundles V and W on Z
with (V) < p(W) prove that Home, (V, W) does not vanish.

12. Let Z be a complete abstract curve.

(1) Prove that the tensor product of a semistable vector bundle and a line bundle on Z
is semistable.

(2) If Z is either P& or X, prove that the tensor product of semistable vector bundles
on Z is semistable.

13. For every integer h, show that X} is a complete abstract curve.

Hint. Show that X}, is a Dedekind scheme by observing that the natural map 7y, : X, — X
is finite étale. Define the degree map for X via the pushforward along 7.

14. Let d, h, and 7 be integers with h,r > 0.
(1) Show that the vector bundle Oy (d,r) on X}, is semistable of rank r and degree d.
(2) If d and r are relatively prime, show that Op(d, r) is stable.
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15. For every closed interval [a,b] C (0,1) with a # b, show that the canonical continuous
embedding B < B;' is not surjective.

16. Given a p-adic field K, show that the principal ideal domain B, is not Euclidean.

17. Assume that F' is the tilt of Cx for a p-adic field K.

(1) Show that every vector bundle on X is isomorphic to £(D) for a unique isocrystal D
over K" up to isomorphism.

(2) Find two isocrystals D’ and D over K with
Homysoe(D',D) =0 and Hompe, (E(D'),E(D)) # 0.

18. Assume that F is the tilt of Cx for a p-adic field K and let Beris denote either BTt[1/1]
or B[1/t] for a cyclotomic uniformizer ¢ € BJ.

(1) Show that Beyis i8 naturally a I'i-stable subring of Bgg.
(2) Show that Beyis is (Qp, 'k )-regular with an identification B'E o~ K.

cris

Hint. Adapt the argument for Theorem in Chapter [[TI]
(3) For every p-adic I'g-representation V', show that INDCHS(V) = (V ®q, Ecris)FK is
naturally an isocrystal over Ky with a canonical isomorphism
Dcris(v) = ﬁcris(v)-

Hint. Construct injective morphisms Deis(V) — ﬁcriS(V) and 15cris(V) — Deyis(V)
after observing that Lemma [3.2.19| remains valid with Bs in place of Beyis.

19. Assume that F' is the tilt of Cx for a p-adic field K.

(1) Given a cyclotomic uniformizer t € B(;FR, prove that an element in B¥=P is invertible
in B[1/t] if and only if it is a Q, -multiple of ¢.

(2) Prove that oo is the only closed point on X with finite I'-orbit.

20. Assume that F' is the tilt of Ck for a p-adic field K and let B be a (Qp, 'k )-regular ring
which contains B, as a I'g-stable subring.

(1) Show that every I' x-equivariant vector bundle V on X naturally gives rise to a vector
space Dy (V) := (HO(U,V) ®p, B)'% over E := B with the following properties:
(i) There exists a canonical injective B-linear I'x-equivariant map
ay : Da(V) @5 B — H(U,V) @35, B.
(ii) Dy (V) satisfies the inequality
dimg Dy (V) < 1k(V)
with equality precisely when ay is an isomorphism.

(2) For every p-adic I'k-representation V', show that the Ox-module V' ®q, Ox is nat-
urally a I'g-equivariant vector bundle on X with a canonical isomorphism

DsB(V) = D%(V ®@p Ox).



CHAPTER V

Additional topics

1. Semistable representations

In this section, we define and study the semistable period ring and semistable represen-
tations. Our primary references for this section are the notes of Brinon-Conrad [BC|, §9] and
the notes of Fontaine-Ouyang [FO. §8].

1.1. The semistable period ring By

Throughout this section, we let K be a p-adic field with absolute Galois group 'y, inertia
group Ig, and residue field k. We write F' := C} and denote the fraction field of W (k)
by Ko. In addition, we fix a cyclotomic uniformizer ¢ = log() of Bl for some € € Z,(1) and
a distinguished element & = [p’] — p € Ajy¢ for some p° € O with (pb)Tj =p.

LEMMA 1.1.1. There exists a unique cocycle w : I'x — Zy(1) with
() =P’ for each v € T'k.

PRrROOF. The assertion is straightforward to verify. O

Definition 1.1.2. We refer to the cocycle w : 'y — Z,(1) given by Lemma as the
logarithmic cocycle associated to p°.

ProposiTioN 1.1.3. The tilted logarithm extends to a I'g-equivariant homomorphism
log : F* — B;R with an equality

log :i n—l—l([ /p_l ii (11)

n=1

PROOF. The tilted logarithm extends to a homomorphism O = (14 mp) x kj — Big
with trivial image on kj., where mp and kp respectively denote the maximal ideal and the
residue field of Op, and consequently extends to a homomorphism log : F* — B(J{R with the
equality as every ¢ € F'* admits an identity ¢™ = (pb)”c’ with ¢ € Oy for some m,n € Z.
Hence we obtain the assertion as the tilted logarithm is I'g-equivariant by construction. [J

Definition 1.1.4. We refer to the map log in Proposition as the extended tilted logarithm
and define the semistable period ring to be Byt := Beris[u] with u := log(pb).

Remark. Let us explain Fontaine’s insight behind the construction of Bg. Fontaine intro-
duced the ring By to formulate an analogue of the crystalline comparison isomorphism for
proper smooth varieties over K with semistable reduction. For an elliptic curve over K, hav-
ing semistable reduction means that the mod p reduction may have a nodal singularity. A
primordial example of an elliptic curve over K with semistable reduction is the Tate curve E,

which admits an identification E,(K) = K™ /p%. After noting that Vp(Ep) is isomorphic to
the Q,-subspace of Bqr spanned by t and u, Fontaine constructed By as a (Qp, 'k )-regular
ring containing Bes such that V,(Ep) is Bg-admissible.

187
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LEMMA 1.1.5. The group 'k acts on u via the equality

Y(u) =u+w(y)t for each vy € I'k.

PRrOOF. The assertion is evident as log is I'x-equivariant by construction. O

Remark. Since Theorem [2.2.26] in Chapter [[TI| shows that I'x acts on ¢ via the cyclotomic
character, we deduce from Lemma that the Q,-subspace of Bgqgr spanned by ¢ and u is
a nonsplit extension of Q, by Q,(1).

PROPOSITION 1.1.6. The element u € B;R is transcendental over the fraction field of Beys.

PRrROOF. Suppose for contradiction that wu is algebraic over the fraction field Cc.is of Beyis.
The element u € B:{R admits a unique minimal polynomial equation

wtout 4t egquteg=0  with ¢; € Cois.
For each v € 'k, we apply Lemma to obtain an equality

(u+ w4+ v(en) (u+ w4+ y(ca)(w+w()t) +v(ea) = 0
and in turn find ¢; = y(e1) + dw( )t by the uniqueness of the minimal polynomial equation.
We see that ¢; + du lies in BLX = >~ Ky by Theorem [3.1.14] in Chapter and consequently

cris
deduce that v is an element in Cps.

Since Cyis naturally embeds into the fraction field of the p-adically complete ring Aj.¢[[€/p]]
by Proposition [3.1.3]in Chapter[[TI] there exists an element b € A;n¢[[¢/p]] with b ¢ pAine[[€/p]]
and p°bu € Aine[[€/p]] for some integer e > 0. Let us write b = > a;(§/p)" with a; € Ajpe. If
each 0(a;) is divisible by p in Oc,., we see by Proposition in Chapter that each a; lies
in pAins + £Ains and in turn deduce that b is divisible by p in Aj¢[[{/p]], which is impossible.
Now we take the smallest integer m > 0 with 6(a,,) ¢ pOc, and obtain an identity

b—pr +b —+Zb

<m >m

where each b; is an element in Ajy¢ with 6(by,) ¢ pOc, . In addition, we fix an integer n > e
with p™ > m and find

-1 ¢ P

S Y
Jj<pm j>pn

Therefore we have an equality
b m-+p” -1 -1 j i+p" b,
A N T Dl —

j<p" i>pn i<m i>m

It is not hard to see that the third term on the right side lies in Ai[[¢/p]] + {™ P T1BE;,
while every other term on the right side belongs to either Au[[¢/p]] or £ 7" 1B}, . Since
the left side lies in £m+pnBérR, we deduce that the right side represents a sum of elements

in (&/p)™+P" Apne[[€/p]] and fm“”n“B:R. Hence we may write

O =V +&"  with b € Aie[[¢/p]] and V' € Bl
p

g

Now we find 015 (bn/p) = 0(bw)/p & Oc, and iz (V + &) = 01 (V) € Ocy, thereby
obtaining a desired contradiction. O

Remark. Proposition [1.1.6]implies that Bg; is isomorphic to the polynomial ring over Beyis.
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PROPOSITION 1.1.7. The ring Bg; is naturally a filtered Ky-subalgebra of Bqr which is stable
under the action of I'k.

PROOF. We note that B is canonically a Kyp-subalgebra of Bgr by Proposition
in Chapter [[T]] and consequently find that By is naturally a filtered Ky-subalgebra of Bgr
with Fil"(Bg) = Bst N t”B;fR for every n € Z. Now we apply Lemma to see that By is
stable under the I'ix-action, thereby establishing the desired assertion. O

Remark. It is worthwhile to mention that the embedding By <— Bggr is not completely
canonical; indeed, it depends on the definition of the extended tilted logarithm which involves
some choices.

PROPOSITION 1.1.8. The natural I'g-equivariant map By ®g, K — Bgg is injective.

PROOF. Proposition in Chapter [[T]] shows that the natural map Beris ® x, K — Bar
is injective. Moreover, since K is finite over Ky by Proposition in Chapter [[TT, we
deduce from Proposition [I.1.6] that u is trascendental over the fraction field of Beis @k, K.
Hence we find that the kernel of the natural map By ®k, K — Bgr is zero as desired. O

ProposITION 1.1.9. There exists a natural I'g-equivariant graded K-algebra isomorphism
gr(Bst @K, K) = Bur.

PROOF. Theorem [2.2.26] in Chapter [[T]] and Proposition together imply that the
canonical filtered K-algebra homomorphism By ®k, K — Bqgr yields an injective graded
K-algebra homomorphism

gr(BSt R K, K) — gr(BdR) =~ Byr. (12)

This map is surjective as it restricts to an isomorphism gr(Beris @k, K) = But given by

Proposition [3.1.10] in Chapter Moreover, since each Fil"(Bg) = Bgt N t”B(‘fR is stable

under the I'g-action by Theorem [2.2.26] in Chapter [[TI, we obtain a canonical action of I'k
on gr(Bst @k, K) and in turn deduce that the map (1.2)) is I x-equivariant. O

THEOREM 1.1.10 (Fontaine [Fon94al). The ring By is (Qp, 'k )-regular with BLE ~ K.

ProOF. The ring By is a subring of the field Bgqr and thus is an integral domain.
Proposition [I.1.7] implies that the fraction field Cy of By is a K(-subalgebra of Bqg which is
stable under the I'i-action. In addition, Theorem in Chapter [[TT and Proposition [I.1.§
together yield natural injective K-algebra homomorphisms

Bi¥ ®@x, K — BYS =K and O4¥ @k, K — By =K.
Therefore we have Ko = BLK = CL¥.

It remains to prove that every nonzero b € Bis with Q,b being stable under the I'x-action
is a unit. We apply Proposition m to write b = t"b’ for some b’ € (B('IR)X and n € Z. We
observe that t is a unit in By and in turn find ¥ = bt~ € Bg. Moreover, Theorem
in Chapter [ITI implies that Qpb’ is stable under the I'-action. Hence we may replace b by b/
to assume that b lies in (B('IR)X. Propositionin Chapteryields a polynomial equation

bd—l-Clbd_l—i-"'-f—Cd,lb-i-Cd:O with ¢qg # 0
where each ¢; is an element in the fraction field @‘ of W (k). Now we find
b_l = —C(;l(bd_l + Clbd_2 + -+ Cd—l) S Bcris

by noting that @1 naturally embeds into By, thereby completing the proof. O
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ProrosiTiON 1.1.11. The Frobenius endomorphism of Bgs canonically extends to a

' k-equivariant endomorphism ¢ on By with ¢(u) = pu.

PRrROOF. The assertion is evident by Lemma and Proposition [1.1.6 O

Remark. The equality ¢(u) = pu ensures that ¢ is compatible with the Frobenius automor-
phism on F'* via the extended tilted logarithm.

Definition 1.1.12. We refer to the map ¢ given by Proposition [I.1.11] as the Frobenius
endomorphism of Bg.

ProposiTioN 1.1.13. The Frobenius endomorphism of By is injective.

PROOF. Since the Frobenius endomorphism of B, is injective by Theorem [1.1.13] in
Chapter [[TT} we deduce the desired assertion from Proposition [I.1.6 O

PROPOSITION 1.1.14. There exists a unique Bgys-linear map N : Bgt — Bt such that each
element b = > b,u™ € By with b, € Beys satisfies the equality

N() =— Z nbyu" "t

n>1

PROOF. The assertion is an immediate consequence of Proposition O
Remark. We may identify IV as the unique B,s-derivation on Bg which maps u to —1.

Definition 1.1.15. We refer to the map N given by Proposition as the monodromy
operator on Bg;.

Remark. Let us provide some motivation for the construction of N. Fix a prime ¢ # p
and take the cocycle ¢ : Ix — Zy(1) given by the Ix-action on the f-power roots of a
uniformizer. For every proper smooth K-variety X with semistable reduction, the f¢-adic
I -representation V' := H; (X7, Q) turns out to admit a nilpotent endomorphism Ny such
that each v € Ik acts via exp(¢)(y)Ny). The endomorphism Ny serves as an analogue of the
monodromy operator from complex geometry. Moreover, the identification of each v € Ik
with exp(¢(v)Ny) indicates that Ny essentially behaves as the derivative of a representation
does. Fontaine introduced the monodromy operator N on Bg to provide an analogue of the
monodromy operator for p-adic I'x-representations.

PRrROPOSITION 1.1.16. The monodromy operator N on By satisfies the following properties:

(i) N is surjective with ker(N) = Beyis.

(ii) N is I'k-equivariant and admits the identity N o o = pp o N.

PROOF. Property is straightforward to verify by Proposition Moreover, given
an integer n > 1 we find by Lemma [I.1.5] that each v € I'j¢ satisfies the relation
N(y(u™) = N((u+wt)") = —n(u+w )" = —y(nu""") = (N ("))
and also see that ¢ yields the equality
N(p(u™) = N(p"u") = —np"u"~" = —pp(nu"~") = pp(N (u")),

thereby establishing property O
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1.2. Properties of semistable representations

For the rest of this section, we denote by o the Frobenius automorphism of Ky and by
Vectg, the category of Ko-vector spaces.

Definition 1.2.1. For a Ky-vector space V, we write Vg =V ®k, K.
(1) A (¢, N)-module over Kj is an isocrystal D over K together with a Ky-linear endo-
morphism Np, called the monodromy operator of D, which satisfies the equality
Npowp =pppoNp.

(2) A filtered (o, N)-module over K is a (¢, N)-module D over K\ such that Dy is a
filtered K-vector space.

(3) A Kp-linear map f : D — D’ for (¢, N)-modules D and D’ over Ky is a morphism
of (¢, N)-modules if it satisfies the identities

foep=wpof and foNp=Npof.

(4) Given two filtered (¢, N)-modules D and D’ over K, a morphism f : D — D’ of
(¢, N)-modules is K -filtered if the induced map fx : Dx — D’ is filtered.

Remark. A K-filtered isomorphism of (¢, N)-modules is a bijective K-filtered morphism of
(¢, N)-modules with a K-filtered inverse.

PROPOSITION 1.2.2. Let D be a filtered (¢, N)-module over K.

(1) Given a filtered (¢, N)-module D’ over K, the tensor product D @, D’ is naturally
a filtered (p, N)-module over K with monodromy operator Np ® 1 + 1 ® Npr.

(2) The dual DV = Homg, (D, Kj) is naturally a filtered (¢, N)-module over K with
monodromy operator given by the dual map of —Np.

PRrROOF. The assertions follow from Proposition in Chapter [[TI} O

Remark. We note that the formulas for the monodromy operators in Proposition |1.2.2] are
analogous to the formulas for the tensor products and duals of Lie algebra representations.

ProrosiTION 1.2.3. Let V be a p-adic I'x-representation.

(1) The Ko-vector space Dgt(V) := (V ®q, Bs)'¥ is naturally a filtered (¢, N')-module
over K with Frobenius automorphism 1 ® ¢, monodromy operator 1 ® N, and

Fil"(Dgt(V) k) = (V ®q, Fil"(Bst ®k, K)'x  for each n € Z. (1.3)
(2) There exists a canonical K-filtered isomorphism of isocrystals

Dcris(v) = Dst (V)1®N:0-

PROOF. Theorem in Chapter [I1I| and Theorem [1.1.10| together imply that Dg (V) is
a finite dimensional Ky-vector space. In addition, we find

Dg(V)kx = (V ®q, Bs)'™ @k, K = (V ®q, (Bst @k, K))'¥

and in turn deduce from Proposition that Dsi (V) is a filtered K-vector space with the
identification (|1.3]). Meanwhile, since 1 ® ¢ is o-semilinear by the fact that ¢ extends o, it is

bijective on Deyis(V') by Lemma in Chapter and Proposition [1.1.13] Now we apply
Proposition [1.1.16] to find

(1@N)o(l®g)=p(l®p)o(l&N)
and thus obtain statement Statement is straightforward to verify by statement U



192 V. ADDITIONAL TOPICS

Definition 1.2.4. Let V be a p-adic I'g-representation.

(1) We refer to Dg (V') in Proposition as the filtered (¢, N)-module associated to V.
(2) We say that V is semistable if it is Bg-admissible.

ProOPOSITION 1.2.5. A p-adic I'k-representation V is crystalline if and only if it is semistable
with trivial monodromy operator on Dg (V).

ProOF. By Proposition we may identify Deyis(V') with the kernel of the monodromy
operator on Dg (V). If V is crystalline, we apply Theorem in Chapter to find
dimg, V' = dimg, Deis(V) < dimpg, Dgt (V') < dimg, V'

and in turn deduce that V' is semistable with trivial monodromy operator on Dg (V). Con-
vsersely, if V' is semistable with trivial monodromy operator on Dg(V'), we obtain a canonical
isomorphism Deyis(V') = Dg (V) and thus see that V' is crystalline. O

Example 1.2.6. Theorem [2.2.26] in Chapter [[I]] and Lemma together imply that the
Qp-subspace V' of By spanned by ¢ and u is a p-adic I"g-representation. Since Dyt (V') contains

Ko-linearly independent elements t ® ¢! and —t ® ut~' + v ® 1, we find that the inequality
dimg, Dst(V) < dimg, V' = 2

given by Theorem in Chapter [[IT] must be an equality, which means that V' is semistable.
In addition, we observe that —t @ ut ' + « ® 1 does not map to 0 under 1 ® N and in turn
deduce from Proposition that V is not crystalline.

Remark. As mentioned after Definition the p-adic I'g-representation V is isomorphic
to the rational Tate module of the Tate curve E,. Hence its dual H}, (E,, Q,) is semistable by
Proposition in Chapter [[II|and Example In fact, the work of Tsuji [Tsu99] shows
that the p-adic étale cohomology of every proper smooth K-variety with semistable reduction
is semistable, as originally conjectured by Fontaine [Fon94b].

LEMMA 1.2.7. If a (¢, N)-module D over K has rank 1, its monodromy operator vanishes.
PRrROOF. Take a Ky-basis element e for D. We may write ¢p(e) = ce and Np(e) = e for
some ¢, ¢ € K. By the relation Np o pp = ppp o Np, we obtain the equality e’ = pco(c’).

Since we have ¢ # 0 and Kg:fl =0, we find ¢ = 0 and in turn see that Np vanishes.  [J
Remark. In fact, the monodromy operator of an arbitrary (¢, N)-module is nilpotent.

PRroOPOSITION 1.2.8. A p-adic I'k-representation V' of dimension 1 is semistable if and only if
it is crystalline.

PROOF. The assertion is evident by Proposition and Lemma [1.2. Il

Example 1.2.9. Example [3.2.10] in Chapter [[II] and Proposition together show that
every Tate twist Q,(n) of Q) is semistable; indeed, Dy (Qp(n)) is naturally isomorphic to the
simple isocrystal of slope —n with trivial monodromy operator and admits identifications

K form< —n,
0 for m > —n.

Fil" (Dt (Qp(n)) i) = {
LEMMA 1.2.10. Given an integer n, a p-adic I'i-representation V is semistable if and only if

its Tate twist V'(n) is semistable.

PROOF. Since we have V(n) = V ®g, Qy(n) and V = V(n) ®g, Qp(—n), the assertion
follows from Proposition in Chapter [[TT] and Example O
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ProprosiTION 1.2.11. If a p-adic I'k-representation V' is semistable, it is de Rham with a
natural K-linear filtered isomorphism

Dt (V)i = Dar (V).
PROOF. Proposition and Propositiontogether show that By ® g, K is naturally

a filtered K-subalgebra of Byr with

Fil"(Bg ®k, K) = (Bst ®k, K) NFil"(Bqr) for every n € Z.
Therefore Proposition [[.2.3] yields a natural injective K-linear filtered map

Dy (V)i = (V ®q, (Bst ®k, K))' — (V ®q, Bar)'* = Dar(V)

with an identification

Fil"(Dgt(V) k) = Dst(V)x NFil"(Dgr(V)) for every n € Z.
In addition, we find

dimg, Dst(V) = dimg Dgt(V)r < dimg Dgr(V') < dimg, V'

where the last inequality follows from Theorem [I.2.1]in Chapter [[II} Since V is semistable, we
see that both inequalities should be equalities and in turn establish the desired assertion. [l

Example 1.2.12. Given a continuous character 7 : I'x — QX with n(/x) being nontrivially

finite, Proposition [3.2.27| in Chapter and Proposition together imply that Q,(n) is

de Rham but not semistable.

ProproSITION 1.2.13. Let V be a p-adic I'k-representation and L be a finite unramified
extension of K with residue field [. Denote by Lg the fraction field of W (I).

(1) There exists an L-filtered isomorphism of isocrystals
Dst,K(V) ®K0 LO = Dst,L(V)
where we set Dy x (V) := (V ®q, Bst)'* and Dy 1.(V) := (V ®q, Bs)'*.
(2) V is semistable if and only if it is semistable as a I'z-representation.
PROOF. Lemma [2.4.16] in Chapter [[I]] shows that L is a p-adic field. Moreover, L and Lo
are respectively Galois over K and Ky with natural isomorphisms
Gal(L/K) = Gal(Ly/Ky) = Gal(l/k).
Hence we find
Dst,K(V) — Dst,L(V)Gal(L/K) — Dst,L(V)Gal(LO/KO)
and in turn apply Lemma [2.4.16] in Chapter [[TI| to obtain a natural bijective Lo-linear map
Dst,K(V) ®K0 Ly — Dst,L(V)' (1.4)
This map is evidently a morphism of (¢, N)-modules. In addition, by Proposition [2.4.17] in
Chapter and Proposition [1.2.11{ the map (1.4) induces an L-linear filtered isomorphism
(Dst,K(V) ®K, K) @k L = Dst,L(V) ®r L.

We deduce that the map (1.4]) is an L-filtered isomorphism of (, N )-modules and consequently
establish statement Statement is an immediate consequence of statement O

Remark. We can show that Proposition |1.2.13| remains valid for L = Kwm by the remark
following Lemma in Chapter [[fI On the other hand, Example [[.2.12] implies that
Proposition [1.2.13] fails for a ramified extension L of K.
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For the rest of this section, we denote by Rep?(’)fp (T'x) the category of semistable
I' x-representations and by MF?N the category of filtered (¢, N)-module over K.
PROPOSITION 1.2.14. Every V € Repf(‘)fp (I'x) admits a natural I"g-equivariant isomorphism
Dg(V) ®r, Bst =V ®q, Bst
with the following properties:

(i) It is compatible with the Frobenius endomorphisms and the monodromy operators.
(ii) It induces a filtered isomorphism of vector spaces

Dg(V)k ®k (Bst ®Ky K) 2V ®q, (Bst ®K, K).
PROOF. Theorem [1.2.1]in Chapter m implies that the natural Bg-linear map
Dst(v) ®KO By — (V ®Qp Bst) ®KO By =2V ®Qp (Bst QK, Bst) —V ®Qp B

is I'k-equivariant and bijective. Moreover, this map is compatible with the natural Frobenius
endomorphisms and monodromy actions on Dg (V) ®k, Bst and V ®q, Bst- Let us now
consider the induced K-linear bijective map

Dt(V)k @k (Bst @k, K) — V ®q, (Bst @k, K).

It is straightforward to verify that this map is filtered. Therefore by Proposition [2.3.10] in
Chapter [[TT} it suffices to prove the bijectivity of the graded map

gr (Dst(V)k ®k (Bst @K, K)) — gr (V ®Q, (Bst @K, K)). (1.5)

Proposition in Chapter [[IT] and Proposition show that V is Hodge-Tate with
gr(Dst(V)k) = gr(Dar(V)) = Dur(V)
We apply Proposition in Chapter [[TT] and Proposition to obtain isomorphisms
gr (Dst(V)k @Kk (Bst @K, K)) = gr(Dse(V) i) ®K gr(Bst @k K) = Dyr(V) @K Bur,
gr (V ®q, (Bst Ok, K)) =2V ®q, gr(Bst @K, K) =V Qq, Bur-
Now we identify the map with the natural isomorphism
Dur(V) ®k Bur =V ®q, Bur

given by Theorem in Chapter |LII| and thus establish the desired assertion. O

PROPOSITION 1.2.15. The functor D¢ with values in MF%N is faithful and exact on Rep%p (Tk).

PRrROOF. Since the forgetful functor MF%N — Vectg, is faithful, Proposition in
Chapter implies that Dy is faithful on Repap (I'k). Hence it remains to verify that Dg; is

exact on Repap (k). Consider an exact sequence of semistable I'g-representations
0 —U—V —W—0.

By Proposition in Chapter this sequence yields an exact sequence of (¢, N)-modules

0 — Dst(U) — Dgt(V) — Dgt(W) — 0. (1.6)
Moreover, we use Proposition to identify the induced sequence of filtered vector spaces

0 — Dst(U)xk — Dst(V)k — Dgt(W)g — 0
with the exact sequence of filtered vector spaces
0 — Dgr(U) — Dar(V) — Dar(W) — 0

given by Proposition in Chapter Therefore the sequence (3.6|) is exact in MF}%N. O
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PROPOSITION 1.2.16. Given a semistable I'x-representation V', every subquotient W of V is
semistable with Dg (W) naturally identified as a subquotient of Dg (V) in MngN.

PROOF. The assertion is an immediate consequence of Proposition in Chapter [IT]]
and Proposition [1.2.15 O

PROPOSITION 1.2.17. Given two semistable I' g -representations V and W, their tensor product
V ®q, W is semistable with a natural K-filtered isomorphism of (¢, N)-modules

Dst(V) XK, Dst(W) = Dst(V ®Qp W) (17)

PROOF. Proposition in Chapter EI shows that V ®q, W is semistable and yields
the desired isomorphism (|1.7]) as a Ky-linear bijection. It is straightforward to verify that the
map ([1.7)) is a K-filtered morphism of (¢, N)-modules. Moreover, we use Proposition [1.2.11
to identify the induced map
Dgt(V) ik @K Dst (W) — Dst(V ®q, W)k.
with the natural K-linear filtered isomorphism
Dar(V) @ Dar(W)k = Dgr(V ®q, W)

given by Proposition [2.4.11]in Chapter [[II] Hence we deduce that the map (1.7) is a K-filtered
isomorphism of (¢, N)-modules, thereby completing the proof. O

PROPOSITION 1.2.18. Given a semistable I'g-representation V' and a positive integer n, both
A™(V) and Sym"™ (V') are semistable with natural K-filtered isomorphisms of (¢, N)-modules

A"(Dst(V)) =2 Dt (A"(V))  and  Sym"(Dg(V)) & Dg (Sym"™(V)).

PROOF. Proposition in Chapter [I1I| shows that A™(V) and Sym" (V') are semistable.
Moreover, Proposition [1.2.5| in Chapter yields the desired isomorphisms as Kjy-linear bi-
jections. Proposition [1.2.16] and Proposition [1.2.17] imply that these maps are K-filtered
isomorphisms of (¢, N)-modules. O

Example 1.2.19. Given a semistable I' i-representation V', we have
1W(Dst(V(n))) = w(Dst(V)) —n  for each n € Z
by Example Proposition [1.2.17], and Proposition [1.2.18
PROPOSITION 1.2.20. For every semistable I'x-representation V', the dual representation V'V
is semistable with a natural K-filtered perfect pairing of (¢, NV)-modules
Dst(V) ®KO Dst(Vv) = Dst(V ®Qp Vv) —_— Dst(@p)-

PROOF. Proposition in Chapter [III] shows that V'V is semistable and yields the
desired pairing as a Kp-linear perfect pairing. This pairing is a K-filtered morphism of
(¢, N)-modules over K\ by Proposition [1.2.17] and thus gives rise to a K-filtered bijective
morphism of (¢, N)-modules

Dst(v)v - Dst(vv)- (18)
Moreover, we apply Proposition [1.2.11] to identify the induced K-linear filtered map
Dst(v)vK - Dst(VV)K
with the natural K-linear filtered isomorphism
Dar(V) = Dar(VY)
given by Proposition [2.4.14]in Chapter Now we deduce that the map (1.8)) is a K-filtered
isomorphism of (¢, N)-modules, thereby completing the proof. O
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For the rest of this section, we generally write ¢ and N respectively for maps naturally
induced by the Frobenius endomorphism and the monodromy operator on Bg.

PropPoOSITION 1.2.21. Every semistable I'g-representation V' admits canonical isomorphisms
V 2 (Dgt(V) ®K, Bst)?~ "V =0NFil° (Dot (V) ik @k (Bt @1 K))
~ ©=1,N=0 10
= o .
(Dst(v) ®K Bst) N Fil (Dst(V)K KK BdR)

PROOF. Proposition [1.2.14] yields a natural I'x-equivariant isomorphism
Dst(v) ®KO Bst =V ®Qp Bst

which is compatible with the Frobenius endomorphisms and the monodromy operators. More-
over, this isomorphism gives rise to a canonical filtered isomorphism

Dy (V)k ®k (Bst ®K, K) 2V ®q, (Bst ®K, K),
which in turn yields a natural filtered isomorphism
Dg(V)k @K Bar = Dar(V) @k Bar =V ®q, Bar-
Therefore we obtain canonical isomorphisms
(Dt(V) ®x, By)P=tN=0 =y 0, B;i:l,N:O,
Fil’ (Dot (V) ©K (Bst ®K, K)) 2V @q, Fil’(By @, K),
Fil (Dg (V) k @Kk Bar) =V ®q, Bix.

Since we have an identification B, =2 BS‘@:I’N:O given by Proposition we establish the
desired assertion by Lemma in Chapter [ITI} O

THEOREM 1.2.22 (Fontaine [Fon94b]). The functor Dy with values in MF%N is exact and
fully faithful on Rep%p (Tk).

PRrROOF. By Proposition [1.2.15, we only need to prove that Dg; is full on Rep%p (Tk).
Let V and W be arbitrary semistable I'g-representations. Consider an arbitrary morphism
f: Dst(V) — Dg (W) in MF%N. Proposition [1.2.14] yields a I"x-equivariant Bgi-linear map

V @, B 2 Du(V) @1, Bt - Dut(W) @10 B = W @0y, B,
Moreover, Proposition [1.2.21] implies that this map restricts to a Qp-linear map ¢ : V. — W.
Now we identify f with the restriction of ¢ ® 1 on (V ®q, Bst)'% under the identification

(V ®Qp Bst)FK = (Dst(v) ® Ko Bst)FK = Dst(v)
and in turn deduce that f corresponds to ¢ under the functor Dy;. O

Definition 1.2.23. Let D be a filtered (¢, N)-module over K.

(1) We say that D is weakly admissible if every nonzero filtered (¢, N)-submodule D’ of D
satisfies the inequality deg®(D’) < deg(D’) with equality for D' = D.

(2) We say that D is admissible if it admits an isomorphism D =~ Dg (V') for some
semistable I'i-reprsentation V.

Remark. While every weakly admissible filtered isocrystal is naturally a weakly admissible
filtered (¢, N)-module with zero monodromy operator, there exist weakly admissible filtered
(¢, N)-modules over K which are not weakly admissible filtered isocrystals. Nonetheless,
most statements about weakly admissible filtered isocrystals proved in Chapter [T have gen-
eralizations for weakly admissible filtered (¢, V)-modules.
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We close this section by stating two important theorems on semistable I' i -representations
without providing proofs.

THEOREM 1.2.24 (Colmez-Fontaine [CF00]). A filtered (¢, N)-module over K is admissible
if and only if it is weakly admissible.

Remark. In fact, Theorem [1.2.24] is not difficult to prove by adapting our argument for
Theorem [3.2.22] in Chapter [[V] Here we list some key analogues of statements proved in
Chapter [[V] about isocrystals and their associated vector bundles on the Fargues-Fontaine
curve.

very filtered (¢, N)-module D over K naturally gives rise to a I' x-equivariant vector
1) E filtered (¢, N dule D K naturally gi isetoal ivariant vect
bundle Fg (D) on X with canonical isomorphisms

H°(U, Ft(D)) = (D ®k, Bst)?~"=" and f@m ~ Fil'(Dk ®k Bar),

where Fﬁw denotes the completed stalk of Fy (D) at oo.

(2) Every I'kx-equivariant vector bundle V on X naturally gives rise to a (¢, N)-module
Dy (V) == (H°(U,V) ®p, Bg)'¥ over Ky with the following properties:

(i) There exists a canonical injective Bg-linear I' g-equivariant map
oy : Di(V) @ By — H°(U,V) @p, By.
(i) Dg(V) satisfies the inequality
dimpg, Dt (V) < rk(V)

with equality precisely when ay is an isomorphism.

3) Ever N)-module D over Ky admits a natural isomorphism
(3) Every (¢, p
D= ((D ®K0 Bst)SO:LN:O ®Be Bst)FK-

(4) Given a weakly admissible filtered (¢, N)-module D over K, the vector bundle Fy (D)
on X is trivial with rk(Fg (D)) = rk(D).

THEOREM 1.2.25 (Berger [Ber02]). A p-adic I'-representation is de Rham if and only if it
is semistable as a I'j-representation for some finite extension L of K.

Remark. The main inspiration for Theorem [1.2.25 comes from the semistable reduction the-
orem of Grothendieck [Gro72], which states that every abelian variety over K has semistable
reduction over a finite extension of K. The proof of this theorem crucially relies on the
study of I'g-representations with unipotent Ix-action, called unipotent I'k-representations.
For a prime ¢ # p, unipotent f-adic I'i-representations serve as analogues of semistable
I'x-representations; indeed, the f-adic étale cohomology of a proper smooth K-variety with
semistable reduction is unipotent. A key fact behind the semistable reduction theorem
is that every f-adic I'i-representation is unipotent as a I'p-representation for some finite
extension L of K. Theorem is an analogue of this fact for p-adic I'x-representations,
originally conjectured by Fontaine [Fon94b].

The key ingredients for Berger’s proof of Theorem are (p, o )-modules, which we
will briefly discuss in the next section. By means of (¢, 's)-modules, Berger discovered a
remarkable link between de Rham I'x-representations and p-adic differential equations. This
link allowed Berger to deduce Theorem from a conjecture of Crew [Cre98| on p-adic
differential equations proved by André [And02|, Kedlaya [Ked04], and Mebkhout [Meb02].
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2. Galois representations and ¢-modules

In this section, we classify various kinds of Galois representations via certain modules
with semilinear endomorphisms. Our primary references for this section are the notes of
Brinon-Conrad [BCJ, §3 and §13] and the notes of Fontaine-Ouyang [FO, §3].

2.1. Galois representations for fields of characteristic p
Let us begin by introducing some key algebraic notions for this section.

Definition 2.1.1. Let L be an arbitrary field.
(1) A mod-p T'r-representation is a finite dimensional F,-vector space V' with a contin-
uous homomorphism I';, — GL(V).

(2) An integrally p-adic T'r-representation is a finitely generated Z,-module M with a
continuous homomorphism I';, — GL(M).

Remark. We may regard mod-p I'p-representations as integrally p-adic I'z-representations
via the natural surjection Z, — [F,,.

Example 2.1.2. Let L be an arbitrary field.

(1) Given a p-divisible group G over L, its Tate module T),(G) is an integrally p-adic
I'z-representation by Proposition [2.1.18]in Chapter

(2) For a proper smooth variety X over L, the étale cohomology group HZ (X, 7Zy) is
an integrally p-adic I'z-representation.

Definition 2.1.3. Given a topological ring R with an action of a group I', a semilinear
I'-module over R is an R-module M which carries a continuous I'-action with

v(rm) = y(r)y(m) foreachy eI, r€ R, and m € M.

Example 2.1.4. Given a p-adic field K, every p-adic I'g-representation V' yields a semilinear
I'k-module V' ®q, Bgr over Bgr.

Definition 2.1.5. Let R be a ring with an endomorphism ¢.
(1) Given an R-module M, we define its p-twist to be p*(M) := M ®pg, R where the
factor R in the product has ¢ as structure morphism.

(2) Given two R-modules M and M’ , we say that an additive map f : M — M’ is
p-semilinear if it satisfies the identity

f(rm) =p(r)f(m) for each r € R and m € M.

(3) Given a p-semilinear map f : M — M’ for R-modules M and M’, we define its
linearization to be the R-linear map fi" : o*(M) — M’ with

flin(m®?”):?“f(m) for each m € M and r € R.

(4) A ¢-module over R is a finitely generated R-module M with a (p-semilinear endo-
morphism ¢y, called the p-endomorphism of M and often simply denoted by .

(5) An R-linear map f : M — M’ for p-modules M and M’ over R is a morphism of
p-modules if it satisfies the identity f o wn = @pr o f.

Example 2.1.6. Let E be a field of characteristic p with Frobenius endomorphism ¢. Every
a finite dimensional F-algebra A is naturally a @-module with ¢4 given by the p-th power
map. The p-twist of A and the linearlization of ¢ 4 respectively coincide with the p-Frobenius

twist A®) and the relative p-Frobenius cpi].
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We aim to classify various Galois representations for a field E' of characteristic p. We
assume for simplicity that E is perfect and write ¢ for the Frobenius endomorphism of F.

Definition 2.1.7. A p-module D over F is étale if cplli)n is an isomorphism.

Example 2.1.8. A finite flat E-group G = Spec (A) is étale if and only if the ¢p-module A is
étale by Proposition in Chapter [ and Example 2.1.6]

LEMMA 2.1.9. Let D be an étale p-module over E.
(1) Given an étale p-module D’ over E, the tensor product D®p D’ is naturally an étale
p-module over F with p-endomorphism ¢p ® @pr.
e dua is naturally an étale p-module over E wit i given by the dual map
2) The dual DV i 1l Stale (p-modul E'hcplll) by the dual
of (w}5") ™.
ROOF. statements are straighttorward to verity.
P All ightf d ify. O

LEMMA 2.1.10. Every semilinear I'g-module M over E admits a natural isomorphism
M=M"?®pE.

PROOF. Let us write GalMody /E for the category of semilinear I' z--modules over E, where
morphisms are I'g-equivariant E-linear maps, and Vecty, for the category of E-vector spaces.
A general fact stated in the Stacks Project [Stal Tag 0CDR] yields an equivalence

GalModE/E =~ Vectg

which sends each M € GalModg /i to MT'E with the inverse sending each V € Vectg
to V ®g E. Hence we establish the desired assertion. O

ProrosiTioN 2.1.11. Let V be a mod-p I'g-representation.

(1) The E-vector space Dyeq(V) := (V ®p, E)'F is naturally an étale ¢-module over E.
(2) There exists a canonical I"g-equivariant isomorphism

Diea(V)®p E=V @p, E (2.1)

which is compatible with the p-endomorphisms.

ProOOF. Lemma yields the I'g-equivariant isomorphism and in turn implies
that Dyeq(V) is finite dimensional. We see that Dyeq(V') is canonically a ¢-module over E
with p-endomorphism 1 ® ¢. Moreover, the isomorphism is evidently compatible with
the ¢-endomorphisms. Hence it remains to prove that Dy.q(V) is étale.

Let us write d := dimpg Dyeq (V). Take an E-basis (e;) of Dyeq (V') and an Fy,-basis (v;) of V.
Foreachi¢=1,--- ,d, we use the isomorphism to obtain an E-linear relation e; = > Ci jVj
and in turn find (1 ® ¢)(e;) = Zcf’jvj. Let M and M® respectively denote the d x d

matrices whose (i, j)-entries are ¢; ; and ¢! ;- Since M is invertible by construction, M () js

also invertible by the relation det(M®)) = det(M)P. Now we note that M~'M®) represents
the linearization of 1 ® ¢ and consequently deduce that D,.q(V) is étale as desired. O

Definition 2.1.12. Given a mod-p I'g-representation V', we refer to the p-module Dyeq(V)
in Proposition [2.1.11] as the mod-p étale p-module associated to V.

Remark. If we regard E as an (F,, I'g)-regular ring, we may identify Dyeq with a refinement
of the functor associated to E. Proposition implies that every mod-p I' g-representation
is E-admissible. Moreover, we can adapt our arguments in Chapter to prove that Dyeq is
compatible with tensor products and duals.


https://stacks.math.columbia.edu/tag/0CDR
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THEOREM 2.1.13. The functor D,¢q is an exact equivalence of categories
{ mod-p T'g-representations } — { étale p-modules over E }

whose inverse sends each étale p-module D over E to Vieq(D) := (D ®p E)?=.

PROOF. Let D be an étale p-module over E. The I'g-action on E is p-equivariant and
induces a I'g-action on Vieq(D). Moreover, we have a natural E-linear I' g-equivariant map

Veed(D) ®p, E — (D Qg E)®r, E — D®p (E®, E) — D®p E (2.2)

which is evidently compatible with the p-endomorphisms.
We assert that the map (2.2) is injective. Suppose for contradiction that the kernel is

nonzero. Take an Fp-basis (v;) of Vieq(D) and choose a nontrivial E-linear relation Y ¢;v; = 0
with minimal number of nonzero terms. We may set ¢; = 1 for some j. We have the identities

Z(ap(ci) -Gl = (Z civi) — chi =0 and ¢(¢j) —c¢j=¢(1)-1=0.

By the minimality of our relation, each ¢; satisfies the equality ¢; = ¢(¢;) and thus lies in F),.
Now we have a nontrivial Fp-linear relation ) ¢;v; = 0 for the F)-basis (v;) of Vieqa(D), thereby
obtaining a desired contradiction.

The injectivity of the map implies that Vieq(D) is finite dimensional over F,,. More-
over, the I"g-action on Vieq(D) is continuous as each element in Vieq(D) is a finite sum of pure
tensors and thus has an open stabilizer. We deduce that Vieq(D) is a mod-p I' g-representation.

Let us now prove that the injective map is an isomorphism. We only need to show
that Vieq(D) has Fp-dimension d := dimg D, or equivalently that Vieq(D) has p? elements.
Lemma implies that the dual DY of D is naturally an étale p-module. We take an
E-basis (f;) of DV and see that each f; yields an E-linear relation ¢(f;) = > ¢ jf;. Let us
denote by M the d x d matrix whose (7, j)-entry is ¢; ; and set A := E[ty,--- ,tq]/I for the
ideal I generated by the polynomials t¥ — " ¢; jt;. We obtain an identification

Vied(D) = { f € Homp(D",E): po f=fop}
induced by the isomorphism D ®g F = Homg(DV, F) and in turn find
V}ed(D) = HomE—alg(Ayﬁ)-

Meanwhile, we observe that A is étale over I; indeed, since M is invertible for representing
the linearization of the Frobenius endomorphism on DV, the A-module Q4 /£ Vvanishes by a
standard fact stated in the Stacks project [Stal Tag 00RU| and the relation

d(ﬁ - Zci,jtj) =- Zci,jdtj foreachi=1,---,d.

Now we note that A has rank p? over F and consequently see that V;eq(D) has p? elements
by a general fact about étale morphisms stated in the Stacks project [Stal Tag 00U3].

The isomorphism gives rise to an isomorphism of ¢-modules D = Dioq(Viea(D)).
Meanwhile, Proposition [2.1.11] shows that every mod-p I'g-representation V admits an
identification V' = Vieq(Drea(V)) and also implies that D,oq is exact as E is faithfully flat
over FE by a general fact stated in the Stacks project [Stal Tag 00HQ]. Hence we establish
the desired assertion. O

Remark. If F is not perfect, both Proposition [2.1.11] and Theorem [2.1.13| remain valid with
the separable closure E®P of E in place of E.


https://stacks.math.columbia.edu/tag/00RU
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For the rest of this section, we write & := W (E)[1/p] and 62?’ := W(F). In addition, we
let ¢ denote the Frobenius automorphism on & = W (E)([1/p].

LEMMA 2.1.14. The rings Og and @“ satisfy the following properties:
(i) There exists a natural I'g-action on 52,\“ with (@)FE = Op.
(ii) Both Os and 6}51?1 are complete discrete valuation rings with uniformizer p.
(iii) The ring (’/)E‘ is faithfully flat over Og.

PRrROOF. Property [(i)|is an immediate consequence of Theorem in Chapter [LIL Prop-

erty is evident by Lemma in Chapter [lI} Property follows from standard facts
stated in the Stacks project [Sta, Tag 0539 and Tag 00HQ). O

ProOPOSITION 2.1.15. Every finitely generated semilinear I'g-module M over (52?1 admits a
natural isomorphism

M = M'E o, OF.

PRrROOF. We begin with the case where M is p™-torsion for some n > 0. Since the assertion
is trivial for n = 0, we henceforth assume the inequality n > 0 and proceed by induction on n.

By Lemma [2.1.10, we observe that p"~!'M is isomorphic to E® for some d > 1 and in turn
find H'(T'g,p" 'M) = 0. Hence we use Lemma [2.1.14|to get a natural commutative diagram

0 — (" 'M)'* @, OF — M= @0, OF — (M/p"'M)"* ®0, OF — 0

! ! !

0— 5 p" M y M M/p" M ——— 0

with exact rows. Since the left and right vertical arrows are isomorphisms by Lemma [2.1.10
and the induction hypothesis, the middle vertical arrow is also an isomorphism as desired.

We now consider the general case. For each ¢,5 € Z with ¢ > 5 > 1, our discussion in the

previous paragraph and Lemma [2.1.14] together yield a short exact sequence
0 — ('M/p/ M)"® — (M/p’ M)'* — (M/p'M)"® — 0.
Moreover, Lemma [2.1.14] implies that M admit's an identification M £ thM /pj M and in-
duces a canonical isomorphism M'# = lim (M /p? M)VE with surjective transition maps. Hence
for each integer ¢ > 1, we obtain a short exact sequence
0 — p'M"s — M'e — (M/p'M)'E — 0
by a general fact stated in the Stacks project [Stal Tag 03CA] and in turn find
M/p'M = (M/p'M)'® ©o, OF = M2 /pM"® 9o, OF

where the first isomorphism follows from our discussion in the previous paragraph. In addition,
Lemma shows that M1? /pMe = (M /pM)'F is finite dimensional over E =2 O /pOeg,
which in particular implies that M= is finitely generated over O by a standard fact stated in
the Stacks project [Stal Tag 031D]. Now we establish the desired assertion as the @—modules
M and M'E R0, /2?1 are p-adically complete by Lemma O
Remark. Given a p-adic field K with residue field k, we can show that Proposition [2.1.15

remains valid with K, K" and k respectively in place of Og, /g?l and F, as remarked after

Lemma, in Chapter [ITI]


https://stacks.math.columbia.edu/tag/0539
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Definition 2.1.16. A p-module D over Oy is étale if 4,015“ is an isomorphism.

Remark. We may regard étale p-modules over E as p-torsion p-modules over Qg via the
natural surjection Og — FE.

LEMMA 2.1.17. Let D be an étale p-module over Opg.

(1) Given an étale p-module D’ over O, the tensor product D ®¢, D’ is naturally an
étale p-module over Op with p-endomorphism pp ® wpr.

(2) If D is free, the dual DV is naturally an étale p-module over O with goljijnv given by

the dual map of (¢h)~L.

PRrOOF. All statements are straightforward to verify. O

Remark. If D is torsion, we can show that the Pontryagin dual D" := Homo, (D, & /Og)
is naturally an étale p-module over Og. Moreover, for an étale ¢-module over E we can
naturally identify its F-dual with its Pontryagin dual.

PRrROPOSITION 2.1.18. Let D be a ¢-module over Og.

(1) For each integer n > 1, the Og-modules p"D and D/p"D are naturally ¢-modules
over Og.

(2) D is étale if and only if D/pD is étale.

PROOF. Statement is straightforward to verify by the equality ¢(p) = p. Let us
now consider statement We know by Lemma that Og is a discrete valuation ring
with uniformizer p. Since D and its p-twist are isomorphic Og-modules, the map cp%n is
an isomorphism if and only if it is surjective. Hence we establish the desired assertion by
observing that the surjectivity of Lplji)“ is equivalent to the surjectivity of (plgl/p D U

ProprosITION 2.1.19. Let M be an integrally p-adic I'g-representation.

(1) The Og-module Diy (M) := (M ®z, (’/);\H)FE is naturally an étale p-module over Og.

(2) There exists a canonical I' g-equivariant isomorphism

Ding(M) ®0, O = M @, O (2.3)

which is compatible with the ¢-endomorphisms.

PRrROOF. Proposition yields the I'g-equivariant isomorphism and in turn im-
plies that Diy (M) is a finitely generated Og-module. We see that Din (M) is canonically
a @-module over Og. Moreover, we note that the isomorphism is compatible with the
w-endomorphisms and consequently deduce from Lemma that Diy (M) is étale as the

linearization of the p-endomorphism on M ®z, @ is evidently an isomorphism. U

Definition 2.1.20. Given an integrally p-adic I'g-representation M, we refer to the
¢-module Djy (M) in Proposition [2.1.19| as the integral étale p-module associated to M.

Remark. If we identify mod-p I'g-representations and étale p-modules over E respectively
as p-torsion integrally p-adic I'g-representations and p-torsion étale p-modules over Og, we
may regard Dj,; as an extension of D,.q. Moreover, we can extend the compatibility of D,cq
with tensor products and duals to prove the compatibility of Dj,, with tensor products, duals
of free modules, and Pontryagin duals of torsion modules.
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THEOREM 2.1.21 (Fontaine [Fon90]). The functor Djy is an exact equivalence of categories
{ integrally p-adic I' g-representations } — { étale p-modules over O }

whose inverse sends each étale p-module D over Og to Min (D) := (D ®0, (5?‘)“’:1.

PRrROOF. Let D be an étale ¢-module over Og. The I'g-action on /2?1 is p-equivariant and
induces a I'g-action on My (D). Moreover, we have a natural OF"-linear I'g-equivariant map

Mini(D) ®z, O — (D @0, OF) @z, O — D @0, (04 @7, O4) — D ®o, O (2.4)
which is evidently compatible with the p-endomorphisms.

We assert that the map (2.4)) is an isomorphism. Let us first consider the case where D is
p™-torsion for some n > 0. Since the assertion is trivial for n = 0, we henceforth assume
the mequahty n > 0 and proceed by induction on n. By Theorem we observe that

"D ®0p » OF" is isomorphic to E® for some d > 1 and in turn find that (p — 1 is surjective

on p" D ®@€ (’)(}n. Hence we use the snake lemma, Lemma [2.1.14] and Proposition|2.1.18 to

obtain a commutative diagram

0 — Min(p"1D) @z, OB —s My (D) @7, O — Min(D/p"~' D) @z, OB — 0

l l l

0 Do, OF — s Do, OF — - DD g, OF — 5 0

with exact rows. Since the left and right vertical arrows are isomorphisms by Theorem [2.1.13
and the induction hypothesis, the middle vertical arrow is also an isomorphism as desired.

We now consider the general case. For each ¢,j € Z with ¢ > j > 1, our discussion in the

previous paragraph and Lemma [2.1.14] together yield a short exact sequence
0 — Mint(p'D/p’ D) — My (D/p? D) — Mint(D/p' D) — 0.
Moreover, Lemma [2.1.14] implies that D admits an identification D = lim D /P’ D and induces
a canonical isomorphism Mijn (D) =2 @Mmt (D/p’ D) with surjective transition maps. Hence
for each integer ¢ > 1, we obtain a short exact sequence
0 — p' Ming (D) — Mint(D) — Ming(D/p'D) — 0
by a general fact stated in the Stacks project [Stal Tag 03CA] and in turn find
D/p'D @0, O = Miw(D/p'D) @0, O = Min(D)/p' Min(D) ®0, OFF

where the first isomorphlsm follows from our discussion in the previous paragraph. In addition,
Theorem shows that Min(D)/pMint(D) = Min(D/pD) is finite dimensional over [,
which in particular implies that My (D) is finitely generated over Zp by a standard fact stated
in the Stacks project [Stal Tag 031D]. We deduce that the map is an isomorphism as

the @‘—modules D ®o, /2?‘ and My (D) ®z, OF" are p-adically complete by Lemma|2.1.14

It is not hard to see that the I'g-action on Mint(D) is continuous, which means that

Myt (D) is an integrally p-adic T'g-representation. Moreover, the isomorphism ([2.4)) induces
an isomorphism of ¢-modules D 2 Djn(Min(D)). Meanwhile, Proposition [2.1.19| shows that

every integrally p-adic I'g-representation M admits an identification M 22 My (Dint(M)) and
also implies by Lemma that Dj,y is exact. Hence we establish the desired assertion. [

Remark. If E is not perfect, both Proposition [2.1.19] and Theorem [2.1.21| remain valid with
Og and OF" replaced by the Cohen rings of E and its separable closure.
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Definition 2.1.22. A p-module D over & is étale if it admits an Og-lattice which is stable
under pp and is étale as a p-module over Opg.

Remark. If D is étale, it is not difficult to show that gplli)n is an isomorphism.

LEMMA 2.1.23. Given a field L, every p-adic I'-representation V' admits a Zp-lattice M which
is stable under the I'j-action.

PROOF. Let p : I', — GL(V) denote the map encoding the continuous I'z-action on V
and choose a Z,-lattice My in V. Since GL(M)y) is open in GL(V), its inverse image I'y
under p is open in the compact group I'y, and thus has finite index. Now we take I'g-coset
representatives yi,---,7, € I'x and deduce that the Zy-lattice M = > p(v;)Mp in V is
stable under the I'z-action, thereby completing the proof. O

LEMMA 2.1.24. Let D be an étale p-module over &.

(1) Given an étale p-module D’ over &, the tensor product D ®s D’ is naturally an étale
p-module over & with p-endomorphism ¢p ® @pr.

lin

(2) The dual DY is naturally an étale p-module over & with ¢}, given by the dual map

of (£}5") ™.
ProOF. All statements are immediate consequences of Lemma O

PropPOSITION 2.1.25. Let V be a p-adic I'g-representation.
(1) The &-vector space Dot (V) := (V ®q, @I)FE is naturally an étale ¢-module over &.

(2) There exists a canonical I'g-equivariant isomorphism
Dyat(V) @ 50 2V @, &0 (2.5)
which is compatible with the p-endomorphisms.
PROOF. By Lemma [2.1.23] the p-adic I'g-representation V' admits a Z,-lattice M which
is stable under the I"g-action. Moreover, M induces a natural &-linear isomorphism
Dray(V) = Dint(M)[1/p].
Hence the desired assertions are straightforward to verify. U

Definition 2.1.26. Given a p-adic I'g-representation V', we refer to the ¢-module Diyat (V)
in Proposition [2.1.25| as the rational étale p-module associated to V.

Remark. The compatibility of Dj,; with tensor products and duals of free modules yields
the compatibility of D,,; with tensor products and duals.

THEOREM 2.1.27. The functor D, is an exact equivalence of categories
{ p-adic T g-representations } — { étale p-modules over & }

whose inverse sends each étale p-module D over & to Viat(D) := (D ®o, gﬁ)@:l.

PROOF. For every étale p-module D over &, we find by Theorem that Viae(D) is a
p-adic I'g-representation and gives rise to an isomorphism of p-modules D == Dy (Vias(D)).
Meanwhile, Proposition shows that every p-adic I'g-representation V' admits an iden-
tification V' 2 Via(Drat (V) and also implies that Dy, is exact as &1 is faithfully flat over &
by a general fact stated in the Stacks project [Stal Tag 00HQ]. Hence we establish the desired
assertion. O

Remark. If F is not perfect, both Proposition [2.1.25] and Theorem [2.1.27| remain valid with
& and & replaced by the fraction fields of the Cohen rings of E and its separable closure.
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2.2. Galois representations for p-adic fields

In this subsection, we present a classification of various Galois representations for a finite
extension K of Q,. Let us state the following fundamental result without a proof.

THEOREM 2.2.1 (Scholze [Sch12]). Let C' be a perfectoid field.
(1) Every finite extension of C' is perfectoid.
(2) There exists a canonical isomorphism I'c = T, induced by a bijection

{ Finite extensions of C'} — { Finite extensions of C” }

which sends each finite extension L of C to its tilt L’.

Definition 2.2.2. Let (,~ denote the set of p-power roots of unity in K.
(1) The p-cyclotomic extension of K is Koo 1= K((p).
(2) The completed p-cyclotomic extension of K is the p-adic completion I/(O\o of K.

ProrosITION 2.2.3. The valued field I/(:o is perfectoid.

Proor. By Theorem we may assume the identity K = Q,. Since Ko is evidently
complete with a nondiscrete value group, we only need to show that the p-th power map is
surjective on OI?D\O / p(’)f(o\o . For each n > 1, we take a primitive p"-th root of unity (,» € K
and identify the valuation ring of K ((n) with Zy[(yn]. We see that O is isomorphic to the

—

p-adic completion Z,[(p] of Zy[(pe]. Meanwhile, Zy[(y~] admits an identification
ZplGre) 2 L[t 7]/ (L4 L4 Y

where t1/P™ denotes the set of p-power roots of the variable ¢. Hence we find

—_—

O@/])O@ = Zp[Cpoe] /P Zip[Cpe] = Zp[Cpoe ] /PLp|Cpoe]
= B[/t — 1P 2 F )

and in turn establish the desired assertion. O

—b

Definition 2.2.4. The perfectoid norm field of K is Fx := K .

PROPOSITION 2.2.5. The field Ex admits a canonical continuous ¢-equivariant I'g-action
under which I'c_ acts via a natural isomorphism I'x, . = I'g,. .

PROOF. The action of Gal(K /K ) = ' /T'k on K is continuous and uniquely extends

to a continuous action on I/(o\o Therefore Fx = @1 I/(O\o is stable under the continuous
x—xP
I'k-action on (CbK = m Cg. Moreover, we naturally identify Ex as a subfield of C'}( by
x—xP

Proposition in Chapter and see that Ex is also stable under the I'i-action on C%.
It is evident by construction that the I'x-action on Ex is ¢-eqivariant. Now we obtain
a natural isomorphism ' = I'g, by Lemma in Chapter El and Theorem m
thereby completing the proof. O

Remark. The work of Fontaine-Wintenberger [FW79a, [FW79b| constructs a discretely
valued subfield E}i(isc of Ex, called the norm field of K, and proves that Proposition re-
mains valid with E}iésc and its separable closure respectively in place of Ex and Ex. Moreover,
Edis¢ turns out to be isomorphic to keo((t)) Where ko, denotes the residue field of K.
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Definition 2.2.6. Let us write I's, := Gal(K«/K) and &k := W(Eg)[1/p].
(1) A (p,I'o)-ring is a topological O, -algebra R with a ¢-semilinear endomorphism ¢p,
often simply denoted by ¢, and a continuous ¢ g-equivariant I',,-action.

(2) Given a (¢, I'x)-ring R, a (¢, '« )-module over R is a p-module D over R which is
also a semilinear I'wo-module with the I -action being ¢-equivariant.

(3) Given a (¢, 'y )-ring R, an R-linear map f : D — D' for (p,'s)-modules D and D’
over R is a morphism of (¢, 's)-modules if it is I'oo-equivariant with foepp = ppof.

Remark. We can extend the notion of (¢, 's)-rings by replacing O, with the Cohen ring
of E%sc. Tt is worthwhile to mention that many authors denote Gal(K/K) by 'k and
Gal(K/K) by Gk.
Example 2.2.7. Proposition implies that Ex, Og,, and &k are naturally (¢, 's)-rings
as ' admits an identification I'se = ' /T'k._ .
Definition 2.2.8. A (¢p,I's)-module over Og, is étale if it is étale as a p-module.
LEMMA 2.2.9. Let D be an étale (¢, ' )-module over Og, .

(1) Given an étale (¢,'s)-module D" over Og, , the tensor product D ®0y, D’ is nat-

urally an étale (¢,I's)-module over Og, .
(2) If D is free, the dual DV is naturally an étale (¢, I'ss)-module over Og, .

PRrROOF. The assertions immediately follow from Lemma O

Remark. If D is torsion, we can show that the Pontryagin dual D" := Homp i (D5 €k [ Oy )
is naturally an étale (o, I's)-module over Og, .

THEOREM 2.2.10. There exists an exact equivalence of categories
{ integrally p-adic I'kx-representations } — { étale (p, ['s)-modules over Og,. }

induced by the functor D;y; and its inverse Miy.

PRrROOF. Let us write 52\; := W(Ek). Consider an integrally p-adic I'x-representation M
and an étale (¢,I')-module D over Og,.. We observe that M is canonically an integrally
p-adic I'g, -representation via the isomorphism I'x . = I'g,. given by Proposition and
thus gives rise to an étale p-module Diy (M) = (M ®z, @ )F Bk over Og, . In fact, Diy (M) is
naturally an étale (¢, I'ss)-module over Og, as easily seen by Proposition and the isomor-
phism ' 2 T'x /T'k.. . Meanwhile, since D carries a canonical I'g-action given by the surjec-
tion I'x — I'ag, the Zy-module Min (D) = (D ®o,, O/(‘)}o\; )#=1 is naturally an integrally p-adic
I'x-representation. Now we apply Theorem to obtain a Z,-linear I'x-equivariant iso-
morphism M = My (Ding(M)) and an isomorphism of (¢, I'w)-modules D = Djn(Min (D)),
thereby establishing the desired assertion. O

Remark. Let us mention two additional facts about the equivalence in Theorem

(1) By the remark after Definition the equivalence is compatible with tensor
products, duals of free modules, and Pontryagin duals of torsion modules.
(2) By the remark after Theorem the equivalence remains valid with the Cohen
ring of E¥¢ in place of O, .
Example 2.2.11. Since the p-adic cyclotomic character x of K factors through the surjective
map ' — ', we use Theorem to obtain a natural isomorphism of (¢, I's)-modules

Dint(Zp(n)) = Og,. (n)  for each n € Z.
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Definition 2.2.12. A (¢,I's)-module over Ef is étale if it is étale as a @p-module.
LEMMA 2.2.13. Let D be an étale (¢, 's)-module over Ef.

(1) Given an étale (¢, I's)-module D’ over Eg, the tensor product D®p, D’ is naturally
an étale (¢, 's)-module over FEf.

(2) The dual DY is naturally an étale (p, '« )-module over Ef.
PROOF. The assertions immediately follow from Lemma [2.1.9] O
THEOREM 2.2.14. There exists an exact equivalence of categories
{ mod-p T'g-representations } — { étale (¢, ['s)-modules over Ey }
induced by the functor D,.q and its inverse Vieq.
ProoF. Every mod-p I'k-representation is canonically a p-torsion integrally p-adic
I'-representation. Meanwhile, every étale (p,I's)-module over Ef is naturally a p-torsion

étale (¢, I's)-module over Og, . Therefore the desired assertion is straightforward to verify
by Theorem [2.2.10 g

Remark. The remark after Theorem [2.2.10] implies the following facts:

(1) The equivalence in Theorem [2.2.14]is compatible with tensor products and duals.
(2) The equivalence in Theorem [2.2.14| remains valid with E%$¢ in place of Ef.
Example 2.2.15. Example [2.2.11| and Theorem together yield a natural isomorphism

of (¢, 's)-modules
Dyeq(Fp(n)) = Ex(n)  for each n € Z.

Definition 2.2.16. A (p,I's)-module D over &k is étale if it admits an Og, -lattice which
is stable under the I'y[p]-action and is étale as a p-module.
LEMMA 2.2.17. Let D be an étale (¢, 's)-module over &%.

(1) Given an étale (¢, 's)-module D" over &, the tensor product D ®g, D’ is naturally
an étale (¢, 's)-module over &x.

(2) The dual DV is naturally an étale (p, '« )-module over &x.
PROOF. The assertions immediately follow from Lemma [2.2.9] O
THEOREM 2.2.18. There exists an exact equivalence of categories

{ p-adic T g-representations } — { étale (¢, I'oo)-modules over & }

induced by the functor D;,t and its inverse Viat.

PRroOOF. Every p-adic I'g-representation admits a Zp-lattice which is stable under the
I'k-action by Lemma Meanwhile, every étale (¢, I's)-module over &k contains an
O, -lattice which is stable under the I'c[p]-action and is étale as a p-module over Og,.
Therefore the desired assertion is straightforward to verify by Theorem [2.2.10 g

Remark. The remark after Theorem [2.2.10] implies the following facts:

(1) The equivalence in Theorem [2.2.18|is compatible with tensor products and duals.
(2) The equivalence in Theorem [2.2.18| remains valid with &k replaced by the fraction
field of the Cohen ring of E?(isc.

Example 2.2.19. Example [2.2.11] and Theorem [2.2.18| together yield a natural isomorphism
of (¢, I's)-modules
Dyat(Qp(n)) = Ex(n)  for each n € Z.
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3. The Fargues-Fontaine curve and p-adic geometry

In this section, we introduce some fundamental notions in p-adic geometry and use them
to describe another incarnation of the Fargues-Fontaine curve. The primary reference for this
section is the book of Scholze-Weinstein [SW20].

3.1. Huber rings and adic spaces

Our main objective for this subsection is to briefly discuss a modern framework for nonar-
chimedean geometry developed by Huber [Hub93, Hub94].

ProposiTiON 3.1.1. Every totally ordered abelian group 7" naturally gives rise to a totally
ordered monoid TU {0} with7-0=0-7=0and 0 <7 for each 7 € T
PROOF. The assertion is straightforward to verify. (]

Definition 3.1.2. Given a totally ordered abelian group 7', we define its extension by mini-
mum element to be the monoid 7"U { 0 } given by Proposition

Example 3.1.3. For the additive group R with the natural total order, its extension by
minimum element is the additive monoid [—oo, 00).

Definition 3.1.4. Let R be a topological ring.

(1) A wvaluation on R is a nonconstant map v : R — T"U {0 } for some totally ordered
abelian group 7" with

v(rs) =v(r)v(s) and wv(r+s) <max(v(r),v(s)) for every r,s € R.
(2) Two valuations v and w on R are equivalent if there exists an isomorphism of totally
ordered monoids ¢ : v(R) ~ w(R) with é(v(r)) = w(r) for each r € R.

(3) A valuation v: R — T U{0} for a totally ordered abelian group T is continuous if
for every 7 € T the set {r € R:v(r) <7 } is open in R.

(4) The continuous valuation spectrum of R, denoted by Cont(R), is the set of equiva-
lence classes of continuous valuations on R.

(5) For every f € R and x € Cont(R), the value of f at x is |f(x)| := v(f) where v is a
representative for x.

Example 3.1.5. We record some simple examples of continuous valuations.

(1) Given a topological ring R, every open prime ideal p of R gives rise to a trivial

valuation vy, on R with
o (r) = 0 forrep,
T forrép.

(2) Given a nonarchimedean field L, its valuation v is evidently continuous.

Remark. For a nonarchimedean field L, we may take values of the valuation v in the multi-
plicative monoid [0, 00) via an isomorphism [0, 00) ~ (—o0, 00| given by a logarithm map.

LEMMA 3.1.6. Given a topological ring R, every valuation v on R satisfies the equalities
v(0)=0 and v(1)=1.
PROOF. We note that every nonzero element in v(R) is invertible. If v(0) is nonzero, for
each r € R we have v(0) = v(r)v(0) and thus obtain the identity v(r) = 1, which is impossible

as v is not constant. Hence we deduce that v(0) is zero. Moreover, we take an element r € R
with v(r) # 0 and use the relation v(r) = v(r)v(1) to find v(1) = 1. O
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Definition 3.1.7. Let R be a topological ring.
(1) R is adic if it admits a neighborhood basis at 0 given by the powers of an ideal I,
called an ideal of definition.

(2) R is Huber if it admits an open adic subring Ry, called a ring of definition, with a
finitely generated ideal of definition.

Example 3.1.8. Let us present some simple examples of Huber rings.
(1) Every ring R with the discrete topology is a Huber ring; indeed, R is a ring of
definition with an ideal of definition given by the zero ideal.

(2) Every nonarchimedean field L is a Huber ring; indeed, Oy, is a ring of definition with
an ideal of definition given by mQOp, for any element m in the maximal ideal.

Definition 3.1.9. Let R be a Huber ring.
(1) A pair of definition for R is a pair (Rp, I) for some ring of definition Ry and its ideal
of definition I.

(2) A rational pair for R is a pair (T, g) consisting of a nonempty finite set 7' C R with
TR being open in R and an element g € R with g" # 0 for every integer n > 0.

PROPOSITION 3.1.10. Let R be a Huber ring and (7, g) be a rational pair for R. Fix a pair
of definition (Rp, ) for R and denote the elements of T' by fi,-- -, fn.
(1) The ring Ro[T/g] :== Ro[f1/g, - , fn/9]) is adic with an ideal of definition I Ry[T"/g].
(2) Thering R[1/g] is naturally a Huber ring with a pair of definition (Ry[T"/g], I Ro[T'/g])-

PROOF. Let us consider the topology on R[1/g] with a neighborhood basis at 0 given by
the powers J := IRy[T'/g]. It suffices to show that the multiplication on R[1/g] is continuous.
Take an arbitrary intger n > 0. We only need to find an integer m > 0 with g~ 1J™ C J" as
the multiplication on R is continuous.

Fix an integer i > 0 with I* C TR and choose a finite set S C R such that T'S contains
generators of I* over Ry. There exists an integer 5 > 0 with SI7 C I™ by the continuity of
the multiplication on R. Hence we set m = ¢ + j and find

gfllm — gfl‘[iJrj C gflTS]j C gflTIn C J”7
thereby establishing the desired assertion. O

Definition 3.1.11. Let R be a Huber ring with a pair of definition (Ro,I) and (7, g) be a
rational pair for R.

(1) The localization of (Ry, I) with respect to (T, g) is the pair (Ro[T/g], I Ro[T'/g]) given
by Proposition [3.1.10
(2) The localization of R with respect to (T,g), denoted by R(T/g), is the Huber
ring R[1/g] with a pair of definition (Ro[T"/g], IRo[T/g]).
Example 3.1.12. Let L be a nonarchimedean field and (7, g) be a rational pair for L.

(1) If Oy, contains f/g for each f € T, the localization L(7T/g) is the field L with its
valuation topology; indeed, for every element m in the maximal ideal, the localization
of ((’)L,mOL) is (OL, mOL)

(2) If O, does not contain f/g for some f € T, the localization L(T/g) is the field L

with the trivial topology; indeed, for every element m in the maximal ideal, the
localization of (Or,mOp) is (L, L).
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Definition 3.1.13. Let R be a topological ring.

(1) A subset S of R is bounded if for every open neighborhood U of 0 there exists an
open neighborhood V of 0 with V.S C U.

(2) An element r € R is power-bounded if its powers form a bounded subset of R.
Example 3.1.14. Let us describe the power-bounded elements for some Huber rings.

(1) For aring R with the discrete topology, every element in R is power-bounded; indeed,
every subset of R is bounded as the zero ideal is open.

(2) For a nonarchimedean field L, the power-bounded elements in L are precisely the
elements in the valuation ring Oy ; indeed, a subset of L is bounded if and only if its
image under the valuation is bounded.

Definition 3.1.15. A Huber pair is a pair (R, RT) consisting of a Huber ring R and its
integrally closed open subring R such that all elements in R™ are power-bounded.

Example 3.1.16. Below are Huber pairs given by Example|3.1.14

(1) Every ring R with the discrete topology yields a Huber pair (R, R).

(2) Every nonarchimedean field L yields a Huber pair (L, Op,).
Definition 3.1.17. Let (R, R") be a Huber pair.

(1) The adic spectrum of (R, RT) is the set

Spa(R,R") := { z € Cont(R) : |f(z)| <1 for each f € R" }
with the topology generated by subsets of the form
U(f/g):={zeSpa(R,RT):|f(z)] <l|g(z)| #0} for some f,g € R.
(2) Given a rational pair (T, g) for R, the associated rational subset of Spa(R, R) is
U(T/g) :={x € Spa(R,R") : |f(z)| < |g(z)] #0 for each f €T }.

Remark. Huber [Hub94] shows that the topological space Spa(R, R™) is spectral.

Example 3.1.18. Given a nonarchimedean field L, we assert that Spa(L,Op) consists of a

unique point given by the valuation v on L. Let w be a continuous valuation on L whose

equivalence class lies in Spa(L,Or). We note that Op lies in the ring
Ow:={ceL:w()<1}.

If O, contains an element ¢ ¢ Or, we find O, 2 Op[c] = L and deduce that w is trivial,
which is impossible since the zero ideal is not open in L. Hence we must have O,, = Or. Now
we see that w is equivalent to v via the isomorphism

w(L*)=L*/0y = L*/Of =v(L"),
thereby completing the proof.

Definition 3.1.19. Given two Huber pairs (R, R") and (Q,Q"), a morphism from (R, R™)
to (Q, Q™) is a continuous ring homomorphism A : R — Q with h(RT) C Q*.

LEMMA 3.1.20. For Huber pairs (R, RT) and (Q, Q"), every morphism h : (R, RT) — (Q, Q™)
naturally induces a continuous map 7 : Spa(Q, Q%) — Spa(R, R™).

PROOF. Take an arbitrary point z € Spa(Q, Q™) and choose its representative v. The
equivalence class of the continuous valuation v o h lies in Spa(R, R"). Moreover, this equiv-
alence class belongs to U(f/g) for some f,g € R if and only if = belongs to U(h(f)/h(g)).

Therefore we establish the desired assertion. O
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In order to describe additional structures on the adic spectrum of a Huber pair, we state
the following crucial result without a proof.

PROPOSITION 3.1.21. Let (R, RT) be a Huber pair and write S := Spa(R, R™).

(1) The rational subsets of S form a basis of open sets in S.
(2) Every rational subset U of S naturally gives rise a Huber pair (Os(U), O (U)) and
a morphism hy : (R, R") — (Os(U), O (U)) with the following properties:
(i) Given a rational pair (7', g) for R with U = U(T/g), the Huber ring Os(Uf) is
canonically isomorphic to the completion of the localization R(T/g).
(ii) The ring O (1) admits an identity
OLU)={feOsW):|fU)| <1foreachz € W}.
(iii) The map Spa(Os(U), O (U)) — S induced by hy is a homeomorphism onto U.
(iv) A morphism of Huber pairs (R, R™) — (Q, Q") with @ being complete uniquely
factors through (Og(U), (9;5r (U)) if the map Spa(Q, Q") — S factors through U.

Remark. Curious readers can find a proof of Proposition [3.1.21] in the original article of
Huber [Hub94., Proposition 1.3] or the survey article of Wedhorn [Wed19, Proposition 8.2].

Definition 3.1.22. Let (R, RT) be a Huber pair and write S := Spa(R, R™).

(1) Given a rational subset U of S, its affinoid Huber pair is the pair (Os(U), O (U))
constructed in Proposition [3.1.21
(2) The structure presheaf on S is the presheaf Og of topological rings with

Os(W)= lim Os(U) for every open W C S.

ucw
U rational

(3) The pair (R, RT) is sheafy if Og is a sheaf of topological rings.
Remark. We can also define the presheaf Og of topological rings with
of(W) = lim Of(U) for every open W C S.

ucw
U rational

If (R, R") is sheafy, Og is a sheaf by Proposition [3.1.21
Example 3.1.23. We present sheafy Huber pairs given by a result of Huber [Hub94].

(1) Every Huber pair (R, R") for a ring R with the discrete topology is sheafy.

(2) Every Huber pair (R, R") for a complete Huber ring R with a noetherian ring of
definition is sheafy.

Definition 3.1.24. A locally valued ringed space is a topological space S with a sheaf Og of
topological rings and an element v, € Cont(Os ) for each z € S.

PROPOSITION 3.1.25. Given a sheafy Huber pair (R, R™), its adic spectrum S is naturally a
locally valued ringed space.

PROOF. The presheaf Og is a sheaf as (R, RT) is sheafy. Moreover, by Proposition [3.1.21
every x € S yields an element vy € Cont(Os(U)) for each rational subset U of S with z € U
and consequently gives rise to an element v, € Cont(Os ;). O

Remark. It turns out that every stalk of Og is a local ring.

Definition 3.1.26. An adic space is a locally valued ringed space which admits an open
cover by adic spectra of sheafy Huber pairs.
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3.2. The adic Fargues-Fontaine curve

Throughout this subsection, we let F' be an algebraically closed perfectoid field of char-
acteristic p and denote by Y the set of equivalence classes of untilts of F' in characteristic 0.
In addition, we write mp for the maximal ideal of Op and |mp| for the image of mp\ {0} in
the value group of F.

PROPOSITION 3.2.1. The topological ring Ajy¢ yields a Huber pair (Ajuf, Aint)-

PROOF. The ring Aj,¢ is adic and Huber; indeed, for every nonzero tw € mp, it admits an
ideal of definition generated by p and [w]. We see that every subset of Aj,¢ is bounded and
consequently establish the desired assertion. O

LEMMA 3.2.2. Given a nonzero element w € mp, a valuation v on Ay with v([w]) = 0
satisfies the equality v([m]) = 0 for every m € mp.

PrOOF. The assertion is straightforward to verify by observing that every m € mp yields
an integer n > 1 with m” € wOp. g

Definition 3.2.3. The adic punctured disk of untilts is the set

Y = Yr = {x € Spa(Ainf, Aint) : |plw](z)| # 0}
where we fix a nonzero element w € mp.
Remark. Lemma shows that ) does not depend on the choice of w.

PROPOSITION 3.2.4. Let C be an untilt of F' in characteristic 0.

(1) The nonarchimedean field C yields a Huber pair (C, O¢).

(2) There exists a natural continuous map G%d : Spa(C, O¢) — Spa(Aint, Ainf) induced
by the Fontaine map 6¢.

PROOF. Since statement is evident by Example [3.1.16] we only need to establish
statement It is straightforward to verify that the map 0¢c : Ajnr — O¢ is continuous.

Therefore the composition of 8 with the embedding O¢ — C yields a morphism of Huber
pairs (Aint, Aint) — (C, O¢). Now the desired assertion follows from Lemma [3.1.20 O

Definition 3.2.5. For an untilt C' of F' in characteristic 0, we refer to the map G%d constructed
in Proposition as the adic Fontaine map of C.

ProOPOSITION 3.2.6. There exists a natural embedding Y — ) which sends each y € Y with
a representative C' to the image of O%d.

PROOF. For each untilt C of F' in characteristic 0, we apply Example to see that
the image of the map G%d : Spa(C, O¢) — Spa(Aing, Aint) is a point in Y; indeed, it admits a
representative ve with ve(f) = |0c(f)|o for every f € Aine. If two untilts C and C’ of F in
characteristic 0 are equivalent, it is straightforward to verify that vc and ver are equivalent.
Conversely, if the valuations ve and ver for untilts C' and C’ of F in characteristic 0 are
equivalent, Theorem in Chapter implies that C' and C’ are equivalent. Therefore
we obtain the desired assertion. 0

Remark. Similarly, there exists a natural embedding (0,1) < ) which sends each p € (0,1)
to the equivalence class of the Gauss p-norm on Aj,s. Moreover, the image of this map is
disjoint from the image of the embedding Y — ).

Definition 3.2.7. Given an element y € Y, its associated classical point on ) is the image
of y under the embedding Y < ) given by Proposition [3.2.6
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LEMMA 3.2.8. Two elements c¢1,co € Op with |c1| < |co| satisfy the inequality
I[e1](x)] < |[e2](x)]  for every x € Spa(Ainf, Aint) (3.1)

with equality precisely when we have |ci| = |ea].
PROOF. Since cicy ! lies in O, the inequality (3.1)) follows from the identity

llea](@)] = [lerey (@) [fe2] ()]

If we have |c1| = |ca|, we find |[c1](z)| > |[c2](z)| by the relation ¢;'co € Op and thus see
that the inequality is an equality. If we have |c;| < |c2|, we note that [01_162] € A is
topologically nilpotent and in turn use Lemma to obtain the relation |[c1c; 1](33)} <1,
which in particular implies that the inequality (3.1]) is strict. Therefore we establish the
desired assertion. O

Definition 3.2.9. Given elements a,b € |mp|, the adic [a, b]-annulus of untilts is
Viap) = {2 €Y |lwa](z)] < [p(x)] < |[ws] ()] }
where we fix elements w,, wy € mp with |w,| = a and |wy| = b.

Remark. Lemma implies that )|, does not depend on the choice of w, and .

PROPOSITION 3.2.10. Let a,b be elements in [mpg|.
(1) If @ and b satisfy the inequality a > b, the set ),y is empty.
(2) For each a’,b’ € [mp| with [a,b] C [a', V], we have Vg p) € Vo p]-
(3) For each a’,b" € |mp| with [a,b] and [, b'] being disjoint, V), ) and Vo ) are disjoint.
PrROOF. The assertions are straightforward to verify by Lemma [3.2.§ g

Remark. If a and b are arbitrary elements in the interval (0, 1), Proposition [3.2.10{allows us to
extend Definition by setting V45 as the intersection of the sets V|, ) with o', b’ € [mp|
and [a,b] C [d/,V].

PROPOSITION 3.2.11. Given an element y € Y|,y for some a,b € |mp|, its associated classical

point on Y lies in Y, p)-

PRrOOF. Choose a representative C of y. The classical point associated to y admits a
representative vo with vo(f) = |0c(f)|o for every f € Ajns. Hence we deduce the assertion
by observing the identities vo(p) = |y| and vo([w]) = |w| for every w € mp. O

Remark. Similarly, for each p € [a,b] the equivalence class of the Gauss p-norm on Aj,s
yields a point in Vg p)-

ProrosSITION 3.2.12. The set ) admits an identity
y=U Yan

a,be‘mFl

PRrOOF. Take an arbitrary point x € ) and choose a nonzero element w € mpg. Since
both p and [w] are topologically nilpotent in Aj,f, we apply Lemma to obtain the
inequalities |p(z)| < 1 and |[w](x)| < 1. Hence we find integers i, j > 0 with

[1=](@)] < Ip(@)] < |[="7]()

and in turn deduce that x lies in yﬂw -

v Now the desired assertion is evident. ]
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Let us now invoke the following technical result without a proof.

THEOREM 3.2.13 (Kedlaya-Liu [KL15]). Let a,b be elements in |mpg|. For every integrally
closed open subring BE; b] of Bjgy), the pair (B, ), B[Z b]) is a sheafy Huber pair.

PROPOSITION 3.2.14. Let a,b be elements in |[mp|.
(1) Vb is a rational subset of S := Spa(Aint, Ajnf)-

(2) Vja,p is naturally an adic space with a canonical isomorphism Os(Va4)) = Bla -

PROOF. Let us begin with statement Take w,, wp € mp with |w,| = a and |wp| = b.
We note that Y}, ; admits an identification

Viaw = { © € Spa(Aint, Aint) : |[@ams](2)], [p*(2)| < |[@p]p() #0 } .

Since the set T' := { Wy, P } generates an open ideal in Aj, ¢, we deduce that Viap] coincides
with the rational subset U(T'/[w|p) of S = Spa(Aint, Aint) as desired.

It remains to prove statement |(2) . In light of Theorem it suffices to estabish a nat-
ural isomorphism Os(Yq)) = Blay)- Proposition shows that Os(Yq4)) is canonically
isomorphic to the completion of Aj,¢(T'/[wp]p). Since Ajys is adic with an ideal of definition
generated by p and [w,], we may identify A;ns(T'/[wp]p) as the ring Aine[1/p, 1/[wwp]] with the
p-adic topology. By Lemma in Chapter [[V] it is enough to prove the identity

Aint[[wa] /p, /@]l = { f € Awt[1/p, 1/[@s]] - |f], < Tand [fl, <17}.
Every f € Ainl[wa]/p,p/[ws]] evidently satisfies the inequalities |f|, < 1 and |f|, <

Hence we only need to show that every f € Ain¢[l/p,1/[wp]] with |f|, < 1 and |f], <

lies in Aine[[wwa]/p, p/[wwp]]. By Proposition in Chapter we may write f = Y [c ]
with ¢, € I’ and take an integer m > 0 with w@;"c, € OF for each n € Z. We find

S el = o/ [me)™ S [ s lp™ € Awelp/ (4]

n>m n>0

Meanwhile, as we have the inequalities
len| |wma]™ < |f], <1 and |epl|ws|” < |f], <1 for each n € Z,
we obtain the relation
Do lealp” =D leaw] - ([wal/p) ™"+ Y [ewwi] - (0/[w])" € Aimtl[@al/p, 0/ [8]]-
n<m n<0 0<n<m
Now the desired assertion is evident. O
Remark. We state two additional facts about the adic space Y}, 5 and the Huber ring By, ),
proved by Kedlaya [Ked05, Ked16|] and Fargues-Fontaine [FF18].
(1) The space Y,y is noetherian.
(2) Thering By, is a principal ideal domain and gives rise to a natural bijectoin between

the maximal ideals of By, and the classical points on Y, ).

PROPOSITION 3.2.15. The set ) is open in S := Spa(Ajyf, Ainr) and is naturally an adic space

~

with a canonical isomorphism Oy()) = B.

PROOF. Since every rational subset of S = Spa(A;us, Aing) is open, the assertion follows
from Proposition [3:2.10} Proposition [3.2.12] and Proposition [3.2.14] O

Remark. For each y € Y, we can use Proposition |3.2.15| to identify B;R(y) with the com-
pleted local ring at the associated classical point.
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PROPOSITION 3.2.16. There exists a canonical homeomorphism ¢ : ) — ) induced by the
Frobenius automorphism of A;,¢.

PRrROOF. The Frobenius automorphism ;¢ on Ajy¢ is a topological automorphism, as eas-
ily seen by the relations yine(p) = p and pine([ew]) = [wP]) for each w € mp. Hence iyt yields
an automorphism of the Huber pair (Ajyf, Aing) and in turn gives rise to a homeomorphism
Lpf‘ff : Spa(Ainf, Aint) — Spa(Aint, Ainf) by Lemma Now we observe that wf‘ff restricts
to a homeomorphism ¢ : Y — ), thereby completing the proof. O

Definition 3.2.17. We refer to the homeomorphism ¢ constructed in Proposition [3.2.16| as
the Frobenius action on ) and define the adic Fargues-Fontaine curve to be the set

X = Xp = Y/¢~.

Remark. It is not hard to see that the Frobenius action on ) restricts to the Frobenius
action on Y via the embedding Y — ) given by Proposition [3.2.6

PROPOSITION 3.2.18. For every a,b € |mp|, the Frobenius action ¢ on ) naturally induces a
homeomorphism YVjg» pr) — Vjap) and a sheaf isomorphism Oy, ,,) = Oy, -

PROOF. 1t is straightforward to verify that ¢ maps Ys» yr] homeomorphically onto V4 .
Moreover, since Vg and YVjgp e are rational subset of S := Spa(Aint, Aint) with canonical
isomorphisms Os(Vjap) = By and Os(Viar pr)) = Blar pe) as noted in Proposition
we apply Proposition in Chapter [[V] to see that ¢ induces a natural isomorphism

(Os(Viap) OF Viag)) = (OsViar yo1)s OF (Viar 1))
~ 0y, 0

and thus gives rise to an identification Oy, o]

aP,bP]

Remark. Moreover, we can use Proposition [3.2.15[to get a natural isomorphism Oy = ¢.05y
whose induced map on the global sections coincides with the Frobenius automorphism of B.

PropoSITION 3.2.19. The set X is naturally an adic space.

PROOF. Choose an element r € |mp| and a rational number ¢ with 1/p < ¢ < 1. For
every n € Z, we have r?",r%" € |mp| as F is algebraically closed. Let us set

Vo = Vo o) and - Wy, 1= y[rqpn’rpnq] for each n € Z.

It is not difficult to see that each z € Y lies in V,, or W, for some n € Z. In addition, we
find ¢(V,,) = Vy—1 and ¢(W,,) = W,,—1 for each n € Z by Proposition Since the
sets V,, and W, for every n € Z are open adic spaces in ) by Proposition [3.2.14] we deduce
from Proposition that the action of ¢ on ) is properly discontinuous and consequently
identify X as a quotient space of ) with an open cover given by the adic spaces Vy and Wj.
Moreover, we apply Proposition to obtain a sheaf Oy on X by gluing Oy, and Oyy,.
Now the desired assertion is evident. O

Remark. A fundamental result of Kedlaya-Liu [KL15] yields a natural morphism of locally
ringed spaces X — X which induces an equivalence of categories

{ vector bundles on X } —~ { vector bundles on X }.

This equivalence is an analogue of the celebrated GAGA theorem by Serre [Ser56] and pro-
vides powerful means to study vector bundles on the Fargues-Fontaine curve using the modern
machinery in p-adic geometry developed by Scholze [Sch12, [Sch18]|. For example, the work
of Birkbeck-Feng-Hansen-Hong-Li-Wang-Ye [BFHT 22| and Hong [Hon21), Hon23,, Hon25|
employs this equivalence to classify vector bundles which arise as subsheaves, quotients, or
extensions of given vector bundles on the Fargues-Fontaine curve.
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Exercises

1. Given a p-adic field K with residue field k, show that the kernel of the extended logarithm
map log : (C5)* — By is isomorphic to k.

2. Let K be a p-adic field with residue field k.
(1) For every (¢, N)-module D over Ky = W (k)[1/p], prove that Np is nilpotent.
Hint. Take an integer i > 0 with N5(D) = Nj'(D) and prove that N&(D) is

naturally a (¢, N)-submodule of D with a bijective monodromy operator.

(2) For every weakly admissible filtered (¢, N)-module D over K with a unique
Hodge-Tate weight, prove that Np vanishes.

Hint. If Np is nonzero, show that Np(D) is naturally a filtered (¢, N)-submodule
of D with deg(Np(D)) < deg(D) and deg®(Np(D)) = deg®(D).

3. Let us consider the basis vectors e; := (1,0) and ey := (0,1) of Q2.

(1) For every A € Z, and ¢ € Q, with X\ # 0, show that there exists a unique normally
weighted filtered (¢, N)-module D" over Q,, of rank 2 with

)\ O 0 ]- mon
poyon = (0 p>\>’ Npgen = (0 0)’ HUDRET) = Qpleer +ea).

(2) Show that a filtered (¢, N)-module D over @, of rank 2 with Np # 0 is weakly
admissible if and only if it admits an isomorphism

D ~ D" ®q, Dst(Qp(n))
for some \ € Zy,, c € Qp, n € Z with A # 0.

Hint. Represent Np by a triangular matrix under some Q,-basis for D and apply
the relation Np o ¢p = ppp o Np to show that ¢p has two distinct Q,-eigenvalues.

Remark. We can combine the second part with results from Chapter [[TI| to obtain a complete
classification for weakly admissible filtered (¢, N)-modules over @, of rank 2.

4. Let K be a finite extension of Q.
(1) Show that every extension of @, by Q,(1) is semistable.

Hint. Adapt Example using the isomorphism H'(T'x,Qy(1)) = Q, ®z, K
given by Kummer theory, where K> denotes the p-adic completion of the abelian
group K*.

(2) Show that every nonsplit extension of Q,(1) by @, is not semistable.

Remark. The second part and Theorem [1.2.25| together imply that every nonsplit extension
of Qp(1) by Q, is not de Rham.

5. Given a p-adic field K, verify Theorem|[1.2.25|for one-dimensional p-adic I x-representations.
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6. For a p-adic field K with residue field k, show that every semilinear I'y-module M over Kun
admits a natural isomorphism

M= M @ K,

7. Let E be a perfect field of characteristic p and denote by ¢ the Frobenius automorphism
on & :=W(E)[1/p].

(1) Given integrally p-adic T'g-representations M and M’, establish a canonical isomor-
phism of p-modules

Dint(M ®Zp M/) = Dint(M) ®(’)g Dint(M/)-

(2) Given a free integrally p-adic I'g-representation M with dual MV, establish a canon-
ical perfect pairing of p-modules

Dint(M) ®0, Dint(M") — Opg.

(3) Given a torsion integrally p-adic I'g-representation M with Pontryagin dual M",
establish a canonical perfect pairing

Dint(M) ®O,§ Dint(M/\) — (Dﬁ/oé"

which is compatible with the p-endomorphisms.

8. Let E be a perfect field of characteristic p and denote by ¢ the Frobenius automorphism
on & := W(E)[1/p].
lin

(1) For every étale p-module D over &, show that ¢}}' is an isomorphism.
(2) Find a ¢-module D over & which is not étale with ¢'' being an isomorphism.
9. Let ¢ denote the Frobenius automorphism on Eg,.

(1) For every c € )y, prove that there exists a unique (p, I')-module D" over Eg, of
rank 1 with ¢pun = cp and the trivial I'c-action.

(2) Prove that every (¢, I's)-module D over Eg, of rank 1 admits an isomorphism
D ~ D" ®r, Eg,(n)
for some unique ¢ € IE‘; andn e€Z with0<n<p-—2.
Hint. The field Eg, is isomorphic to the t-adic completion F,((¢}/P™)) of F,(t/P™),

where t1/P denotes the set of p-power roots of the variable ¢, with the I'so-action
given by the relation v(t) = (1 + ¢)X&% () for every v € I'.

Remark. The second part and Theorem together imply that there exist precisely
(p — 1) isomorphism classes of 1-dimensional mod-p [g,-representations, which we can also
deduce from the class field theory.

10. Let E denote the field k((t)) for a perfect field k of characteristic p.

(1) Show that the p-adic completion C(FE) of W (k)((t)) is a complete discrete valuation
ring with residue field £ and uniformizer p.

(2) Show that the Frobenius endomorphism on E lifts to an endomorphism on C'(E).
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11. In this exercise, we study the topological space Spa(Z,Z) with the discrete topology on
the ring Z.

(1) Find a representative for each point on Spa(Z,Z).
(2) Find the closure of each point on Spa(Z,Z).

(3) Show that the image of the natural map Spa(Q,Q) — Spa(Z,Z) induced by the
embedding Z — Q is homeomorphic to Spec (Z).

12. Let (R, R™) be a Huber pair.

(1) Prove that there exists a natural continuous map Spa(R, RT) — Spec (R) which
sends each x € Spa(R, RT) with a representative v to v=1(0).

(2) If R is discrete, prove that (R, R1) is sheafy.

Hint. Prove that the structure presheaf on Spa(R, RT) agrees with the pullback of
the structure sheaf on Spec (R) along the map Spa(R, R™) — Spec (R).

Remark. If R is discrete with R = R™, it is not hard to see that the fibers of the natural
map Spa(R, R) — Spec (R) are homeomorphic to Riemann-Zariski spaces.

13. Let F' be an algebraically closed perfectoid field of characteristic p.

(1) Given an untilt C of F in characteristic 0, show that the Fontaine map 6¢ induces
a natural continuous map Spa(O¢, Oc) — Spa(Aint, Aing) with closed image.

Hint. Show that the image of the map contains an element x € Spa(Aipnf, Aing) if
and only if x vanishes on ker(6¢).

(2) Show that every classical point on )V = Vr is closed.

Hint. Identify every classical point on ) as the preimage of Y under the continuous
map Spa(Oc, Oc) — Spa(Ainf, Aing) for some untilt C' of F' in characteristic 0.

14. Let F be an algebraically closed perfectoid field of characteristic p.

(1) Show that there exists a canonical embedding (0,1) < ) = Yp which sends each
p € (0,1) to the equivalence class of the Gauss p-norm on Aj,s = Ajne(F).

(2) Show that the image of the embedding (0, 1) < ) is disjoint from the set of classical
points on ).

(3) Given two elements a, b in the value group of F' with a,b < 1, show that the embed-
ding (0,1) < Y restricts to an embedding [a, b] — Y,

15. Let F be an algebraically closed perfectoid field of characteristic p.

(1) Prove that the Frobenius action ¢ on J = Vr restricts to the Frobenius action on
the set Y = Y of equivalence classes of untilts of F' in characteristic 0.

(2) Prove that Y admits a natural isomorphism Oy = ¢,.0y whose induced map on the
global sections coincides with the Frobenius automorphism on B = Bp.

(3) Prove that X = Xp admits a canonical isomorphism Oy (X) = Q,.



[And02]
[BC]
[Beil2]

[Beil3]
[Ber02]

[Ber08]

[BFHT22]

[Bhal9]

[BL95)
[BMS18]
[BMS19]
[Bre00]
[Bri22]
[CFOO]
[C199)]
[Col98]
[Col02]
[Cre9g)]
[Dem72]
[Die55]
[Dri76]
[Emell]

[Fal83]

Bibliography

Yves André, Filtrations de type Hasse-Arf et monodromie p-adique, Invent. Math. 148 (2002),
285-317.

Olivier Brinon and Brian Conrad, CMI summer school notes on p-adic hodge theory, http://math.
stanford.edu/~conrad/papers/notes.pdf.

Alexander Beilinson, p-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25
(2012), no. 3, 715-738.

, On the crystalline period map, Camb. J. Math. 1 (2013), no. 1, 1-51.

Laurent Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002),
219-284.

, Construction of (¢,v)-modules: p-adic representations and B-pairs, Algebra & Number
Theory 2 (2008), no. 1, 91-120.

Christopher Birkbeck, Tony Feng, David Hansen, Serin Hong, Qirui Li, Anthony Wang, and Lynelle
Ye, Extensions of vector bundles on the Fargues-Fontaine curve, J. Inst. Math. Jussieu 21 (2022),
no. 2, 487-532.

Bhargav Bhatt, The Hodge-Tate decomposition via perfectoid spaces, Perfectoid Spaces: Lectures
from the 2017 Arizona Winter School, Mathematical Surveys and Monographs, vol. 242, American
Mathematical Society, 2019, pp. 193—243.

Arnaud Beauville and Yves Laszlo, Un lemme de descente, C. R. Acad. Sci. Paris Sér. I Math. 320
(1995), no. 1, 335-340.

Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Integral p-adic Hodge theory, Publications
Mathématiques de 'THES 128 (2018), 219-397.

, Topological Hochschild homology and integral p-adic Hodge theory, Publications
Mathématiques de 'THES 129 (2019), 199-310.

Christophe Breuil, Groupes p-divisibles, groupes finis et modules filtrés, Annals of Math. 152 (2000),
no. 2, 489-549.

Oliver Brinon, On the injectivity of Frobenius on p-adic period rings, Proc. Amer. Math. Soc. 150
(2022), no. 1, 75-78.

Pierre Colmez and Jean-Marc Fontaine, Construction des représentations p-adiques semi-stables,
Invent. Math. 140 (2000), no. 1, 1-43.

Robert Coleman and Adrian Iovita, The Frobenius and monodromy operators for curves and abelian
varieties, Duke Math. J. 97 (1999), no. 1, 171-215.

Pierre Colmez, Théorie d’iwasawa des représentations de de rham d’un corps local, Annals of Math.
148 (1998), no. 2, 485-571.

, Espaces de Banach de dimension finie, Journal of the Institute of Mathematics of Jussieu
1 (2002), no. 3, 331-439.

Richard Crew, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve,
Annales de ’ENS 31 (1998), no. 6, 717-763.

Michel Demazure, Lectures on p-divisible groups, Lecture Notes in Mathematics, vol. 302, Springer,
1972.

Jean Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic p > 0 (IV), Amer.
J. Math. 77 (1955), no. 3, 429-452.

Vladimir G. Drinfeld, Coverings of p-adic symmetric domains, Functional Analysis and its Appli-
cations 10 (1976), no. 2, 29-40.

Matthew Emerton, Local-global compatibility in the p-adic Langlands programme for GLg/q, https:
//www.math.uchicago.edu/~emerton/pdffiles/lg.pdf.

Gerd Faltings, Endlichkeitssatze fir abelsche Varietaten iber Zahlkorpern, Invent. Math. 73 (1983),
no. 3, 349-366.

219


http://math.stanford.edu/~conrad/papers/notes.pdf
http://math.stanford.edu/~conrad/papers/notes.pdf
https://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
https://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf

220

[Fal8s]
[Falg9)

[FF12]

[FF14]

[FF18]
[FMS87]
[FMO5]
[FO]

[FonT7]
[FonT79]

[Fon82]
[Fon83]
[Fon90]
[Fon94a]
[Fon94b]
[Fon13]
[FS21]
[FW79a]

[FW79b

[GHO4]

[GieT73]
[Gro57]

[Gro60]

[GroT71]
[GroT72]
[Gro74]

[HN75]

BIBLIOGRAPHY

, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299.

, Crystalline cohomology and p-adic galois representations, Algebraic analysis, geometry, and
number theory : proceedings of the JAMI Inaugural Conference (J. I. Igusa, ed.), Johns Hopkins
Univ. Press, Baltimore, 1989, pp. 25-80.

Laurent Fargues and Jean-Marc Fontaine, Vector bundles and p-adic Galois representations, Fifth
International Congress of Chinese Mathematicians, AMS/IP Studies in Advanced Mathematics,
vol. 51, Cambridge Univ. Press, Cambridge, 2012, pp. 77-114.

, Vector bundles on curves and p-adic Hodge theory, Automorphic forms and Galois represen-
tations. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 415, Cambridge Univ. Press, Cambridge,
2014, pp. 17-104.

, Courbes et fibrés vectoriels en théorie de Hodge p-adique, Astérisque 406 (2018).
Jean-Marc Fontaine and Barry Mazur, p-adic periods and p-adic étale cohomology,, Current Trends
in Arithmetical Algebraic Geometry, Contemporary Mathematics, vol. 67, American Mathematical
Society, Providence, 1987, pp. 179-207.

, Geometric Galois representations, Elliptic curves, modular forms, and Fermat’s last theo-
rem, Series in number theory, vol. 1, International Press, 1995, pp. 190-227.

Jean-Marc Fontaine and Yi Ouyang, Theory of p-adic Galois representations, https://wuw.imo.
universite-paris-saclay.fr/~fontaine/galoisrep.pdf.

Jean-Marc Fontaine, Groupes p-divisibles sur les corps locauz, Astérisque 47-48 (1977).

, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Journées de Géométrie
Algébrique de Rennes, Astérisque, vol. 65, 1979, pp. 3-80.

, Sur certains types de representations p-adiques du groupe de Galois d’un corps local; Con-
struction d’un anneau de Barsotti- Tate, Annals of Math. 115 (1982), no. 3, 529-577.

, Cohomologie de de rham, cohomologie cristalline et représentations p-adiques, Algebraic
Geometry, Lecture Notes in Mathematics, vol. 1016, Springer, Berlin, 1983, pp. 86-108.

, Représentations p-adiques des corps locauz (1ére partie), The Grothendieck Festschrift,
Modern Birkh&user Classicss, Birkhéuser Boston, 1990, pp. 249-309.

, Le corps des periodes p-adiques, Astérisque 223 (1994), 59-111.

, Représentations p-adiques semi-stables, Astérisque 223 (1994), 113-184.

, Perfectoides, presque pureté et monodromie-poids, Séminaire Bourbaki volume 2011/2012
exposés 1043-1058, Astérisque, vol. 352, 2013, pp. 509-534.

Laurent Fargues and Peter Scholze, Geometrization of the local Langlands correspondence,
Astérisque, to appear.

Jean-Marc Fontaine and Jean-Pierre Wintenberger, Fxtensions algébriques et corps des normes des
extensions apf des corps locauz, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, A441-A444.

, Le “corps des normes” de certaines extensions algébriques de corps locauz, C. R. Acad. Sci.
Paris Sér. A 288 (1979), no. 6, A367-A370.

Benedict H. Gross and Michael J. Hopkins, Equivariant vector bundles on the Lubin-Tate mod-
uli space, Topology and Representation Theory, Contemporary Mathematics, vol. 158, American
Mathematical Society, 1994, pp. 23-88.

David Gieseker, Stable vector bundles and the frobenius morphism, Annales de 'ENS 6 (1973), no. 1,
95-101.

Alexander Grothendieck, Sur la classification des fibrés holomorphes sur la sphére de Riemann,
Amer. J. Math. 79 (1957), 121-138.

, Technique de descente et théorémes d’existence en géométrie algébrique. I. Généralités.
Descente par morphismes fidélement plats, Séminaire Bourbaki : années 1958/59 - 1959/60, exposés
169-204, Séminaire Bourbaki, no. 5, Société mathématique de France, 1960, Talk no.190, pp. 299—
327. MR 1603475

, Groupes de Barsotti-Tate et cristauz, Actes du Congres International des Mathématiciens
(Nice, 1970) (Paris), Gauthier-Villars Editeur, 1971, pp. 431-436.

, Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, vol.
288, Springer-Verlag, 1972.

, Groupes de Barsotti-Tate et cristaur de Dieudonné, Séminaire de Mathématiques
Supérieures, vol. 45, Presses de 1Université de Montréal, 1974.

Gilinter Harder and Mudumbai Seshachalu Narasimhan, On the cohomology groups of moduli spaces
of vector bundles on curves, Math. Ann. 212 (1975), 215-248.



https://www.imo.universite-paris-saclay.fr/~fontaine/galoisrep.pdf
https://www.imo.universite-paris-saclay.fr/~fontaine/galoisrep.pdf

[Hon21]
[Hon23|
[Hon25]

Hub93]
Hub94]
Ked04]
Ked05]
Ked16]

[Ked19]

[Kis09]
[KL15]
[Laf85]
[LB18]
[LT65]

[Lur]
[Man63]

[Meb02]

[Mil]
[Mor19]

[Mum?70]
[Nér64]

[Niz98]
[Niz08]
[Oggb67]

[Pan22]
[Pin]

Sch12]
Sch13]

Sch18]
Seng&0)

[Ser56]

Ser68]
Ser79]
Ser92]
Sta]
Sti]

BIBLIOGRAPHY 221

Serin Hong, Classification of subbundles on the Farques-Fontaine curve, Algebra & Number Theory
15 (2021), no. 5, 1127-1156.

, Classification of quotient bundles on the Fargues-Fontaine curve, Selecta Math. (N.S.) 29
(2023), no. 20.

, Extensions of vector bundles on the Fargues-Fontaine curve II, J. Algebraic Geom. 34
(2025), 161-181.

Roland Huber, Continuous valuations, Math. Z. 212 (1993), 455-477.

, A generalization of formal schemes and rigid analytic spaces, Math. Z. 217 (1994), 513-551.
Kiran S. Kedlaya, A p-adic local monodromy theorem, Annals of Math. 160 (2004), no. 1, 93-184.
, Slope filtrations revisited, Doc. Math. 10 (2005), 447-525, Errata in 12 (2007), 361-362.

, Noetherian properties of Fargues-Fontaine curves, Int. Math. Res. Not. IMRN (2016), no. 8,
2544-2567.

, Sheaves, stacks, and shtukas, Perfectoid Spaces: Lectures from the 2017 Arizona Winter
School, Mathematical Surveys and Monographs, vol. 242, American Mathematical Society, 2019,
pp. 45-191.

Mark Kisin, p-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 22 (2009), no. 3,
641-690.

Kiran S. Kedlaya and Ruochuan Liu, Relative p-adic Hodge theory: Foundations, Astérisque 371
(2015).

Guy Laffaille, Groupes p-divisibles et corps gauches, Comp. Math. 56 (1985), no. 2, 221-232 (fr).
MR 809867

Arthur-César Le Bras, Espaces de Banach-Colmez et faisceaur cohérents sur la courbe de Fargues-
Fontaine, Duke Math. J. 167 (2018), no. 18, 3455-3532.

Jonathan Lubin and John Tate, Formal complex multiplication in local fields, Annals of Math. 81
(1965), no. 2, 380-387.

Jacob Lurie, The Fargues-Fontaine curve, https://www.math.ias.edu/~1lurie/205.html.

Yuri I. Manin, The theory of commutative formal groups over fields of finite characteristic, Russian
Mathematical Surveys 18 (1963), no. 6, 1-83.

Zoghman Mebkhout, Analogue p-adique du théoréme de Turrittin et le théoréme de la monodromie
p-adique, Invent. Math. 148 (2002), 285-317.

James Milne, Abelian varieties, https://www.jmilne.org/math/CourseNotes/AV.pdfl

Matthew Morrow, The Fargues-Fontaine curve and diamonds, Séminaire Bourbaki volume
2017/2018 exposés 1136-1150, Astérisque, vol. 414, 2019, pp. 533-572.

David Mumford, Abelian varieties, Oxford University Press, 1970.

André Néron, Modéles minimaux des variétés abéliennes sur les corps locaux et globauz, Publications
Mathématiques de 'THES 21 (1964), no. 1, 5-125.

Wiestawa Niziol, Crystalline conjecture via k-theory, Annales de 'ENS 31 (1998), no. 5, 659-681.

, Semistable conjecture via k-theory, Duke Math. J. 141 (2008), no. 1, 151-178.

A. P. Ogg, Elliptic curves and wild ramification, American Journal of Mathematics 89 (1967), no. 1,
1-21.

Lue Pan, The Fontaine-Mazur conjecture in the residually reducible case, J. Amer. Math. Soc. 35
(2022), 1031-1169.

Richard Pink, Finite group schemes, ftp://ftp.math.ethz.ch/users/pink/FGS/CompleteNotes.
pdf.

Peter Scholze, Perfectoid spaces, Publications Mathématiques de I'THES 116 (2012), no. 1, 245-313.
, p-adic Hodge theory for rigid-analytic varieties, Forum of Mathematics, Pi 1 (2013), el.

, Etale cohomology of diamonds, Astérisque, to appear.

Shankar Sen, Continuous cohomology and p-adic Galois representations, Invent. Math. 62 (1980),
89-116.

Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Annales de 'Institut Fourier 6
(1956), 1-42.

, Abelian £-adic Representations and Elliptic Curves, W. A. Benjamin, Inc., 1968.

, Local Fields, Graduate Texts in Mathematics, Springer New York, NY, 1979.

, Lie Algebras and Lie Groups, Lecture Notes in Mathematics, vol. 1500, Springer, 1992.
The Stacks project authors, The Stacks project, https://stacks.math.columbia.edu.

Jacob Stix, A course on finite flat group schemes and p-divisible groups, http://www.math.
uni-frankfurt.de/~stix/skripte/STIXfinflatGrpschemes20120918.pdf.



https://www.math.ias.edu/~lurie/205.html
https://www.jmilne.org/math/CourseNotes/AV.pdf
ftp://ftp.math.ethz.ch/users/pink/FGS/CompleteNotes.pdf
ftp://ftp.math.ethz.ch/users/pink/FGS/CompleteNotes.pdf
https://stacks.math.columbia.edu
http://www.math.uni-frankfurt.de/~stix/skripte/STIXfinflatGrpschemes20120918.pdf
http://www.math.uni-frankfurt.de/~stix/skripte/STIXfinflatGrpschemes20120918.pdf

222

[SW20]

[Tat66]
[Tat67)

[Tat97]
[Tsu99]

[TW95]
[Wed19]
[Wei56]

[Wil95]

BIBLIOGRAPHY

Peter Scholze and Jared Weinstein, Berkeley lectures on p-adic geometry, Annals of Math. Studies,
vol. 207, 2020.

John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
, p-Divisible groups, Proceedings of a Conference on Local Fields (Berlin, Heidelberg) (T. A.
Springer, ed.), Springer Berlin Heidelberg, 1967, pp. 158-183.

, Finite flat group schemes, pp. 121-154, Springer New York, New York, NY, 1997.
Takeshi Tsuji, p-adic étale and crystalline cohomology in the semistable reduction case, Invent.
Math. 137 (1999), 231-411.

Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Annals of
Math. 141 (1995), no. 3, 553-572.

Torsten Wedhorn, Adic spaces, arXiv:1910.05934.

André Weil, On a certain type of characters of the idéle-class group of an algebraic number-field,
Proceedings of the international symposium on algebraic number theory (J. I. Igusa, ed.), Science
Council of Japan, 1956, pp. 1-7.

Andrew Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of Math. 141 (1995),
no. 3, 443-551.




	Chapter I. Introduction
	1. A first glimpse of p-adic Hodge theory
	1.1. The arithmetic perspective
	1.2. The geometric perspective

	2. Machinery of p-adic Hodge theory
	2.1. Period rings and their associated functors
	2.2. The Fargues-Fontaine curve and its vector bundles

	Exercises

	Chapter II. Foundations of p-adic Hodge theory
	1. Finite flat group schemes
	1.1. Basic definitions and properties
	1.2. Cartier duality
	1.3. Finite étale group schemes
	1.4. The connected-étale sequence
	1.5. The Frobenius morphism

	2. p-divisible groups
	2.1. Basic definitions and properties
	2.2. Serre-Tate equivalence for connected p-divisible groups
	2.3. Dieudonné-Manin classification

	3. Hodge-Tate decomposition
	3.1. Tate twists of p-adic representations
	3.2. Points on p-divisible groups
	3.3. Hodge-Tate decomposition for Tate modules

	Exercises

	Chapter III. Period rings and functors
	1. Fontaine's formalism on period rings
	1.1. Basic definitions and examples
	1.2. Formal properties of admissible representations

	2. de Rham representations
	2.1. Perfectoid fields and their tilts
	2.2. The de Rham period ring B`3́9`42`"̇613A``45`47`"603AdR
	2.3. Filtered vector spaces
	2.4. Properties of de Rham representations

	3. Crystalline representations
	3.1. The crystalline period ring B`3́9`42`"̇613A``45`47`"603Acris
	3.2. Properties of crystalline representations
	3.3. Admissible filtered isocrystals

	Exercises

	Chapter IV. The Fargues-Fontaine curve
	1. Construction and geometric structures
	1.1. Untilts of a perfectoid field
	1.2. The algebraic Fargues-Fontaine curve
	1.3. Legendre-Newton polygons
	1.4. The logarithm and closed points

	2. Vector bundles
	2.1. Line bundles and their cohomology
	2.2. Harder-Narasimhan filtration
	2.3. Classification of vector bundles

	3. Applications to p-adic representations
	3.1. Geometrization of p-adic period rings
	3.2. Geometrization of isocrystals

	Exercises

	Chapter V. Additional topics
	1. Semistable representations
	1.1. The semistable period ring B`3́9`42`"̇613A``45`47`"603Ast
	1.2. Properties of semistable representations

	2. Galois representations and -modules
	2.1. Galois representations for fields of characteristic p
	2.2. Galois representations for p-adic fields

	3. The Fargues-Fontaine curve and p-adic geometry
	3.1. Huber rings and adic spaces
	3.2. The adic Fargues-Fontaine curve

	Exercises

	Bibliography

